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ABSTRACT

We present a new algorithm, Eclipsing Binary Automated Solver (EBAS), to analyse light
curves of eclipsing binaries. The algorithm is designed to analyse large numbers of light
curves, and is therefore based on the relatively fast EBOP code. To facilitate the search for the
best solution, EBAS uses two parameter transformations. Instead of the radii of the two stellar
components, EBAS uses the sum of radii and their ratio, while the inclination is transformed
into the impact parameter. To replace human visual assessment, we introduce a new ‘alarm’
goodness-of-fit statistic that takes into account correlation between neighbouring residuals.
We perform extensive tests and simulations that show that our algorithm converges well, finds
a good set of parameters and provides reasonable error estimation.
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1 I N T RO D U C T I O N

The advent of large CCDs for the use of astronomical studies has
driven a number of photometric surveys that have produced unprece-
dentedly large sets of light curves of eclipsing binaries (e.g. Alcock
et al. 1997). The commonly used interactive way of finding the set
of parameters that best fit an eclipsing binary light curve utilizes
human guess for the starting point of the iteration, and further hu-
man decisions along the converging iteration (e.g. Ribas et al. 2000).
Such a process is not always repeatable, and is impractical when it
comes to the large set of light curves at hand.

The Optical Gravitational Lensing Experiment (OGLE) project,
for example, yielded a huge photometric data set of the Small Mag-
ellanic Cloud (SMC) (Udalski et al. 1998) and the Large Magellanic
Cloud (LMC) (Udalski et al. 2000), which includes a few thousand
eclipsing binary light curves (Wyrzykowski et al. 2003). This data
set allows for the first time a statistical analysis of the population of
short-period binaries in another galaxy. A first effort in this direc-
tion was performed by North & Zahn (2003, hereafter NZ03), who
derived the orbital elements and stellar parameters of 153 eclips-
ing binaries in the SMC in order to study the statistical dependence
of the eccentricity of the binaries on their separation. In a follow-
ing study, (North & Zahn 2004, hereafter NZ04) analysed another
sample of 509 light curves selected from the 2580 eclipsing bina-
ries discovered in the LMC by the OGLE team (Wyrzykowski et al.
2003). However, the OGLE LMC data contain many more eclipsing
binary light curves. An automated algorithm would have made an
analysis of the whole sample possible.

�E-mail: omert@wise.tau.ac.il

To meet the need for an algorithm that can handle a large num-
ber of light curves, we developed EBAS – Eclipsing Binary Auto-
mated Solver, which is a completely automatic scheme that derives
the orbital parameters of eclipsing binaries. Such an algorithm can
be of use for the OGLE light curves, as we do in the next paper,
and for the data of the many other large photometric surveys that
came out in the last few years (e.g. EROS, MACHO, DIRECT,
MOA). EBAS is specifically designed to quickly solve large num-
bers of light curves with signal-to-noise ratio (S/N) typical of such
surveys.

Wyithe & Wilson (2001, hereafter WW1) have already devel-
oped an automatic scheme to analyse the OGLE light curves de-
tected in the SMC, in order to find eclipsing binaries suitable for
distance measurements. However, whereas WW1 used the Wilson–
Devinney (WD) code, EBAS uses the EBOP code, which is admittedly
less accurate than the WD code, but much simpler and faster. We
used the EBOP (Popper & Etzel 1981; Etzel 1980) subroutines that
generate an eclipsing binary light curve for a given set of orbital
elements and stellar parameters, and rewrote a fully automated it-
erative code that finds the best parameters to fit the observed light
curve.

As EBAS uses extensively the light curve generator for each sys-
tem, we preferred EBOP over the WD code.

At the last stages of writing this paper another study with an au-
tomated light curve fitter – Detached Eclipsing Binary Lightcurve
(DEBiL) – was published (Devor 2005). DEBiL was constructed to
be quick and simple, and therefore has its own light curve gener-
ator, which does not account for stellar deformation and reflection
effects. This makes it particularly suitable for detached binaries. The
complexity of the EBOP light curve generator is in between DEBiL
and the automated WD code of WW1.
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To facilitate the search for the global minimum in the convolved
parameter space, EBAS performs two parameter transformations.
Instead of the radii of the two stellar components of the binary
system, measured in terms of the binary separation, EBAS uses
two other parameters, the sum of radii (the sum of the two relative
radii), and their ratio. Instead of the inclination, we use the impact
parameter – the projected distance between the centres of the two
stars during the primary eclipse, measured in terms of the sum of
radii.

During the development of EBAS, we found that some solutions
with low χ2 could easily be classified as flawed by visual inspec-
tion that revealed correlation between neighbouring residuals. We
have therefore developed a new ‘alarm’ statistic, A, to replace hu-
man inspection of the residuals. EBAS uses this statistic to decide
automatically whether a solution is satisfactory.

