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A note on
the Hausdorff dimension of the singular set

for minimizers of the Mumford–Shah energy

Camillo De Lellis, Matteo Focardi and Berardo Ruffini

Communicated by Nicola Fusco

Abstract. We give a more elementary proof of a result by Ambrosio, Fusco and Hutchin-
son to estimate the Hausdorff dimension of the singular set of minimizers of the Mumford–
Shah energy (see [1, Theorem 5.6]). On the one hand, we follow the strategy of the above
mentioned paper; but on the other hand our analysis greatly simplifies the argument since
it relies on the compactness result proved by the first two authors in [4, Theorem 13] for
sequences of local minimizers with vanishing gradient energy, and the regularity theory
of minimal Caccioppoli partitions, rather than on the corresponding results for Almgren’s
area minimizing sets.
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1 Introduction

Consider the (localized) Mumford–Shah energy on a bounded open subset��Rn

given by

MS.v; A/ D
Z
A

jrvj2dx CHn�1.Sv \ A/; (1.1)

for v 2 SBV.�/ and A � � open. In what follows if A D �, we shall drop the
dependence on the set of integration. We refer to the book [2] for all the notations
and preliminaries on SBV functions and the regularity theory for local minimizers
of the Mumford–Shah energy giving precise references when needed.

In this note we provide a simplified proof of the following result due to Ambro-
sio, Fusco and Hutchinson [1, Theorem 5.6] (shown there for quasi-minimizers
as well).
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Theorem 1.1. Let u be a local minimizer of the Mumford–Shah energy, i.e., any
function u 2 SBV.�/ with MS.u/ <1 and such that

MS.u/ � MS.w/ whenever ¹w ¤ uº �� �:

Let †u � Su be the set of points out of which Su is locally regular, and let

†0u WD

²
x 2 †u W lim

�#0
�1�n

Z
B�.x/

jruj2 D 0

³
:

Then, dimH †0u � n � 2.

The main interest in establishing such an estimate on the set †0u, the so-called
subset of triple-junctions, is related to the understanding of the Mumford–Shah
conjecture (see [2, Chapter 6] for a related discussion, see also [4, Section 7]).

Indeed, Theorem 1.1, together with the higher integrability property of the
approximate gradients enjoyed by minimizers as established in two dimensions
by [4] and more recently in any dimension by [5], imply straightforwardly an
analogous estimate on the full singular set †u. More precisely, in view of [4, The-
orem 1] and [5, Theorem 1.1] any local minimizer u of the Mumford–Shah energy
is such that jruj 2 Lploc.�/ for some p > 2, therefore [1, Corollary 5.7] yields
that

dimH †u � max¹n � 2; n � p=2º:

A characterization of the Mumford–Shah conjecture in two dimensions in terms
of a refined higher integrability property of the gradient in the finer scale of weak
Lebesgue spaces has been recently established in [4, Proposition 5].

Our proof of Theorem 1.1 rests on a compactness result proved by the first two
authors (see [4, Theorem 13]) showing that the blow-up limits of the jump set Su
in points in the regime of small gradients, i.e., in points of †0u, are minimal Cac-
cioppoli partitions. The original approach in [1], instead, relies on the notion of
Almgren’s area minimizing sets, for which an interesting but technically demand-
ing analysis of the composition of SBV functions with Lipschitz deformations
(not necessarily one-to-one) and a revision of the regularity theory for those sets
are needed (cp. with [1, Sections 2, 3 and 4]).

Given [4, Theorem 13], the regularity theory of minimal Caccioppoli partitions
developed in [7, 8, 10] and standard arguments in geometric measure theory yield
the conclusion, thus bypassing the above mentioned technical complications.

We describe briefly the plan of the note: in Section 2 we introduce a few nec-
essary definitions and recall some well-known facts about Caccioppoli partitions.
In Section 3 we prove our main result and comment on some related improvements
in a final remark.
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2 Caccioppoli partitions

In what follows � � Rn will denote a bounded open set.

