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Host genome studies are increasingly available for the study of infectious disease susceptibility. Current
technologies include large-scale genotyping, genome-wide screens such as transcriptome and silencing (si-
lencing RNA) studies, and increasingly, the possibility to sequence complete genomes. These approaches are
of interest for the study of individuals who remain uninfected despite documented exposure to human im-
munodeficiency virus type 1. The main limitation remains the ascertainment of exposure and establishing
large cohorts of informative individuals. The pattern of enrichment for CCR5 D32 homozygosis should serve
as the standard for assessing the extent to which a given cohort (of white subjects) includes a large proportion
of exposed uninfected individuals.

The discussion on the protective factors that allow a

small number of individuals to avoid infection despite

repeated exposure is increasingly centered on (1) the

nature of the genetic factors that may underlie this trait,

(2) the technical approaches used to identify them, and

(3) the study population and its defining characteristics.

In the present commentary, we discuss these aspects

under the common theme of integrating large-scale

data sets that are mainly but not solely obtained from

genomic studies. The emphasis here is on understand-

ing the importance of study design and defining the

phenotype of human immunodeficiency virus (HIV)

resistance. These are essential aspects for the success of

these studies; in fact, cohort issues, not technological

limits, are increasingly recognized as limiting progress

in the field.
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GENETIC FACTORS UNDERLYING
RESISTANCE TO HIV INFECTION

The identification of the highly protective CCR5 D32

allele demonstrated the importance of genetic factors

in determining susceptibility to HIV in white subjects.

However, no similar factor has been identified in other

populations despite extensive evidence for similar traits

of resistance to HIV. The research community has ad-

dressed this specific question through a candidate gene

approach (data compiled at the HIV-Pharmacogenom-

ics Web site [1]). The study populations have generally

included exposed uninfected individuals, mother-child

pairs, or infected individuals and the uninfected general

population, to compare allelic frequencies. The pro-

posed variants thus studied have been supported by

unequal evidence. Variants or haplotypes of CCL5,

CCL2-CCL7-CCL11, CCL3, and DEFB1 have been as-

sociated with differential susceptibility to infection or

transmission in 11 study. There is controversy regarding

the role of variants of KIR, CXCR1, DARC, CCL3L1,

CXCL12, CD209, CLEC4M, MBL2, and ABCB1 in sus-

ceptibility to infection. There is insufficient evidence or

lack of confirmation concerning a role for variants of

IL10, IL18, IRF1, IL4R, PTPRC, and APOBEC3B. It is

clear that identifying genetic factors underlying resis-

tance requires a large well-defined study population

with a clear phenotype (see below), and the unbiased

identification of candidate regions using novel tech-
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Figure 1. Summary diagram of the genome pipeline. Genome-wide
association studies (GWASs) are now processive techniques that have
been applied to the analysis of 110,000 individuals infected with human
immunodeficiency virus. The individual studies can be pooled through
meta-analysis to identify additional genetic variants. Sequencing of the
complete human genome or the coding genome (exome) are new steps
being applied to a limited number of individuals considered highly in-
formative (eg, elite controllers, rapid progressors, exposed uninfected
individuals), with the goal of identifying rare mutations. Other genome-
wide screens, such as transcriptome or silencing RNA analyses, may
contribute to lists of candidate genes that may be prioritized for se-
quencing. All approaches will generally lead to in-depth targeted rese-
quencing in more individuals. WG, whole-genome.

nologies that provide information on likely mechanisms of

protection.

Genome-wide association studies (GWASs) constitute the

first level of assessment of the impact of common genetic var-

iants in complex traits, such as HIV resistance. Common var-

iation is defined as a single-nucleotide polymorphism (SNP)

found in �5% of individuals in a given population. GWASs

have been used to identify variants modulating viral load or

disease progression in individuals who are already HIV positive

[2–7]. These studies are consistent in underscoring the im-

portance of the MHC region at the genome scale and of the

CCR5-CCR2 locus. Overall, the common variants identified to

date explain !15% of the observed variance in viral load or

progression in infected individuals. The unexplained variation

may represent yet undiscovered genetic factors as well as viral

strain or environmental factors.

To identify the factors responsible for the remaining genetic

variation, necessary steps forward include conducting a meta-

analysis of all currently available GWASs, a step that has proved

highly successful in other fields, as in understanding the genetic

structure of diabetes or human height. Here, meta-analyses of

genome-wide SNP data on 1100,000 individuals have yielded

1100 validated genetic loci influencing those traits [8]. Second,

new technology (see below) increasingly allows the interroga-

tion of less common and rare genetic variants (!5% in the

population). Again, the model of diabetes genetics illustrates

the point by describing a scenario in which common and rare

variants may both occur at the same genetic loci yet differ in

their power of the association and effect on the trait. Third,

the frequent call for candidate gene approaches illustrates the

intellectual tension between analyses that are agnostic to the

nature of the genes involved and those guided by current bi-

ological and functional knowledge. The new element that has

animated the debate is the possibility of identifying candidate

genes or pathways by applying advanced technologies that in-

terrogate the complete genome—for example, genome-wide

RNA silencing and transcriptome screens. Figure 1 illustrates

the genomic pipeline that integrates the various approaches.