The EBAS strategy consists of three stages. First, EBAS finds
a good initial guess by a combination of grid searches, gradient
descents and geometrical analysis of the light curve. Next, EBAS
searches for the global minimum by a simulated annealing al-
gorithm. Finally, we assess the quality of the solution with the
new ‘alarm’ statistic, and if necessary, perform further minimum
searches.

To check our new algorithm, we ran many simulations which
demonstrated that the automated code does find the correct values
of the orbital parameters. We also used simulations to estimate the
error induced by two of our simplifying assumptions, namely, mass
ratio of unity and negligible third light. We then checked the code
against the results of NZ04, and found that our code performed
as well as their interactive scheme, except for very few systems.
Finally, we checked our code against four LMC eclipsing binaries
that were solved by González et al. (2005) using photometry and
radial-velocity data.

Section 2 presents the EBAS parameters and compares them with
the EBOP ones. Section 3 details how the algorithm finds the global
minimum of the χ 2 function, and Section 4 describes our new alarm
statistic. In Sections 5 and 6, we check and discuss the performance
of EBAS.

2 T H E E C L I P S I N G B I NA RY AU TO M AT E D

S O LV E R PA R A M E T E R S

EBAS is based on the EBOP code (Etzel 1980; Popper & Etzel 1981),
which consists of two main components. The first component gen-
erates a light curve for a given set of orbital elements and stellar
parameters, while the second finds the parameters that best fit the
observational data. We only used the light curve generator, and wrote
our own code to search for the best-fitting elements.

Like all other model fitting algorithms, EBAS searches for the
global minimum of the χ2 function in the space spanned by the
parameters of the model. The natural parameters of an eclipsing
binary model include the radii of the two stars relative to the orbital
semimajor axis, the relative surface brightness of the two stars, J s,
the orbital parameters of the system, P , T 0, e and ω, and some
parameters that characterize the shape of the two stars and the light
distribution over their surface, such as limb- and gravity-darkening
coefficients.

Finding the global minimum can be quite difficult, because the
parameter space of the model is complex and convoluted, causing
the χ2 function to have many local minima. Therefore, the choice of
parameters might be of particular importance, as a change of vari-
ables can substantially modify the topography of the goodness-of-fit
function. Smart choices of the variables can allow for a better initial

guess of the parameter values, as well as more efficient performance
of the minimization algorithm.

This approach was already recognized by the writers of EBOP

(Etzel 1980) who transformed the variables e (eccentricity) and ω

(longitude of periastron), which have a clear Keplerian meaning,
into e cos ω and e sin ω. This approach is beneficial because e cos ω

corresponds closely to the difference in phase between the primary
and secondary eclipses, the two most prominent features of the light
curve.

Following this approach, we chose to transform the two most fun-
damental parameters of the stellar components of the binary system –
the two relative radii, r p = Rp/a and r s = R s/a, where Rp and Rs are
the radii of the primary and the secondary and a is the orbital semi-
major axis. Instead, we used the sum of radii r t = (Rp + R s)/a and
k = R s/Rp, because the sum of radii can be well determined from
the light curve, much better than rp or rs. With the same reasoning,
we chose to parametrize the light curve by the impact parameter, x,
which measures the projected distance between the centres of the
two stars in the middle of the primary eclipse (i.e. at phase zero), in
terms of the sum of radii r t:

x = cos i
rt

1 − e2

1 + e sin ω
. (1)

Thus, x = 0 when i = π/2 and x = 1 when the components are
grazing but not yet eclipsing. We found that the impact parameter
is directly associated with the shape of the two eclipses, and can
therefore be determined much better than i, the more conventional
parameter.

The EBOP light curve generator models the stellar shapes by sim-
ple biaxial and similar ellipsoids, instead of calculating the actual
shapes of the two binary components. This means that systems with
components which suffer from strong tidal deformation are poorly
modelled. Furthermore, unphysical parameter sets, with stars larger
than their Roche lobes, for example, are permissible by EBOP. We
therefore limit ourselves to stars which are likely to be significantly
smaller than their Roche lobes.

Using the formula in Eggleton (1983),

RRL/a = 0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)
, (2)

which reduces for q = 1 (see below) to RRL/a = 0.379, we do not
accept solutions with (Rp + R s)/a > 0.65(1 − e cos ω).

The bolometric reflections of the two stars are varied in EBAS by
Ap and As. When Ap = 1, the primary star reflects all the light cast
on it by the secondary. Together with the tidal distortion of the two
components, which is mainly determined by the mass ratio of the
two stars, the reflection coefficients Ap and As determine the light
variability of the system outside the eclipses. Note, however, that the
EBOP manual (Etzel 1980) stresses that the model at the basis of the
program is a crude approximation to the real variability outside the
eclipses. Therefore, the EBOP manual warns against the reliability
of the reflection parameters derived by the code. Nevertheless, we
decided to vary Ap and As, in order to fit the out-of-eclipse variability,
even with an improbable (but not physically impossible) model for
some cases. By doing that we could allow the algorithm to find the
values of the other parameters that best fit the actual shape of the two
eclipses. The reflection coefficients should be viewed as two extra
free parameters of the fit, and not as physical quantities determined
by the light curve.

