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       Abstract 

 Over the last decade, the emerging fi eld of nanomedicine has 
undergone rapid progresses. Different internal and external 
stimuli like pH, temperature, radiation, ultrasound or light 
have been introduced to expand the diagnostic and thera-
peutic options of various applications within the fi eld. This 
review focuses on the novel application of light in the fi eld 
of nanomedicine as a mechanism to control drug delivery, 
release and biochemical and genetic functionality at the tar-
get. The fi eld of functional nanomaterials for medicine, and 
in particular of light responsive nanocarriers, polymers and 
biomolecules offer new therapeutic options but also requires 
substantial further research to render this approach broadly 
applicable in clinical practice.  
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   Introduction 

 A variety of new nanomaterials such as polymers, liposomes, 
micelles, dendrimers or metallic nanoparticles have shaped 
the constant and rapid progressing fi eld of nanomedicine 
within the last decade. Today, nanoparticles have found their 
way into the clinical domain as drug delivery systems, for 
imaging, sensing and therapy. To provide specifi c character-
istics, nanoparticles can be tailored into  “ intelligent ”  nano-
particles through stimulus responsiveness. Stimuli responsive 
nanoparticle for medicine can be classifi ed based on the type 
of stimuli into locally/internal triggered systems responding 
to their close environment, and externally triggered stimuli-
responsive nanoparticles that can be remote-controlled even 
from outside the body. Various internal stimuli such as pH, 
redox potential, enzymatic activity, temperature and external 
stimuli like ultrasound, magnetic fi eld, temperature and light 

are being intensively investigated. Out of all these stimuli, 
light shows particularly attractive features such as high sensi-
tivity, ease of controllability and a range of physical properties 
(e.g., light intensity, wavelength, exposure time) that allow in 
principle to design selective and multiplexed activities to be 
programmed into a material. Therefore, it is not surprising 
that a signifi cant effort is currently invested into the devel-
opment of light responsive nanoparticles, oligonucleotides or 
peptides. 

 This review presents a brief overview on light and 
its applications within the fi eld of nanomedicine. It will 
describe mechanisms of light-controlled drug delivery, con-
trolled drug release, light-controlled activity switching for 
biochemical mechanisms, gen expression and gene silenc-
ing at the target. The aim of this paper is to identify opportu-
nities, describe gaps, and thus to stimulate further research, 
such that light- controlled nanomedical therapies develop 
into well tolerated, highly effective interventions to the ben-
efi t of the patient.  

  Application of light in nanomedicine 

  Light for triggered release and activation 

of drugs and biomolecules 

 Despite the efforts in drug delivery design and developments, 
major obstacles such as endosomal escape and effi cient pay-
load release within the diseased tissue and cell have to be 
overcome for effi cient clinical application. Light can be used 
to enhance drug delivery and payload release by applying 
light sensitive moieties to drug delivery platforms and of pho-
tolabile protecting groups to biologically active molecules by 
a strategy called caging (Figure 1). 

 Caging is an attractive way of turning biological molecules 
e.g., nucleic acids (DNA, RNA), proteins or peptides light 
sensitive for the investigation of biological processes. Caged 
biomolecules incorporate a light-removable protecting group, 
so-called  “ caging group ” , which aborts its native biological or 
biochemical activity. Since caging of ATP was fi rst reported 
in 1978 by Kaplan et al., several different photolabile groups 
have been introduced to turn biomolecules temporarily inac-
tive  (1 – 3) . Examples of caged biomolecules are neurotrans-
mitters  (4) , nucleotides  (4) , peptides  (5, 6) , siRNA  (7)  or 
DNA  (8) . The most widely used caged neurotransmitter so 
far is glutamate for which different protecting groups have 
been applied  (9) . RNA interference is a mechanism able to 
inhibit protein translation by gene silencing. Nguyen et al. 
caged a 1-(2-nirophenyl)ethyl (NPE) group to the 5 ′  terminal 
phosphate of the siRNA antisense strand, which inactivates 
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the siRNA activity  (10) . They could demonstrate an approxi-
mately 70 %  effi cient light induced RNA interference using 
wavelengths between 345 and 385 nm. An alternative form to 
siRNA mediated control of gene silencing has been reported 
by Young et al.  (11) . They introduced a caging group to 
DNAzymes to inhibit hybridization with mRNA. DNAzymes 
are enzymatically active desoxyoligonucleotides, which can 
cleave RNA in a site-specifi c manner. Translation of mRNA 
can be aborted upon illumination with UV-light to photo-
release the caging group. Caging of DNA has widely been 
studied as seen from several publications  (8, 12, 13) . To ren-
der those approaches suitable for future clinical application, 
extension of the work towards longer wavelengths and there-
fore reduced toxicity should be accompanied by identifi ca-
tion of suitable in vitro and in vivo disease models of human 
disease. 

