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We prove that a class of weighted semilinear reaction diffusion equations on R" generates
gradient-like semiflows on the Banach space of bounded uniformly continuous functions on
R". If N = 1 we show convergence to a single equilibrium. The key for getting the result is to
show the exponential decay of the stationary solutions, which is obtained by means of a decay
estimate of the kernel of the underlying semigroup.

1. Introduction

We consider a class of semilinear reaction diffusion equations on the whole of R^.
A typical exponent is given by

d,u — AM = m(x)u — u3 in R^ x (0, oo),

u(x, 0) = uo(x) in R".

The positive and negative parts m+ and m~ of the bounded weight function m are
assumed to have the following properties:

• m+ vanishes at infinity.
• There exist constants r, rj > 0 such that for all x e R " the estimate

L(X,r)m~(x)dx^ri holds.
The non-negative function m~ is called a strongly absorbing potential. We are
interested in continuous initial data uo(x) that do not have any specified decay at
infinity but are required to be bounded. More precisely, we choose the phase space
for (1.1) as BUC(RiV), the Banach space of bounded uniformly continuous real-
valued functions on R^. It is shown in [13] that (1.1) generates a global continuous
semiflow (tp, BUC(RN)) of class s/J(T on BUC(RiV) that consists of classical solutions
of (1.1) if m is Holder-continuous.

We remark that in general the canonical Liapunov function associated with (1.1)

£e(u{x))<=\ I \Vu(x)\2dx- I (l-m(x)u(x)2--Au(xY)dx (1.2)2 V JR» V2 4
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1282 D. Daners and S. Merino

is of little use for orbits starting in BUC(RiV). For example, if the initial condition
uo(x) is a nonzero constant and if m+ has compact support, then

y(<p(t, u0)) = oo

for t ^ 0. To overcome this difficulty, we will make use of the results in [13], where
it is shown that the semiflow (q>, BUC(RA')) possesses a compact global B-attractor
Ji of finite Hausdorff dimension. Furthermore, M is contained in an order interval
V~[w, w] of the ordered Banach space BUC(RiV). Here w is the smallest and vP is
the greatest stationary solution of (1.1). The principal part of this paper is devoted
to proving that the stationary solutions of (1.1) have exponential decay at infinity.
The underlying idea is to write (1.1) as

8tu — AM + m~(x)u = m+{x)u — w3,

and to study the kernel k(t, x, y) of the semigroup associated with the generator
A — m~. In Section 2, we will prove the estimate

OS k(t, x, y)5j ct~N/2exp (— nt) exp I —
ct

for some constants c, n > 0. This estimate will then imply the exponential decay at
infinity of the stationary solutions of (1.1). As a consequence, the elements of the
order interval V and, in particular, of the B-attractor M have exponential decay.
This will imply that the Liapunov function is uniformly bounded below on the
B-attractor Jt. As a consequence of the LaSalle invariance principle (e.g. [12,
Theorem 2.3]) the co-limit set CO(M0) of each element woeBUC(RJV) is contained in
the set of stationary points of the semiflow, i.e. the semiflow induced by (1.1) is
gradient-like. In one dimension it turns out that co(u0) consists of a single equilibrium.

2. Kernel estimates

Suppose that we are given a self-adjoint strongly uniformly elliptic operator of
second order on R^ of the form

(2.1)

with atj = a^ e Loo(R
iV). By 'strongly uniformly elliptic', we mean as usual that there

exists a0 > 0 such that

for all x, £ e RN. We consider perturbations of the above operator with a non-
negative potential satisfying a condition introduced in [1] .

DEFINITION 2.1. We say that a potential VeLx(R
N) is strongly absorbing if K^O

and there exist constants r, n > 0 such that

ter, (2.3)
jB(x,r)

forallxeR". Here, B(x, r)= {y E RN:\X -y\ < r).
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Gradient-like parabolic semiflows on BUC(MN) 1283

Using form methods, one can show that an appropriate restriction of — si to
Lp(R

N) generates a strongly continuous analytic semigroup on Lp(R
N) for all

p € [1, oo). A similar statement is true for the operator —(si+ V). One of the main
results in [1] is that if F ^ O , then the semigroup Tv(t) associated with —(si+V)
is exponentially stable on LP(RN) for some (or equivalently all) p e [ l , oo) if and
only if V is strongly absorbing. By 'exponentially stable', we mean that there exist
y0, c0 > 0 such that