The EBOP manual defines the primary as the component eclipsed
at phase 0, probably because the general practice assigns this phase
to the deeper eclipse. However, this definition leaves the freedom to
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Table 1. EBAS parameters.

Symbol Parameter

J s Surface brightness ratio (secondary/primary)
r t Fractional sum of radii
k Ratio of radii (secondary/primary)
x Fractional impact parameter
e cos ω Eccentricity times the cosine of the longitude of periastron
e sin ω Eccentricity times the sine of the longitude of periastron
Ap Primary bolometric reflection coefficient
As Secondary bolometric reflection coefficient
T 0 Time of primary eclipse
P Period

change the zero phase of the light curve and therefore interchange
between the primary and the secondary in the resulting solution.
To prevent such ambiguity, we chose the primary as being the star
with the higher surface brightness. Consequently, if the solution
showed J s > 1, we switched the components. Accordingly, in EBAS
the primary is the star with the higher surface brightness, and not
necessarily the larger star. In special cases with eccentric orbits, the
primary might not even be the star which is eclipsed at the deeper
eclipse.

All relevant parameters of EBAS in this work are listed in Table 1.
The present embodiment of EBAS is aimed at solving light curves

from surveys such as the OGLE LMC and SMC studies. Many of
these light curves have low S/N, and therefore the mass ratio and
limb and gravity darkening cannot be found reliably. We therefore
decided not to vary these parameters, and adopted here a unity value
for the value of the mass ratio, and 0.18 and 0.35 for the values of
limb- and gravity-darkening coefficients, respectively, for both the
primary and the secondary. The last two values are suitable for
early-type stars, which form the major part of the OGLE eclips-
ing binary sample of the LMC and SMC. This does not mean that
EBAS (through EBOP) does not model tidal distortion and limb and
gravity darkening, but only that in all the cases shown in this paper,
optimization is not performed on these parameters. In other imple-
mentations of EBAS, more parameters could be varied.

Table 2 brings the full list of EBOP parameters we use to generate
the light curves, as they appear in the EBOP manual (Etzel 1980),

Table 2. EBOP light curve generator parameters.

Symbol Parameter Calculation from EBAS parameters

J s Surface brightness ratio (secondary/primary)
rp Fractional radius of primary r tk
k Ratio of radii (secondary/primary)

up Limb-darkening coefficient of primary Constant: 0.18
us Limb-darkening coefficient of secondary Constant: 0.18

i Inclination cos i = rtx 1+e sin ω

1−e2

e cos ω Eccentricity and longitude of periastron
e sin ω Eccentricity and longitude of periastron

yp Gravity-darkening coefficient of primary Constant: 0.35
ys Gravity-sdarkening coefficient of secondary Constant: 0.35

Sp Reflected light from primary 0.4L s r2
p Ap

Ss Reflected light from secondary 0.4L p r2
s As

q Mass ratio Constant: 1
t Tidal lead/lag angle Constant: 0

L3 Third light (blending) Constant: 0
T 0 Time of primary eclipse

SFACT Luminosity scaling factor Linear factor – solved analytically

which describes them in detail. The table also explains how to derive
the EBOP parameters which are not used as EBAS parameters in the
present version. The Lp and Ls terms in the formulae for Ap and
As are the EBOP parameters for the contribution of the primary and
secondary to the total light of the system. See the EBOP manual (Etzel
1980) for more detail.

Note that two more EBOP parameters are not varied in the present
version of EBAS: the tidal lead/lag angle, t, and the light fraction of
a possible third star, L3. Both elements are put to zero. We estimate
the implication of the latter assumption in Section 5. On the other
hand, the orbital period, which is a fitted parameter of EBAS, is not
included in the EBOP list of parameters. EBOP assumes the period
is known and therefore all observing timings are given in terms of
the orbital phases. EBAS partly follows this approach and does not
perform an initial search for the best period. However, EBAS does try
to improve on the initial guess of the period after solving for all the
other parameters. For this purpose, the timings of the observational
data points need to be given, and not only their phases. Note that
this approach requires the original guess for the period to be close
to the real one.

3 S E A R C H I N G F O R T H E χ2 M I N I M U M

The search for the global χ 2 minimum is performed in two stages.
We first find a good initial guess, and then use a simulated annealing
algorithm to find the global minimum. While the first stage is merely
aimed at finding an initial guess for the next stage, in most cases it
already converges to a very good solution.

The initial guess search starts by fitting the light curve with a small
number of parameters, and then adding more and more parameters,
till the full set of parameters is reached. The smaller number of
parameters in the first steps makes this process to converge quickly
and efficiently. The values of the parameters as determined in each
step are very preliminary, and are useful only to facilitate the next
steps. This is done in the following five steps.