 Light-responsive materials for drug delivery can be con-
structed by the covalent incorporation of specifi c light-sensi-
tive chemical groups with the aim to locally release cargo by 
illumination. The synthesis of a photocleavable amphiphilic 
block copolymer has been demonstrated by Cabane et al. 
 (14) . As photosensitive molecule they introduced an o-ni-
trobenzyl linker between the hydrophobic and hydrophilic 
blocks, which form vesicles or micelles upon self-assembly 
in aqueous solution. Successful disruption of the vesicles 
could be demonstrated after irradiation with UV-light by 
electron microscopy and dynamic lights scattering data. The 
design of photocleavable liposomes for drug delivery using 
different photolabile groups has been reported in several 
publications  (15, 16) . Dvir et al. presented a simple proof of 
concept by carboxylated polystyrene nanoparticles labeled 
with the unspecifi c amino acid sequence YIGSR, which 

adheres to  β 1 integrins present on most cell surfaces  (4, 
17) . The peptide was caged with a nitrobenzyl group, which 
could be removed via illumination, leading to nanoparticle 
binding to the cells. Another approach of light sensitive 
nanoparticles currently being investigated uses nano-impel-
lers. Nano-impellers are nanomechanical systems allowing 
the spatiotemporal drug release upon illumination, turning 
them into an attractive application for clinical trials  (5, 6, 
18, 19) . A clear disadvantage of many published systems is 
the requirement for light energy in the UV range, limiting 
their application due to phototoxicity and the very limited 
penetration range of short wavelength light in biological 
tissues.     

  Light induced gene expression and control 

of gene silencing 

 Light-mediated control of gene expression and silencing is a 
powerful and fast growing fi eld in the areas of systems bio-
logy, functional genomics and biotechnology. Spatiotemporal 
and precise gene expression represents the most fundamen-
tal level of further complex biological processes such as the 
control of thousand of proteins and the associated control of 
metabolic processes. Therefore, light represents a suitable 
stimulus for in vitro as well as in vivo studies as it is non-in-
vasive, sensitive and allows the spatiotemporal and precise 
application without interfering with metabolic conditions. 
Light-induced gene expression can either be achieved using 
caged biomolecules such as plasmid DNA  (12, 13) , tran-
scription factors  (8, 20, 21)  or via photoreceptors harboring 
a chromophore  (9, 22, 23) . Several reports focused on caged 
plasmid DNA ’ s have been published, whereas effective gene 

 Figure 1    (A) Light responsive drug delivery system built through covalent incorporation of specifi c light-sensitive chemical groups (red 
rectangles) with the aim to locally release cargo (red circles) by illumination. (B) Site-specifi c caging of DNA can be used for light-activated 
gene expression.    
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expression remained a major challenge due to ineffective 
random backbone modifi cations  (8, 10) . In addition, suc-
cessful uncaging and activation of gene expression required 
high levels of light that can cause phototoxicity  (24) . A 
more effective approach for light controlled activation of 
gene expression was shown by Yamaguchi et al. using a 
site-specifi c labeling of the promoter region with a bioti-
nylated photolabile group, leading to effective activation 
of gene expression in HeLa cells even under low levels of 
light  (12) . A successful gene regulation system combining 
light-sensitive proteins and programmable zinc fi nger tran-
scription factors has been published by Polstein et al.  (14, 
20) . The system is based on two light-inducible fusion pro-
teins from Arabidopsis thaliana, GIGANTEA (GI) fused to 
a Zinc fi nger protein leading the complex to the target DNA 
sequence and the LOV domain of FKF1 fused to the tran-
scriptional activation domain VP16. Illumination with light 
leads to fusion of the GI and LOV domain, which guides 
the LOV-VP16 domain to the target gene and enables gene 
expression.    