II Tv(t)\\mLp<Lp) ^ c0 exp (-yot), (2.4)

for all t ̂  0. Alternative proofs of the result can be found in [2, 5] . The key in the
proof is that the kernel ko(t; x, y) of T0(t) satisfies upper and lower Gaussian estimates;
that is, for some constant c > 0,

c-h-"'2 exp (- C | X y H S K{t; x,y) ̂  crN'2 exp (- ^ ^ ) - (2.5)

By a simple comparison argument, it is clear that for any non-negative potential the
upper estimate for the corresponding semigroup kernel remains valid. For strongly
absorbing potentials, we shall prove the following better upper estimate.

THEOREM 2.2. Suppose that the above assumptions on si are satisfied and that V is a
strongly absorbing potential. Denote the kernel of the semigroup Tv(t) by kv(t;x,y).
Then there exist constants c, n > 0 such that

( I x - v l 2 \
0 ̂  kr(t; x, y) S ct~NI2 exp (-nt) exp - — (2.6)

V ct )
for all t>0 and x, y e RN.

Proof. To prove (2.6), we make use of (2.4) and the results in [6, Section 3.2]. First
of all, note that

WTym^LrL^Ct-1"*1'*-1'* (2.7)

whenever 1 ̂ p^q^ oo. This follows, for instance, from the upper bound in (2.5),
which, as we remarked earlier, is also valid for kv(t; x, y). By using the semigroup
property as well as (2.4) and (2.7), we obtain

g co(t/3)-N'2 exp I - ^ t I = c r N ' 2 exp (-j,t)

for some c, n > 0 and all t > 0. It is well known that this implies

\kv(t;x,y)\^crN'2e-'" (2.8)

for all x,yeRN and t ^ O . Combining (2.8) and the upper estimate in (2.5) which
holds also for kv, we get

0 S kv(t; x, y) = kv(t; x, y)ll2kv(t; x, y)1'2

^ ct~NI4 exp ( - \ t) t~NIA exp I -
2 / r V let
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1284 D. Daners and S. Merino

\x-y\2

= <*-"***{-i')*v{- 2ct

for all x, ye RN and t ̂  0. This proves the theorem. •

COROLLARY 2.3. If the potential V is strongly absorbing, then the weak Green's function
gv(x, y) associated with —{srf + V) satisfies an estimate of the form

vl-(JV/2)

K(Nl2)-iV-\x-y\) (2.9)

for some c > 0 and x^y, where K(JV/2)-i is the modified Bessel function, and
k~2\[r\[c.

Proof. First, note that gv(x, y) is given by the Laplace transform of the kernel
kv(t; x, y). More precisely,

gv(x,y)= kv(t;x,y)dt (2.10)
Jo

for all x, y e RN with x =£ y. Hence, by Theorem 2.2, we have

r N / 2 e x p ( - )dt. (2.11)
ct )

Recall that the modified Bessel functions can be represented by

i-)ds (2A2)

for all v e R and p e R\{0} (e.g. [8, p. 82, formula (23)]). Hence, by the substitution
s = nt, and setting h—2\[r\fc, we get from (2.11) that (2.9) holds for x # y . •

REMARK 2.4. Using asymptotic expansions of the modified Bessel functions (see [8,
Section 7.2]) we get that

fcexp(- |x-;y| /c) ifJV=l,

O^gv(x,y)^lc\og(\x-y\/c)exp(-\x-y\/c) if N = 2, (2.13)

[c\x-y\~N + 2exp(-\x-y\/c) ifiV^3,

for some constant c>0 . In particular, we see that the Green's function of — ,a/ + V
decreases exponentially in space if V is strongly absorbing.

REMARK 2.5. To prove (2.9), we only used an estimate of the form (2.6). Therefore,
if we have a potential V =Vl — V2 with Fx strongly absorbing and V2 e LQO(RAf) and
j| FjHoo small enough, we still get an estimate of the form (2.6) and (2.9).