(i) Finding T 0 by identifying the primary eclipse and the phase
of its centre.

(ii) Fitting a light curve to the primary eclipse only, with r t, k,
x , and T 0 as free parameters.

(iii) Finding e cos ω by determining the phase of the centre of
the secondary eclipse.
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Figure 1. The five steps of obtaining the best initial guess for OGLE
053312.82−700702.5. The values of the parameters in each step are given
in Table 3. The line in the first panel is a smoothing of the data, performed
by a running mean smoothing algorithm. The rest of the lines are EBAS
models in the different steps of the algorithm. Note that the bottom panel
presents the best initial guess and not the final solution. The vertical lines in
the first and the third panels are EBAS best estimate for the centres of the
two eclipses.

(iv) Fitting the whole light curve with two additional parame-
ters, J s and e sin ω.

(v) Finding the nearest χ2 local minimum, allowing all param-
eters to vary.

The searches for the best parameters are first done over a grid
of the pertinent parameters, followed by optimization with the
Levenberg–Marquardt algorithm (Marquardt 1963), implemented
by the MATLAB minimization routine LSQNONLIN.

Having found an initial guess, EBAS proceeds to improve the
model by using a variation of the MATLAB downhill simplex routine
FMINSEARCH. Following Press et al. (1992), we combine this pro-
cedure with the simulated annealing technique, allowing it to ‘roll’
uphill occasionally and leave local minima.

Fig. 1 demonstrates the EBAS procedure by showing the
five steps of finding the initial guess and the final solution of
OGLE 053312.82−700702.5. The values of the parameters in each
of the five steps are given in Table 3. The last column of the table
brings the χ2 value of the solution. This is done only for the steps
which fit the whole light curve.

To estimate the uncertainties of the derived parameters, EBAS
uses the Monte Carlo bootstrap method, as described in Press et al.
(1992). For each solution, we generated a set of 25 simulated light
curves by using the values of the model at the original data points,
with added normally distributed noise. The amplitude of the noise
is chosen to equal the uncertainty of the data points. EBAS then
proceeds to solve each of these light curves, using the simulated
(‘true’) values of r t, T 0, P and e cos ω as initial guesses. EBAS
sets the error of each parameter to be the standard deviation of its
values in the sample of generated solutions. Section 5 analyses the
performance of EBAS and finds that its error estimation is correct
to a factor of about 2.

4 A N E W ‘A L A R M ’ S TAT I S T I C TO A S S E S S

T H E S O L U T I O N G O O D N E S S - O F - F I T

During the development of EBAS, we found that some solutions
with low χ 2 might be unsatisfactory. Fig. 2 presents such a sys-
tem solution, OGLE 051331.74−691853.5, obtained manually by
NZ04. While the value of χ 2 is reasonable, the model deviates from
the observations at the edges of the eclipses, as a visual inspection
of the residuals, plotted as a function of phase, can reveal. This case
shows that the χ2 statistic, while being the unchallenged goodness-
of-fit indicator, can be low even for solutions which are not quite
satisfactory. For such cases, human interaction is needed to improve
the fit, or to otherwise decree the solution unsatisfactory. In order to
allow an automated approach, an automatic algorithm must replace
human evaluation.

We therefore defined a new estimator which is sensitive to the
correlation between adjacent residuals of the measurements relative
to the model. This feature is in contrast to the behaviour of the χ2

function, which measures the sum of the squares of the residuals,
but is not sensitive to the signs of the different residuals and their
order. For an estimator to be sensitive to the number of consecutive
residuals with the same sign, one might use some kind of run test
(e.g. Kanji 1993). In such a test, the whole light curve is divided
into separate sequential runs, where a ‘run’ is defined as a maximal
series of consecutive residuals (in the folded light curve) with the
same sign. For example, if the residuals are {1, 2, 1, −3, −4, 5,
−2, −3} (written in the order of increasing phase), the four runs
would be {{1, 2, 1}, {−3, − 4}, {5}, {−2, −3}}. Long runs might
indicate that the residuals are not randomly distributed. For example,
in Fig. 2 a run of 13 negative residuals exists around phase 0.4, and
a run of 17 positive residuals exists around phase 0.65.

Different approaches for residual diagnostics based on run tests
may be found in the literature (e.g. Kanji 1993). Lin’s cumula-
tive residuals (Lin, Wei & Ying 2002) is one example. We chose
to define a new estimator which is sensitive both to the length of
the runs and to the magnitude of the residuals, in units of their
uncertainties.