Definition 2.1. A Caccioppoli partition of� is a countable partition E D ¹Eiº
1
iD1

of � in sets of (positive Lebesgue measure and) finite perimeter with

1X
iD1

Per.Ei ; �/ <1:

For each Caccioppoli partition E we define its set of interfaces as

JE WD

[
i2N

@�Ei :

The partition E is said to be minimal if

Hn�1.JE / � Hn�1.JF /

for all Caccioppoli partitions F for which there exists an open subset �0 �� �
with

1X
iD1

Ln
�
.Fi4Ei / \ .� n�

0/
�
D 0:

Definition 2.2. Given a Caccioppoli partition E , we define its singular set †E as
the set of points for which the approximate tangent plane to JE does not exist.

A characterization of the singular set †E for minimal Caccioppoli partitions in
the spirit of "-regularity results is provided in the following statement (cp. with
[7, Corollary 4.2.4] and [9, Theorem III.6.5]).

Theorem 2.3. Let � be an open set and E D ¹Eiºi2N be a minimal Caccioppoli
partition of �. Then, there exists a dimensional constant " D ".n/ > 0 such that

†E D

°
x 2 � \ JE W inf

B�.x/���
e.x; �/ � "

±
; (2.1)

where e.x; �/ denotes the spherical excess of E at the point x 2 JE at the scale
� > 0, that is,

e.x; �/ WD min
�2Sn�1

1

�n�1

Z
B�.x/\JE

j�E .y/ � �j
2

2
dHn�1.y/:

We recall next a result that is probably well known in literature; we provide the
proof for the sake of completeness.
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Theorem 2.4. Let E be a minimal Caccioppoli partition in �. Then

dimH †E � n � 2:

If, in addition, n D 2, then †E is locally finite.

Proof. We apply the abstract version of Federer’s reduction argument in [13, The-
orem A.4] with the set of functions

F D ¹�JE W E is a minimal Caccioppoli partitionº

endowed with the convergence

�JEh
! �JE ” lim

h"1

Z
JEh

g dHn�1
D

Z
JE

g dHn�1 for all g 2 C 1c .�/;

and singularity map sing.�E / D †E .
It is easy to see that [13, condition A:1] (closure under scaling) and [13, condi-

tion A:3 (2)] hold true. Moreover, the blow-ups of a minimal Caccioppoli partition
converge to a minimizing cone (see [8, Theorem 3.5] or [7, Theorem 4.4.5 (a)]),
so that [13, condition A:2] holds as well. About [13, condition A:3 (1)], we no-
tice that the singular set of an hyperplane is empty. Eventually, if a sequence
.�JEh

/h2N � F converges to �JE and .xh/h2N converges to x, with xh 2 †Eh

for all h, then by the continuity of the excess and the characterization in (2.1),
x 2 †E , so that [13, condition A:3 (3)] is satisfied as well.

To conclude, we recall that [13, Theorem A.4] itself ensures that the set †E is
locally finite being in this setting dimH †E D 0.

3 Proof of the main result

We are now ready to prove the main result of the note following the approach
exploited in [1, Theorem 5.6]. To this aim we recall that Ambrosio, Fusco and
Pallara (see [2, Theorems 8.1–8.3]) characterized alternatively the singular set †u
as follows:

†u D
°
x 2 Su W lim inf

�#0
.D.x; �/CA .x; �// � "0

±
; (3.1)

where "0 is a dimensional constant, and the scaled Dirichlet energy and the scaled
mean-flatness are respectively defined as

D.x; �/ WD �1�n
Z
B�.x/

jruj2dy;

A .x; �/ WD ��1�n min
T2…

Z
Su\B�.x/

dist2.y; T /dHn�1.y/;

with … the set of all affine .n � 1/-planes in Rn.
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Proof of Theorem 1.1. We argue by contradiction: suppose that there exists an
s > n � 2 such that H s.†0u/ > 0. From this we infer that H s