3. Nonlinear elliptic equations

Consider the nonlinear elliptic equation

s/u=f(x,u), xeRN. (3.1)

For simplicity, we will only discuss properties of non-negative solutions of (3.1). But
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Gradient-like parabolic semiflows on BUC(IRtN) 1285

under further restrictions on the nonlinearity / the arguments remain valid for
arbitrary solutions (compare [13, Example 3.3b]). Following [13, Section 3] we
impose the following restrictions on the nonlinearity f(x, £,):

/(•, 0 e BUC^R"), for some \i e (1, 2), uniformly for £ in bounded
subsets of R; (3.2)

the derivatives d^f exists and is uniformly Lipschitz-continuous on
sets of the form RN x B, where B is a bounded subset of R: (3.3)

there exists a constant M 2:0 such that f(x, c) ^ 0 but /(•, c) ^ 0 for
eR*; (3.4)

/ is of the form f(x, £,) = h(x, £)£. Moreover, for each a e l + the
positive part h+(-, u(-)) of h(-, «(•)) is in C^R^), whereas the negative
part h~(-, u(-)) is strongly absorbing. (3.5)

Under the assumptions considered in the Introduction, the nonlinearity in (1.1)
satisfies all the above properties. We shall prove the following theorem:

THEOREM 3.1. There exists an exponentially decaying function \jj e C0(R
N) such that

any solution u e LX(RN) satisfies \u(x)\ ^ ij/(x)for all x e RN.

Proof. Suppose that u e Loo(R
iV) is a non-negative solution of (3.1) and that £ > 0 is

given. Setting

m1(x)--=h~(x, u(x)) — e, m2(x)--=h+(x, u(x)) — £,

we may rewrite (3.1) as

stfu + mxu = m2u. (3.6)

Furthermore, note that by (3.5) the potential m, + e is strongly absorbing. Also, note
that

m2(x)S(h(x,u(x))-e) + .

Therefore, by the results of the previous section, we see that

u(x)\^ gmi(x,y)(h(x,u(x))-e) + (

for all x e RN. If we choose e > 0 small enough and take into account Corollary 2.3
and Remark 2.5, we see that gmi{x, y) decays exponentially as \x — y\ goes to infinity.
Due to (3.5) the function (h+(x, u(x)) — E)+ has compact support and thus

[ gmi(x,y){h(x,u(x))-e) + (y)dy (3.7)

decays expoentially as |x| goes to infinity. Next, observe that due to (3.4) all non-
negative solutions of (3.1) are bounded by the same constant M. Hence, ij/'=Mij/
has the required properties. This completes the proof of the theorem. •
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1286 D. Darters and S. Merino

4. Convergence to the set of equilibria

In this section we study the semilinear parabolic evolution problem in the Banach
space X —BUCfR^). For simplicity, we restrict our attention to non-negative initial
conditions u0 in the positive cone X+ of X:

dtu - Au = f(x, u) in RiVx(0, oo),

u(-,0) = uo inR".

As in the previous section, we require that / has the properties (3.2)—(3.5). Under
these assumptions, the existence of a global semiflow (<p, X + ) that consists of classical
solutions of (4.1) as well as the existence of the compact global B-attractor ,Jl a X +

is shown in [13, Theorem 3.1]. The proof of [13, Theorem 3.1] also shows that the
attractor M is contained in an order interval V that is invariant under the flow. V is
of the form

K==[0,vv]^Co(RN), (4.2)

where w is a steady state of (4.1). Making use of the results of the previous sections,
we will verify that the functional

\Vu\2dx- F(x,u)dx (4.3)
2
 JRN J R "

is a Liapunov function, where for (x, ̂ e R ^ x R w e have set

):= f(x,n)dr1.
Jo

Will will see that the functional =Sf is well defined on the B-attractor M. This will
be sufficient to prove that the co-limit set of each point in X+ is contained in the set
of equilibria of the semiflow (<p, X + ). To prove that if is a Liapunov function, we
show some regularity properties of solutions of (4.1).

LEMMA 4.1. Let uoe L2(R
N)nBUC(RN). Then, for somen>0, the solution u of (4.1)

lies in

Cx([£, T], W^|(RA'))nBUC3 + '''<3 + I')/2(RJV x [e, T])

for all £ > 0 and T>e.

Proof. Fix w0 e L2(R
N) n BUC(RiV), e > 0 and T > e. We first show Holder regularity.