Denoting by ki the number of residuals in the ith run, we define
the ‘alarm’ A as

A = 1

χ2

M∑
i=1

(
ri,1

σi,1
+ ri,2

σi,2
+ · · · + ri,ki

σi,ki

)2

−
(

1 + 4

π

)
, (3)

where r i, j is the residual of the jth measurement of the ith run and
σ i, j is its uncertainty. The sum is over all the measurements in a run
and then over the M runs. The χ2 is the known function:

χ 2 =
N∑

i=1

(
ri

σi

)2

, (4)
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Table 3. The five steps of obtaining the initial guess for OGLE 053312.82−700702.5.

Stage T 0 r t x k e cos ω J s e sin ω Ap As P χ2

1 729.87
2 729.85 0.2805 0.4911 0.6810
3 729.85 0.2805 0.4911 0.6810 −0.0184 2103.5
4 729.85 0.2805 0.4000 1.0000 −0.0184 1.0000 0.0000 323.9
5 729.85 0.2771 0.3806 0.9996 −0.0136 1.0213 −0.0003 0.9834 0.9998 5.394 410 267.6

Final 729.85 0.2697 0.3185 1.5087 −0.0134 1.0414 0.0143 0.3948 0.9927 5.394 382 263.9

where the sum is over all N observations. Dividing by χ2 assures
that, in contrast to χ 2 itself, A is not sensitive to a systematic over-
estimation or underestimation of the uncertainties.

It is easy to see that A is minimal when the residuals alternate
between positive and negative values, and that long runs with large
residuals increase its value. The minimal value of the summation is
exactly χ 2, and therefore the minimal value of A is −4/π.

For N uncorrelated Gaussian residuals, the expectation value for
A can be calculated under the assumptions that χ2 = N , and that
N is large enough to make the length of the runs be distributed geo-
metrically for all practical purposes. According to this calculation,
the expectation value of A as defined above vanishes.

To explore the behaviour of the new statistic, we simulated resid-
uals of normal random noise composed of 200, 500 and 1000 points,
each of which for 100 000 times, and plotted in Fig. 3 histograms of
the A values. The solution of Fig. 2 has indeed an A value of 1.24,
which is too high, as can be seen in Fig. 3.

When a solution shows high A, EBAS performs additional simu-
lated annealing searches with different initial guesses. In most cases,
a few iterations that start in the parameter space not far away from
the previously found minimum are sufficient to find a substantially
better minimum. We stop this process when EBAS finds a new solu-
tion with low enough A. If this approach does not lead to a solution
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Figure 2. Light curve, solution and elements for OGLE
051331.74−691853.5, as derived by NZ04. The solution is not optimal,
as visual scrutiny of the edges of the eclipses may reveal.

–0.4 –0.2 0 0.2 0.4 0.6 0.8
0

5000

10000

200 Points

–0.4 –0.2 0 0.2 0.4 0.6 0.8
0

5000

10000

500 Points

–0.4 –0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2
x 10

4

1000 Points

Figure 3. The distribution of A for normally distributed 200, 500 and 1000
random points.

with low enough A, EBAS calls for visual inspection, and manu-
ally initialized optimization may be attempted. Our experience with
the OGLE LMC data indicated that some systems simply cannot be
modelled by the EBOP subroutines, either because the light curve is
not of an eclipsing binary, or because EBOP is insufficiently accurate
to model the light modulation.

Fig. 4 shows the light curve of Fig. 2 with its EBAS solution.
Clearly, the code found a model with lower χ 2 and better A value
of 0.02.

5 T E S T I N G T H E A L G O R I T H M

To check the reliability of EBAS when applied to OGLE-like
data, we performed a few tests. We analysed a large sample of
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Figure 4. An improved solution relative to the one of Fig. 2, with lower χ2

and A.

simulated light curves of eclipsing binaries, checked the obtained
χ 2 against the inserted noise, and examined the derived elements
and their uncertainties versus the correct elements. The advantage
of a simulated sample of light curves is the knowledge of the ‘true’
elements, a feature that is missing, unfortunately, in real data. We
also used simulations to estimate the sensitivity of the EBAS re-
sults to the assumption that there is no contribution of light from
a third star, and to the assumption that the mass ratio is unity. We
then compared the parameters derived by EBAS for real 509 OGLE
LMC systems with the elements obtained manually by NZ04 with
the EBOP code. The goal of this comparison was to find out how well
EBAS performs as compared with manual finding of the elements
with the same code. Finally, we compared our results with the re-
cently derived elements of four eclipsing binaries in the LMC by
González et al. (2005, hereafter GOMoM05), who analysed OGLE
and MACHO photometry and a few radial-velocity measurements.
The goal of this comparison was to compare the elements found
by EBAS with the elements found by using extra information on
the same systems. This comparison is of particular interest because
GOMoM05 used for their analysis not only light curves in three
passbands, but also radial velocities, and they interpreted their data
with the more sophisticated WD code.