 Beside light induced gene expression, the focus of photo-
chemical control of gene function has been directed to RNA 
interference. RNA interference represents one of the major 
approaches leading to gene silencing/such as that occurring in 
embryogenesis) and is being extensively explored as a thera-
peutic strategy for different kind of diseases, including can-
cer. Two primary approaches for photochemical regulation 
have been developed. The caging groups are either covalently 
attached to the phosphate backbone or terminal phosphates or 
on the nucleotide bases to inhibit the further process of RNA 
induced silencing (Figure 2). The fi rst report of caged siRNA 
has been described by Shah et al. using 1-(4, 5-dimethoxy-2-
nitrophenyl)ethyl (DMNPE) attached to the phosphate back-
bone which only showed a 3 %  caging effi ciency  (15, 16, 24) . 
Caging of guanosine and thymidin bases by attaching 2-(2-
nitrophenyl)propy (NPP) groups has been reported by Mikat 
and Heckel  (25) . The modifi cations have shown knockdown 
effi ciency of about 75 %  after light irradiation. Jain et al. 
designed a siRNA caged at the terminal phosphates with a 

cyclo-dodecyl DMNPE, which is more bulky and therefore 
shows higher steric hindrance  (11, 26) . In contrast to the 
DMNPE, which has been introduced to the phosphate back-
bone, siRNA terminally caged with cyclo-dodecyl DMNPE 
showed an effi ciency of 89 % .  

  Photodynamic therapy 

 The therapeutic effect of light has been known for thou-
sands of years and was applied by the Egyptians, Indians 
and Chinese  (8, 12, 13, 27) . Its therapeutic relevance to 
cancer treatment and further development into the photody-
namic therapy (PDT) was reported at the beginning of the 
last century by Oscar Raab, a German medical student and 
his professor Hermann von Tappeiner  (28) . The principle 
of photodynamic therapy involves the administration of a 
photo sensitizer, which will form highly reactive singlet oxy-
gen radical (ROS) from molecular oxygen after illumination 
with light (Figure 3). Singlet oxygen radicals are known to 
cause severe damage to biological macromolecules such as 
membrane lipids and proteins  (29) . After absorption of light, 
photosensitizers will change from a ground state into a rela-
tively long-lived excited triple state and a short-lived excited 
single state. The excited single state can return to the ground 
state by emitting fl uorescence that can be used for clinical 
detection. In the excited triple state, the photosensitizer mol-
ecule can transfer its energy via a type-I or -II reaction. In the 
type-I reaction, the photosensitizer can react directly with a 
surrounding substrate to form radicals, which then can further 
interact with oxygen to produce oxygenated products. In the 
type-II reaction the energy of the excited photosensitizer can 
be directly transferred to oxygen to form highly reactive sin-
glet oxygen  (30) .    

 Photodynamic therapy has found its way into clinical appli-
cations using nanocarrier platforms as delivery system such 
as photodynamic eye therapy for the treatment of neovascu-
larization, abnormal endothelial proliferation or for different 
cancer treatments (bladder, skin, head and neck, esophageal, 
or endobronchial cancer)  (31, 32) . A number of nanoparticle-

 Figure 2    Schematic illustration of caged siRNA strategies. (A) Caged phosphate backbone and (B) caged terminal phosphates of siRNA. (C) 
Introduction of a caged base into a siRNA antisense strand to inhibit RNA interference.    
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based photodynamic therapies have been approved by the 
U.S. Food and Drug Administration (FDA) such as e.g., 
Visudyne  ®  , Photofrin  ®  , Levulan  ®   Kerastick  ®   opening doors 
for future applications and new possible approaches for future 
therapies  (31) . There are several advantages of PDT as a clini-
cal application including a single dose requirement for treat-
ment followed by illumination compared to radiotherapy and 
chemotherapy, which both depend on a treatment over several 
weeks or months. Further, it is a local treatment without inter-
fering with the whole organism and retreatment can be sim-
ply done in the case of recurrence of a tumor without severe 
healthy tissue damage. However, further development in 
the direction of controlled drug release, as well as improved 
payload capacity of nanoparticle-based delivery systems is 
warranted.  