1.†
0
u/ > 0, and

moreover that for H s-a.e. x 2 †0u it holds

lim sup
�#0C

H s
1.†

0
u \ B�.x//

�s
�
!s

2s
(3.2)

(see for instance [2, Theorem 2.56 and formula (2.43)] or [9, Lemma III.8.15]).
Without loss of generality, suppose that (3.2) holds at x D 0, and consider a se-
quence �h # 0 for which

H s
1.†

0
u \ B�h/ �

!s

2sC1
�sh for all h 2 N: (3.3)

Then [4, Theorem 13] provides a subsequence, not relabeled for convenience, and
a minimal Caccioppoli partition E such that

Hn�1 ��1h Su
�
* Hn�1 JE and ��1h Su ! JE locally Hausdorff: (3.4)

In turn, from the latter we claim that if F is any open cover of †E \ B1, then for
some h0 2 N

��1h †0u \ B1 �
[
F 2F

F for all h � h0: (3.5)

Indeed, if this is not the case we can find a sequence xhj 2 �
�1
hj
†0u \ B1 converg-

ing to some point x0 … †E . If �E
x0

is the approximate tangent plane to JE at x0
(which exists by the very definition of †E ), then for some �0 we have

�1�n
Z
B�.x0/\JE

dist2.y; �E
x0
/dHn�1 < "0 for all � 2 .0; �0/:

In turn, from the latter inequality it follows that, for � 2 .0; �0 ^ 1/,

lim sup
j"1

Z
B�.xhj /\�

�1
hj
Su

dist2.y; �E
x0
/ dHn�1 < "0:

Therefore, as xhj 2 �
�1
hj
†0u, we get for j large enough

lim sup
�#0

�
D.xhj ; �/CA .xhj ; �/

�
< "0;

a contradiction in view of the characterization of the singular set in (3.1).
To conclude, we note that by (3.5) we get

H s
1.†E \ B1/ � lim sup

h"1

H s
1.�

�1
h †0u \ B1/I
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given this, (3.3) and (3.4) yield that

H s.†E \ B1/ � H s
1.†E \ B1/ � lim sup

h"1

H s
1.�

�1
h †0u \ B1/ �

!s

2sC1
;

thus contradicting Theorem 2.4.

Remark 3.1. In two dimensions we can actually prove that the set †0u of triple-
junctions is at most countable building upon some topological arguments. This
claim follows straightforwardly from the compactness result [4, Theorem 13],
David’s "-regularity theorem [3, Proposition 60.1], and a direct application of
Moore’s triod theorem showing that in the plane every system of disjoint tri-
ods, i.e., unions of three Jordan arcs that have all one endpoint in common and
otherwise disjoint, is at most countable (see [11, Theorem 1] and [12, Proposi-
tion 2.18]). Despite this, we are not able to infer that †0u is locally finite as in
the case of minimal Caccioppoli partitions (cp. with Theorem 2.4). Indeed, on
the one hand we can conclude that every convergent sequence .xj /j2N � †

0
u has

a limit x0 … †0u thanks to [4, Proposition 11 and Lemma 12]; but on the other
hand, we cannot exclude that the limit point x0 is a crack-tip, i.e., it belongs to the
set †u n†0u D ¹x 2 †u W lim inf�#0D.x; �/ > 0º.

The same considerations above apply in three dimensions as well for points
whose blow-up is a T cone, i.e., a cone with vertex the origin constructed upon
the 1-skeleton of a regular tetrahedron. The latter claim follows thanks to [4, The-
orem 13], the 3-d extension of David’s "-regularity result by Lemenant in [6, The-
orem 8], and a suitable extension of Moore’s theorem on triods established by
Young in [15].

Let us finally point out that we employ topological arguments to compensate
for monotonicity formulas, that would allow us to exploit Almgren’s stratifica-
tion type results and get, actually, a more precise picture of the set †0u (cp. with
[14, Theorem 3.2]).
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