5.1 Simulated light curves – comparison

with the ‘true’ elements

To check EBAS against simulated light curves, we generated a sam-
ple of light curves with the EBOP subroutines and solved them with
EBAS. To obtain an OGLE-like sample, the elements were taken
from the NZ04 set of solutions for the OGLE LMC data, with k, the
ratio of radii, chosen randomly from a uniform distribution between
0.5 and 1 (the NZ04 solutions had k = 1, except for the relatively
few systems with clearly total eclipses). For each simulated system,
we created a light curve with the original OGLE observational tim-
ings, and added random Gaussian noise, with an amplitude equal
to the rms of the actual residuals relative to the NZ04 solution of
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Figure 5. Simulation results: the derived versus original normalized χ2.

that system. In total, 423 simulated light curves were created and
solved.

To assess the goodness-of-fit of the solutions, we calculated for
each system the normalized χ2 of the EBAS solution, which is
the sum of squares of the residuals, scaled by the uncertainty of
each point, divided by the number of degrees of freedom of each
solution. We compared this value with the ‘original χ2’ of each light
curve, which is the average of the sum of squares of the inserted
errors around the original calculated light curve, again scaled by
the uncertainty of each point. Fig. 5 shows the χ2 of the solution
versus the original one. The continuous line is the locus of points
for which the normalized χ 2 and original χ2 are equal. The figure
shows that most points lie next to the line, which means that for each
light curve the algorithm found a set of parameters that fit the data
with residuals which are close, on the average, to the original scatter.
While one cannot be sure that global minima were found for all light
curves, the fact that none of the solutions showed substantially large
normalized χ 2 is reassuring.

Fig. 6 shows the values of six of the derived elements of the
simulated sample as a function of the original values. In order not to
turn the plot too dense, we randomly choose only 100 systems for
the display. The figure shows that the sum of radii, r t, is reproduced
quite well by the code, and so is e cos ω. For x , e sin ω and J s,
EBAS produced slightly less accurate, but still quite good results.
The parameter k seems more difficult to determine, and its derived
values coincide with the original ones only for light curves of high
S/N. Still, the correlation between the original and derived k values
for the whole sample is 0.6, and we feel that allowing k to vary is
meaningful, except perhaps for very noisy light curves.

It is well known that light curves of only one colour include de-
generacy between few parameters. The values of those parameters
deviate together from their true values, yielding almost as good so-
lutions as the ones with the true values. To estimate the magnitude of
this effect, we consider the deviations of the derived elements from
their true values in our simulations and estimate the correlations
between those deviations. Fig. 7 shows the correlation between the
deviation of the x parameter – �x , and three other parameter devia-
tions. The figure shows a small but somewhat significant correlation
with �e sin ω and �k, and high correlation with �r t. However, as
the deviations of most of the r t values are quite small, we still
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Figure 6. Simulation results: the derived versus ‘true’ elements.

suggest that the derived values of r t are valid. The figure also shows
that there is no correlation between �J s and �k.

To explore the reliability of our uncertainty estimate, we consider
for each parameter p the scaled error δ p = (pderived − poriginal)/σ p ,
which measures the actual error, that is, the difference between the
derived and original values of p, divided by the uncertainty, σ p , as
estimated by EBAS. We plotted in Fig. 8 histograms of scaled errors
for eight parameters. With correct uncertainties, the distributions of
the scaled errors should all have Gaussian shape and variance of
unity. Wide distribution indicates that our estimate for the error
might be too small. We can see that all distributions – except that
of δk, the most problematic parameter – are close to have a Gaus-
sian shape and width of unity, even though asymmetry and outliers
increase the rms value by up to a factor of 2.

5.2 The sensitivity of the elements to two simplifying

assumptions

The present embodiment of EBAS assumes that L3 is zero and the
mass ratio is unity. The former assumption implies that all the light
of the system is coming from the two components of the binary. This
is not necessarily the case, as a third star, either a background star or
a distant companion of the system, could also contribute to the total
light of the system. Failure to realize the contribution of a third star
could result in underestimation of the depth of the eclipses, which
induces further systematic errors in the derivation of the binary
elements. To estimate the error induced by the value assigned to the
light of a third star, we generated light curves identical to the ones
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Figure 7. Correlation between the deviations from true values for four pairs
of elements. The value of the corresponding correlation appears in each
panel.

of the previous simulation, except that we set L 3 = 0.1 for all of
them. We then solved them using EBAS as before, assuming L 3 =
0. The comparison between the solutions and the original values for
three elements – the sum of radii, the impact parameter and the ratio
of radii, is plotted in Fig. 9.

The sum of radii, which is mainly sensitive to the eclipse shape, is
almost not affected by the different values of L3. On the other hand,
the values of the surface brightness ratio show a relatively large
spread relative to the ‘true’ values. However, this spread is not larger
than the corresponding one in Fig. 6. This means that the assumption
L 3 =0 did not increase substantially the error of the derived values of
the surface brightness ratios. The impact parameter values show the
clearest effect. The derived values are systematically larger than the
true values, in order to account for the shallower eclipses interpreted
by EBAS, because of the L 3 = 0 assumption.