  Photochemical internalization (PCI) 

 One of the key challenges that still needs to be overcome in 
order to enable the clinical application of therapeutic delivery 
of different payloads is endosomal escape. Various strategies 
have been developed to achieve endosomal escape and these 
are either based on the characteristic endosomal property of a 
lower intracellular pH compared to the cytoplasm, incorpora-
tion of fusogenic peptides into the endosomal membrane or a 
strategy called photochemical internalization (PCI). PCI is a 
site-specifi c method for intracellular drug delivery by induced 
endolysosomal escape based on photostimulation. The prin-
ciple behind PCI relies on photodynamic therapy targeted to 
endosomes or lysosomes, whereas the vesicular membrane 
bursts after coming into contact with highly reactive singlet 
oxygen after illumination of the photosensitizer (Figure 4). In 
comparison to conventional photodynamic therapy, where the 
intracellular localization of the photosensitizer does not play 
an important role because of its complete cellular destruction, 
PCI is based on the specifi c accumulation of the photosen-
sitizer in the endolysosomal compartment to achieve endo-
somal escape without harming the rest of the cell  (33) .    

 A fate that may be a consequence to nanocarriers after 
endocytotic uptake, is the accumulation in the endolysosome, 
whereas PCI offers a good solution. Lai et al. have demon-

 Figure 3    Light activation of a photosensitizer leads to the forma-
tion of highly reactive singlet oxygen for selective cell killing.     Figure 4    Intracellular drug delivery induced by endolysosomal 

escape based on photostimulation. Light-irradiation after endocytotic 
uptake leads to endolysosomal membrane burst upon highly reactive 
singlet oxygen.    

strated the effective delivery of doxorubicin and saporin 
by photochemical internalization using a poylamidoamine 
(PAMAM) dendrimer  (34, 35) . Recently, Lu et al. reported 
the overcoming of doxorubicin drug resistance in vivo by 
applying dendrimer phtalocyanine-encapsulated polymeric 
micelles combined with doxorubicin into doxorubicin-resis-
tant bearing mice  (36) . It has also been shown by Nishiyama 
et al. that PCI can mediate gene transfection, using a com-
binational system including polymeric micelles incorporat-
ing pDNA and a dendrimer-based photosensitizer  (37) . Both 
polymeric micelles are assumed to be taken up by the cells at 
the same time. After illumination, a remarkable enhancement 
of transgene expression could be detected while retaining cell 
viability. Beside enhancement of gene expression, PCI can 
also be used for siRNA mediated gene knockdown studies. 
The fi rst application of PCI to facilitate endosomal escape of 
siRNA was reported in 2007 by Oliveira et al.  (38) . They used 
TPPS 2a  as photosensitizer together with a siRNA able to knock-
down epidermal growth factor receptor (EGFR) expression. 
Complexes of EGFR siRNA and Lipofectamine were applied 
to the cells. A 10-fold increased effi ciency in EGFR knock-
down could be detected after illumination compared to siRNA 
treatment alone. A recently published study by Varkouhi et al. 
presents PCI mediated enhancement of gene silencing using a 
polymer-based nanocarrier platform consisting out of cationic 
polymethacrylates and N,N,N-trimethylated chitosan  (39) . 
Furthermore, PCI can enhance the effect of targeted protein 
toxins that have reached the tumors cells  (40) . Targeted protein 
toxins consist of a protein toxin moiety, initiating cytotoxicity 
and a cell binding moiety, which targets the protein actively to 
the cell. Denileukin diftitox is the fi rst FDA approved protein 
toxin for treatment of cutaneous T-cell lymphoma.  