As a consequence of the classical regularity theorems for parabolic equations with
Holder-continuous coefficients and the abstract theory of parabolic evolution
equations, we conclude that, for some n>0, the solution u of (4.1) lies in
BUC2 + " 1 + "/2(R'v x [e, T\) (see [4, Theorem 25.2]). Hence, by assumption (3.2) this
implies that

mix, t)-.= hi-, uit, •)) G BUC1 ^ (R* x [e, T]), (4.4)

where we possibly need to decrease n. Applying [11, Theorem IV.5.1], we get the
claimed Holder regularity. For the Sobolev regularity, we study the equation

{8,u-Au~mix, t)u = 0 in RN x (0, T),1 (4 5)
- , 0 ) = « 0 inR", l ' ;
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Gradient-like parabolic semiflows on BUC(MN) 1287

). To see this, define the multiplication

(4.6)

whose solution lies in C((0, T],
operator M(t)u(x)-=m(x, t)u(x). Then,

M(-)eC([0,

Thus, taking into account that A generates an analytic semigroup on L2, we
find that the above claim is true. (This follows e.g. from [4, Theorem 5.10 and
Corollary 5.4], noting that £>(A) = Wl(RN) and [L2, W\\U2 = W\.) This implies that
U(E) e W{(RN). As A also generates a strongly continuous analytic semigroup on
W\, it follows from (4.6) by the same argument that ueC1^, T], W^R")). This
concludes the proof of the lemma. •

LEMMA 4.2. For u0 e V, the function i f (<p(t, u0)) is well defined for t>0. Moreover, it
is bounded from below on V, and

—

unless u0 is an equilibrium of (<p, X + ) .

Proof. Let u0 be an arbitrary element in V. We first show that i£ (p(t, u0)) is finite
for t > 0 . By Theorem 3.1, the function w in (4.2) is exponentially decreasing and,
since V is invariant,

xeRN, (4.7)

for some constants C, a > 0 independent of t and u0. In particular, this implies that
K<= L2(R

JV). It follows now from Lemma 4.1 that the gradient term in (4.3) is finite
for all t > 0. We next show the finiteness of the other term. Using (4.7), we conclude
that

'

The assumption (3.5) implies that \f(x, £)| ^ c, < oo for (x, £) e RN x [0, C]. We thus
find that

(4.8)

This shows that

F(x, u(x, t)) dx ^ C0 < CO,

with c0 > 0 independent of u0 e V, whence (4.3) is defined and bounded from below
on V. This proves the first assertion. Next we show differentiability of Z£ («(t)) with
respect to t. By Lemma 4.1 and the fact that the inner product on W^R^) is
differentiable, we get that

\f I \Vu(t)\2dx =
z at JRN jRn

(4.9)

Regarding the other term, we already know the uniform bound (4.8). On the other
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1288 D. Daners and S. Merino

hand,

d
— F(x, u(x, t)) = f{x, u(x, t))u,(x, t) = m(x, t)u(x, t)u,(x, t)

is bounded by ||m(t)Mt(t)||0O|w(x, t)\, and by (4.7) and Lemma 4.1 the derivative of
F(x, u(x, t)) is bounded uniformly with respect to t in compact subsets of (0, oc) by
an integrable function. Hence, we can interchange the order of integration and
differentiation to get

- I F(x,u(x,t))dX = I f(x,u(x,t))u,dx.
dt JRN JRN

Together with (4.9), we arrive at

T i?(«(0)= I (V«|V«,)dx- I f(x,u)u,dx. (4.10)
dt JR.v JRN

Using that div [u,Vu] = utAu + (Vu| Vu,) and applying the Divergence Theorem in
the form

we obtain

(Vu\Vu,)dx= - \ u,Audx.

Finally, using that u is a solution of (4.1), we conclude from (4.10) that

d
, «„)) = - uf dx.

ai JRN

The last term is clearly negative if u is not stationary, which finishes the proof. •

As a consequence of [12, Theorem 2.3] and the previous lemma, we obtain the
following result:

THEOREM 4.3. The co-limit set co(u0) of each point uoeX+ is contained in the set of
stationary points of the semiflow (<p, X + ).

Proof. The global B-attractor M is contained in the order interval V. Hence the
function i£ is well defined on M. The result is now obtained similarly as in [12,
Theorems 2.3 and 3.2]. Instead of using the continuity of the Liapunov function, we
make use of the fact that $£ is bounded below uniformly on V. Hence, by the previous
lemma and the invariance of V,

lim „

exists for each u0 in V. This is the only nontrivial modification needed in [12,
Theorem 2.3] to match the present situation. We also note that the semiflow (<p, X + )
is of class s$'Jf and that as a consequence the colimit set co(u0) is not empty and
compact. •
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Gradient-like parabolic semiflows on BUC(MN) 1289

REMARK 4.4. A class of problems with polynomial nonlinearities satisfying the con-
ditions (3.2)—(3.5) is given in [13, Example 3.3.a].