We performed similar simulation to estimate the effect of the as-
sumption that q = 1. The results are plotted in Fig. 10. The simula-
tions show that the assumption of q = 1 does not affect substantially
the derived values of the sums of radii, the surface brightness ratios
and the impact parameters.

5.3 The real OGLE LMC light curves – comparison

with manual solutions

As another test of EBAS, we applied our algorithm to the OGLE
LMC light curves solved by NZ04 using manual iterations with
EBOP. Note that we compare here the ‘manual’ fits by NZ04 with
those of EBAS for the real systems, while Fig. 5 compares the
original scatter of simulated light curves with that resulting from
the fit.

After discarding 58 solutions with high alarm or high χ2, we were
left with 451 binaries. To compare EBAS solutions with those of
NZ04, we derive for each EBAS solution a normalized χ2, which is
equal to the unnormalized one, given by equation (4), divided by the

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 367, 1521–1530



1528 O. Tamuz, T. Mazeh and P. North

–10 –5 0 5 10
0

50

100

δr
t

σ=  1.5

–10 –5 0 5 10
0

50

100

δx

σ=  1.8

–10 –5 0 5 10
0

50

100

δ(e cosω)

σ=  1.1

–10 –5 0 5 10
0

50

100

δ(e sinω)

σ=  1.1

–10 –5 0 5 10
0

50

100

δJ
s

σ=  1.2

–10 –5 0 5 10
0

50

100

δk

σ=  1.4

–10 –5 0 5 10
0

50

100

δT
0

σ=  1.4

–10 –5 0 5 10
0

50

100

δP

σ=  1.2

Figure 8. Simulation results: the distribution of the scaled errors for eight
EBAS parameters. For comparison, Gaussian distributions with unity vari-
ance are plotted. The rms of each distribution is given in each panel.

number of observed points minus the number of fitted parameters.
Fig. 11 plots a histogram of the NZ04 normalized values of χ2 minus
those of EBAS.

The comparison shows that the two sets of solutions are compa-
rable. In fact, NZ04 achieved better solutions for 156 systems, out
of which only two systems, which can be seen in the figure, had
smaller normalized χ 2 by more than 3 per cent. On the other hand,
EBAS solved 295 systems with lower χ2, out of which 156 solutions
had smaller normalized χ 2 by more than 3 per cent. We therefore
suggest that EBAS found slightly better solutions for most of the
binaries analysed by NZ04.

5.4 Four eclipsing binaries analysed by GOMoM05 –

comparison with the WD solutions

Very recently, GOMoM05 derived absolute parameters for eight
eclipsing binaries in the LMC, using photometric data from
MACHO (Alcock et al. 1997) together with a few radial-velocity
measurements. The OGLE data are available for four of these sys-
tems, and GOMoM05 used these data as well. To compare the val-
ues of GOMom05 with EBAS, we solved for these four systems and
plotted their solutions in Fig. 12.

Before comparing the results of the two solutions, a word of
caution is needed. GOMoM05 used the WD code, derived the tem-
perature ratio from the spectroscopic data, and used light curves of
three different colours for each of the four systems. Our solution

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8 J
s

S
o
lu

tio
n
 v

a
lu

e

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

x

Original value

S
o
lu

tio
n
 v

a
lu

e

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

r
t

S
o
lu

tio
n
 v

a
lu

e

Figure 9. Simulation results: the effect of the assumption L 3 = 0. The
derived values of the parameters, assuming L 3 = 0 versus the true values
for systems with L 3 = 0.1.

is based on the OGLE I-band data only. We therefore choose to
compare only the geometric parameters of the systems, namely, the
sum of radii, the inclination, the ratio of radii and the eccentricity.
Table 4 brings the detailed comparison. For each of the four sys-
tems, the first line in the table gives the GOMoM05 elements, while
the second line gives those of EBAS. It is reassuring that despite
all the differences in the derivation of the two sets of elements, all
values of all geometric elements agree within 1–2σ of each other.
Indeed, the large differences in the values of the ratio of radii of
OGLE 051804.81−694818.9 and OGLE 052235.46−693143.4 are
only caused by a switch between the primary and the secondary
in the GOMoM05 solution. The reciprocal GOMoM05 values are
within 1σ of the EBAS results.

6 D I S C U S S I O N

We have shown that it is possible to solve light curves of eclipsing
binaries with a fully automated algorithm which is based on the
EBOP code. Our simulations have shown that the results of EBAS
are close to the ‘real’ ones and that EBAS results for most cases have
a quality which is better than is achieved with human interaction.