TECHNICAL APPROACHES TO IDENTIFYING
GENETIC FACTORS

GWAS analysis. Genotyping at the genomic scale generally

implies the assessment of 500 to 1 million SNPs per individual.

The SNPs assessed by the most widely used commercial plat-

forms have been selected to represent common variation in

humans and do not directly interrogate all known variants.

More SNPs are needed when the study population is of African

ancestry. In addition to HIV, GWASs have been completed for

hepatitis C virus [9–12], Mycobacterium leprae infection [13],

and malaria [14]. In all cases, the approach has shed light on

pathogenesis. Of particular relevance to HIV pathogenesis and

resistance, current GWASs are mostly limited to populations

of European ancestry. Generating such data in other popula-

tions, particularly in Africa, has the potential to identify novel

loci. However, such studies involve technical challenges, be-

cause more SNPs need to be genotyped owing to shorter hap-

lotype lengths.

Whole-genome analysis. Current GWASs have been criti-

cized for their inability to interrogate rare variants, and for the

limited amount of genetic variance currently explained. Thus,

there has been growing interest in prioritizing the analysis of

rare mutations that may carry a significant effect for the in-

dividual who carries them and may collectively explain part of

the remaining unexplained variance [8]. Investigators are work-

ing on the various competing possibilities: lowering the cost

for whole-genome sequencing to make its application more

feasible in large samples, concentrating resequencing efforts on

the complete exome of an individual (the 2% sequence in the

genome that is coding) [15], or increasing the density of the

coverage through a process known as imputation [16]. The step

of imputation assigns additional variants to an individual based

on haplotype data from well-characterized external data sets

(HapMap phase 3 or the complete genome sequencing of 11000

humans from several populations [17]) that thus do not need

to be directly typed. At a different scale, resequencing is in-

creasingly used in the follow-up of loci identified in GWASs;

for HIV, this is being done across the MHC region.

Transcriptome analysis. Large-scale analysis of expression

patterns are targeting both tissue and cell populations from the
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Figure 2. Considerations affecting the power of variant detection over a range of effect sizes in genetic discovery studies in exposed uninfected
individuals. The power of genetic discovery is a function of sample size, enrichment of the causal variants in the case population, minor allele
frequency in the population, and effect size. Small sample sizes (!500 case subjects) have only modest ability to detect variants with large effects
(odds ratio [OR], 15; eg, HLA-B*5701–tagging single-nucleotide polymorphisms associated with viral control) at a genome-wide discovery threshold
of . Identification of variants with even greater effects, such as CCR5 D32 homozygosity in exposed uninfected individuals (OR, 110)�8P ! 5 � 10
would still require 1100 case subjects and control subjects. These considerations are of particular importance in light of the modest effects (OR, !2)
for validated loci discovered in other complex traits. This power is further reduced by ambiguous phenotype definitions, because the allele frequency
differences between case and control subjects would be reduced.

in vivo HIV setting, as well as cell populations exposed to in

vitro perturbations [18, 19]. Transcriptome analysis is also

shedding light on the dynamics of infection in pathogenic and

nonpathogenic models of SIV infection [20–22]. These analyses

use microarrays covering 120,000 genes and regularly identify

one-third to two-thirds of the genes as being expressed in the

tissue or cell of interest. Against this level of coverage, the new

RNA deep sequencing approaches allow the quantitation of

more rare transcripts, splice isoforms, and small RNAs [23].

RNA deep sequencing also provides sequence variation infor-

mation (eg, SNPs) and is the most powerful approach to the

study of samples that are enriched for transcripts of interest,

in particular those obtained by chromatin immunoprecipita-

tion. On the other side of the scale, a number of technologies

aim at the high-throughput analysis of a limited number of

transcripts (eg, !500), representing signatures of a particular

state or full pathways [24]. As a rule of thumb, deep sequencing

may need 11 mg or 1 million cells; microarray analysis, 1100

ng or 100,000 cells; and next-generation digital gene expression

technology, 10 ng or 10,000 cells. Economy and speed also

decrease with decreases in the number of transcripts targeted.

Expression analysis is increasingly directed to the identification

of micro-RNAs relevant to antiviral defense. Metabolomics and

proteomics are also used in analysis of in vivo and in vitro

response to HIV or other relevant viruses [25].