We note that the theorem above does not imply that co(u0) consists of a single
stationary point of the semiflow. However, we will see in the next section that this
is true in the scalar case N = 1. In [3,14], it is shown that the corresponding result
is true for compact intervals.

5. Convergence to a single equilibrium

In this section we shall employ a result due to Hale and Raugel [10] to show that
in one dimension any trajectory converges to a single equilibrium. Suppose that u0

is any equilibrium of (4.1). We need to show that zero is an eigenvalue of

A<p+fu(x,u0(x))<p = X<p inR" (5.1)

of algebraic multiplicity at most one, and that there exist no purely imaginary
eigenvectors.

LEMMA 5.1. For all I e C with Re /. ̂  0, the operator

A+/„ ( - , ««,(•))-A (5.2)

is Fredholm of index zero in BUC(RiV), ^ ( R ^ ) and L2(R
N). Moreover, all eigenvalues

A with Re A 2:0 o/(5.2) are real. They are algebraically simple in one dimension.

PROOF. Throughout this paper, X denotes one of the spaces L2(R
N), C0(R

N) or
BUC(R)V). By assumption (3.5), we have

™(x)--=fu(x, u0) = h(x, u0) + hu(x, uo)uo.

As u0 is exponentially decaying, and again using (3.5), it follows that m~ is strongly
absorbing and m+ e C0(R

N). Due to Corollary 2.3 and Remark 2.5, we can write
m— —V + g where g having compact support, and [RezS: — co0]<=p(A— V) for
some co0 > 0 for all spaces under consideration. By interior regularity (e.g. [9,
Theorem 8.22]), it follows that for all weLoo(Riv) the function v-=(A- V)~lu is
Holder-continuous with a Holder-constant independent on | |M|L ;§ M. Also, ||Vv\\2

is bounded uniformly in || u ||2 ^ oo. Hence, embedding theorems for bounded domains
imply that

is compact on X. Hence, due to [7, Theorem IX.2.1], the first assertion of the
lemma follows.

Note that the operator under consideration is selfadjoint in L2(R
N), and therefore

has real spectrum. From the above we conclude in particular that any point in the
spectrum with positive real part is an eigenvalue. If we show that each eigenvalue
in BUC is in L2, it follows that this part of the spectrum is real. Observe that if
A e C, then the heat kernel associated with —A+V+A is ky(t;x,y)eXt and thus
satisfies the estimate

I V+-o( f ; x> y)\ ^ \Kv+Rtx)(t; x, y)\.

If now Re /. ^ 0, we conclude as in the proof of Theorem 3.1 that any eigenvector
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1290 D. Daners and S. Merino

to X decays exponentially and thus belongs to L2(R
N). This proves the second part

of the lemma.
Suppose now that the dimension is one. We first show that all eigenvalues with

Re A 2:0 must be geometrically simple. Suppose to the contrary that (5.1) has two
decaying solutions <Pi,q>2. Then the Wronskian for the associated first-order system
of ordinary differential equations is

W(x) = (pi{x)f'2{x) — <p2(x)<p[(x) = constant,

for all x e R. Note that by Lemma 4.1 the derivatives <p[ and <p'2 are bounded. If
cpl, (p2 are both decaying also W(x) has to decay, which is impossible. Hence X is
geometrically simple. As algebraic and geometric multiplicity coincide for selfadjoint
operators, any eigenvalue A>:0 is algebraically simple in L2. The same is true in
BUC and Co. Indeed, suppose an eigenvalue X >: 0 has higher algebraic multiplicity.
Then there exists u e BUC such that (A — m — X)2u = 0 and v — (A — m — X)u # 0.
Hence v is an eigenvalue of A + m, and, according to what we proved in the previous
paragraph, veL2. This means that X has a higher multiplicity in L2 which is a
contradiction. •

THEOREM 5.2. Suppose that N = l. Then, any solution of (4.1) with non-negative
u0 e BUC(R) converges to an equilibrim in BUC(R).

Proof. From Theorem 4.3 we know that all solutions converge to the set of equilibria.
Using Lemma 5.1 it is easy to see that all assumptions of [10, Theorem 2.4] satisfied.
Hence, the assertion of the theorem follows. •
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