Although the EBOP code does not include the sophistications of-
fered by, for example, the widely used WD program, it has the
advantage of being simple and of producing parameters closely re-
lated to the real information content of the light curve (e.g. surface
brightness instead of effective temperature). In addition, it does take
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Figure 10. Simulation results: the effect of the assumption that the mass
ratio is unity. The derived values of the parameters, assuming q = 1.0 versus
the true values for systems with q = 0.8.

into account not only reflection effects, but also tidal deformation of
components (even though in a primitive way), so that it remains use-
ful for systems with moderate proximity effects. Comparison with
the recent work of GOMoM05 who used the WD code to analyse
the three-colour photometry, radial-velocity and spectroscopic data
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Figure 11. Histogram of difference between NZ04 solutions χ2 and EBAS
solutions χ2.
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Figure 12. The EBAS solutions for the OGLE light curves of the four
binaries analysed by GOMoM05.

of four systems shows that the present version of EBAS recovers
quite well the sum of radii, the inclination and the ratio of radii.

It is interesting to compare the speed of the present version of
EBAS with the very fast automated DEBiL algorithm (Devor 2005),
which was used to derive the elements of almost 10 000 eclipsing
binaries in the Galactic bulge. On the average, it took EBAS 50 s
CPU time to solve one orbit on an AMD Opteron, 250 2.46-GHz,
64-bit machine, while error estimation took another 100 s. This is
about three times longer than it took Devor to solve an orbit with
his DEBiL with a SUN UltraSPARC5 333 MHz. Applying EBAS
to 10 000 systems is therefore feasible.

EBAS uses two redundant techniques to ensure the finding of
the global minimum – a search for the minimum with simulated
annealing and consultation with the new alarm A. The simulated
annealing technique causes heavy computation load on EBAS, and
if the number of light curves is too large, the demanding parameters
of the annealing can be slightly relaxed, since we can rely on the
alarm to warn us if the global minimum is not reached.

In the following papers, we plan to apply EBAS to the sample of
the LMC (Mazeh, Tamuz & North 2006, Paper II) and SMC OGLE
data. Obviously, when EBAS is applied to real data, one should
carefully examine the implication of the specific choices done for the
non-variable parameters, the values of the mass ratio, the fractional
light of a possible third star and the values for the limb and gravity
darkening. However, the goal of applying EBAS to such large data
sets is not to derive the exact parameters of a particular system.
Instead, the aim is to study statistical features of the short-period
binaries, like their frequency and period distribution. In that sense,
the set of data points we use includes the photometry obtained for
all the eclipsing binaries found in the sample. For the OGLE LMC
data, this is about 300 points for more than 2000 systems, which
adds up to about 0.6 millions points, admittedly with low S/N. Such
a huge data set should allow us to study some statistical features of
the short-period binaries.
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Table 4. Elements of four binaries: comparison between GOMoM05 (first row) and EBAS (second row) solutions.

System r t i k e

OGLE 052232.68−701437.1 0.426 ± 0.018 78.0 ± 0.8 0.84 ± 0.10 0.025 ± 0.006
0.458 ± 0.007 77.0 ± 0.4 0.99 ± 0.07 0.044 ± 0.014

OGLE 050828.13−684825.1 0.458 ± 0.009 77.9 ± 0.8 0.80 ± 0.20 0.043 ± 0.006
0.475 ± 0.003 77.3 ± 0.2 0.84 ± 0.12 0.043 ± 0.001

OGLE 051804.81−694818.9 0.498 ± 0.010 81.3 ± 0.8 0.75 ± 0.08 0
0.496 ± 0.004 81.0 ± 0.3 1.49 ± 0.04 0.003 ± 0.004

OGLE 052235.46−693143.4 0.485 ± 0.017 80.1 ± 1.4 0.73 ± 0.09 0
0.490 ± 0.007 80.4 ± 0.8 1.49 ± 0.25 0.015 ± 0.010

An obvious extension of EBAS would be to allow for automated
derivation of the mass ratio, the light of a third star, and even the
limb and gravity darkening. This cannot be done with the OGLE
data of the LMC, but would be possible for systems with better data
and more than one colour photometry. For close binaries with strong
proximity effects, we plan to allow EBAS to use the WD code. In
principle, the approach should be the same, with the same procedure
to find the best initial guess, the same simulated annealing search
and the same error estimation. The development of these capacities
of EBAS is deferred to a later paper.

Finally, we plan to construct an automated algorithm to derive
the masses of the two stars in each eclipsing binary in the LMC, in
a similar approach to the one presented by Devor & Charbonneau
(2006). Our approach relies on the fact that we know the distance to
all the binaries in our neighbouring galaxy, up to a few percent, and
therefore know the absolute magnitude of the LMC OGLE systems.
The OGLE data include some measurements in the V band for each
star in the LMC, and therefore the available absolute magnitude
information includes two colours. Furthermore, the MACHO data
(Alcock et al. 1997) are also available for most of these systems.
This should suffice to derive a crude estimate of the masses and ages
of all the eclipsing binaries in the OGLE LMC data set.
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