Silencing-RNA screening. Four types of silencing RNA

(siRNA) screening tests have been used to identify host factors

required for HIV replication in vitro (reviewed in [25] and

[26]). The results have shown some of the limitations of the

technology for generating reproducible lists of candidate genes

for HIV dependency factors. Whereas 1000 genes were iden-

tified by the different screens, only 34 were shared by �2 stud-

ies. However, detailed meta-analysis and network analysis of

the data can point to a number of genes and pathways shared

across studies—for example, the nuclear pore machinery, the

mediator complex, a number of key kinases, and components

of the nuclear factor–kB complex—which should be considered

key elements of the cellular machinery supporting viral repli-

cation [26]. It is unknown, however, how these genes, or var-

iations thereof, may relate to in vivo susceptibility to infection.

Resequencing efforts have been initiated by several groups to

answer this question.
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Closing the loop: systems and network biology. Many of

the techniques described above may not generate much more

than descriptive data that in isolation may fail to identify key

genes, pathways, or factors relevant for understanding suscep-

tibility or pathogenesis or for developing vaccines. Systems bi-

ology or network biology has been proposed as the approach

to integrate high-throughput biological data obtained through

clearly designed experiments that include controlled pertur-

bation of the system (eg, exposure of cells to a cytokine), re-

construction of the network and its regulators, silencing of the

candidate genes or master regulators, and biological interro-

gation of the resulting system [27]. In light of the currently

available technologies for interrogating the whole genome, such

analytical approaches hold the most promise for explaining the

biological underpinnings of reduced susceptibility to HIV.

DEFINING CHARACTERISTICS OF
A STUDY POPULATION

The success of the various technologies just described for dem-

onstrating the bases of resistance to HIV infection will depend

heavily on the study design—in particular, the specificity of the

clinical or biological phenotype and the power calculation of

the study. Specifically, the relative contributions of cultural,

viral, host genetic, and (possibly) environmental cofactors will

depend profoundly on the “tightness” of the measurement of

the phenotype.

It is important to consider the enrichment of CCR5 D32

homozygosity in hemophiliac individuals as a model for the

design of studies in exposed uninfected individuals. The fre-

quency of CCR5 D32 homozygosity increases several fold, from

1%–3% in the general white population to frequencies up to

25% in uninfected hemophiliacs, with the highest frequencies

in those with severe hemophilia. This is the benchmark of what

is to be expected from a factor that confers almost absolute

protection in a population with unequivocal repeated exposure

to HIV. Therefore, the identification of factors that do not

confer absolute protection and the study of a population with

poorly defined levels of exposure will be challenging and require

significant statistical power. As demonstrated by Figure 2, the

power to detect variants with decreasing effect size greatly di-

minishes as sample sizes are reduced. Thus, even detection of

variants with large effect sizes relative to those described by

current GWASs (ie, 12) can be achieved only by using large

numbers of subjects (11000 case subjects and 11000 control

subjects) or greatly enriching the study population for indi-

viduals with the most specific phenotype. In practice, both are

advisable to maximize discovery because, even with clear phe-

notypes, polygenic underpinnings and heterogeneity may re-

duce the power to detect individual variants. Studies will need

to make phenotype definition and cohort assembly a priority;

technology will not remediate a poor study design.

Using an alternative approach, researchers who have previ-

ously obtained genome-wide data from HIV-1–infected indi-

viduals will assess whether infected subjects, unlike those who

are exposed but uninfected, are depleted of protective markers.

For example, CCR5 D32 homozygosis is reduced to a frequency

of �1:1000 among individuals included in HIV GWASs. Here,

the comparator is the general population, representing the ref-

erence for genetic variant frequencies. A meta-analysis of

GWASs and reference populations is currently underway.

CONCLUSIONS

Studies of the infected individual suggest that the genetic basis

of human susceptibility to HIV-1 includes common variants,

and probably an undefined number of rarer variants. The iden-

tification of additional common variants will require the com-

pletion of a meta-analysis of GWASs with sufficient power to

identify the less common variants and those with less contri-

bution to the phenotype. From this point on, exploring the

nature of rarer variants will require a shift in technology to

whole-genome or exome sequencing. This is still an unexplored

but promising territory in medicine. For the second general

path, candidate gene analyses will require feeding from other

types of large-scale screens, such as siRNAs and expression

analysis, and from more integrative approaches and systems

biology [25]. For other disorders (eg, metabolic and autoim-

mune diseases), the identification of multiple genetic loci and

markers allows the first attempts at building genetic scores and

proposing interactive models for those diseases.

Investigators studying HIV acquisition cohorts of exposed

uninfected individuals should design a genomics pipeline based

on the progress and shortfalls of the studies already completed

in HIV-infected individuals, paying particular attention to is-

sues of power and phenotype definition. The pattern of en-

richment for CCR5 D32 homozygosis over the expected fre-

quency in the reference population should be used as a reliable

tool to assess the extent to which a given cohort includes a

large proportion of exposed uninfected individuals, although

this estimate can be applied only to white participants.
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