  Photothermal therapy 

 Hyperthermia is a non-invasive approach for cancer treatment 
based on the principle of spatiotemporally increasing the tem-
perature to promote selective destruction of cancer cells, which 
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are more sensitive to hyperthermia than normal cells due to 
their higher metabolic rates. Several different approaches have 
already been applied for delivery of thermal energy such as 
ultrasound, microwaves or radiofrequency pulses  (41 – 43) . A 
disadvantage is their dispersive property with the result that 
high fl uences (high amount of particles that intersect an area 
at a specifi c timepoint) are needed, which lead to undesir-
able hyperthermic effects on surrounding tissues. Within the 
last few years, gold nanoparticles have received increasing 
attention due to their versatile applications such as imaging, 
cancer therapy, drug delivery and especially because of their 
unique surface plasmon resonance (SPR) absorption at vis-
ible or Near-infrared (NIR) wavelengths  (44) . The use of NIR 
is desirable due to its deep penetrating capacity and minimal 
interference with water and biomolecules in tissues. The prin-
ciple of photothermal therapy is the combination of light and 
gold nanoparticles (e.g., gold nanospheres, nanorods, nano-
shells, nanocages) for clinical treatment. Illumination of gold 
nanoparticles leads to conversion of absorbed light into ther-
mal energy, the resulting heat causes cell and tissue destruc-
tion (Figure 5). El-Sayed et al. have shown the use of gold 
nanorods labeled with an anti-EGFR antibody for selective 
photothermal treatment of cancer cells  (45) . A dual-modality 
approach for photodynamic and photothermal therapy has been 
recently published by Kuo et al.  (46) . They used gold nanoma-
terials conjugated with the hydrophilic photosensitizer, indo-
cyanine green, to achieve photothermal therapy (PTT) and 
photodynamic therapy (PDT). The combination of PTT and 
PDT showed enhanced destruction of cancer cells in contrast 
to their single application effectiveness. Photothermal tumor 
ablation in mice could be proven by O ’ Neal et al. using gold 
nanoshells  (47) . They subcutaneously injected murine colon 
carcinoma cells into immune-competent mice, followed by 
injection of gold nanoshells. After 6 h of circulation, tumors 
were illuminated with NIR. All treated mice looked healthy 
and tumor free after more then 90 days post-treatment.  

     Photoswitchable fl uorescent nanoparticles 

 Over the past decades a huge number of nanoparticles made 
of different materials have been developed and these have 
biological and medical applications. Whereas many of those 

platforms have been developed for the purpose of improved 
drug delivery and therapy another promising direction, 
which has attracted considerable interest is molecular imag-
ing. Nanoparticle-based imaging offers a non-invasive and 
quantitative detection method of biomolecules, while at 
the same time improves sensitivity and specifi city of diag-
nostic imaging as a tool for e.g., early cancer detection. 
Fluorescence spectroscopy is a powerful method used for 
molecular imaging of living cells, allowing very sensitive 
measurements at high resolution. Fluorescence imaging is 
based on the principle of the absorption of light by a fl uo-
rescent dye (e.g., fl uorophore or fl uorochrome), which emits 
fl uorescent light at a longer wavelength than that absorbed. 
Fluorescent nanoparticles such as polymer NPs, silica NPs, 
gold NPs or quantum dots (QD) gained intensive interest 
during the last years. They can be produced by doping the 
material with suitable fl uorescent dyes or luminescent met-
als while quantum dots can directly be applied due to their 
intrinsic fl uorescence properties  (48) . The advantages of 
fl uorescent nanoparticles compared to normal organic dyes 
are higher brightness due to the fact that a nanoparticle 
can carry several dye molecules, increase in photostabil-
ity because the dyes are entrapped within the nanoparticles, 
higher specifi city upon their functionalization properties 
and their long-term-tracking ability. 

 Understanding cellular networks is the essential key factor 
to understand the complex structure of certain diseases. To 
achieve this goal, signifi cant progress has been made in the 
development of quantum dots for cellular sensing which have 
been recently reviewed  (49) . Sensing quantum dots are based 
on the principle of the recognition of an analyte, which acts as 
a fl uorescence quencher, by a receptor or chemosensor caus-
ing changes upon emission of the fl uorophore. Various quan-
tum dots based on overcoating of the core with ZnS or CdSe 
to improve their fl uorescence quantum yield and additional 
modifi cation of the surface properties to increase their emis-
sion have been reported  (50 – 52) . Furthermore, this concept 
can be used to prepare glucose or maltose sensing systems, 
whereas a photoinduced electron transfer (PET) from the 
coating molecules to the valence band of an excited quantum 
dot results in emission quenching as shown by Cordes and 
Sandros et al.  (53, 54) . 

 Figure 5    Photothermal therapy is based on intracellular uptake of gold nanoparticles, which after irradiation with near-infrared light convert 
absorbed light into thermal energy for specifi c destruction of cancer cells.    
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and biocompatibility, in particular for wavelengths longer 
than UV. Furthermore, it has shown advantages regarding 
its high spatial and temporal precision. However, the major 
drawback of light is tissue penetration depth, which severely 
restricts the applications of caged compounds, light sensitive 
drug delivery systems and light-based therapies into clinical 
application. Thus, approaches like the usage of NIR linked to 
two-photon uncaging and up-converting systems seem to be 
promising but further optimization of these methods is needed 
to increase the chance of further application in clinical trials.    
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