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Background. The Kassena-Nankana District (KND) of northern Ghana lies in the African meningitis belt, where

epidemics of bacterial meningitis have been reoccurring every 8–12 years. These epidemics are generally caused by
Neisseria meningitidis, an organism that is considered to be uniquely capable of causing meningitis epidemics.

Methods. We recruited all patients with suspected meningitis in the KND between 1998 and 2003. Cerebro-
spinal fluid samples were collected and analyzed by standard microbiological techniques. Bacterial isolates were
subjected to serotyping, multilocus sequence typing (MLST), and antibiotic-resistance testing.

Results. A continual increase in the incidence of pneumococcal meningitis was observed from 2000 to 2003.
This outbreak exhibited strong seasonality, a broad host age range, and clonal dominance, all of which are char-
acteristic of meningococcal meningitis epidemics in the African meningitis belt. The case-fatality rate for pneu-
mococcal meningitis was 44.4%; the majority of pneumococcal isolates were antibiotic sensitive and expressed the
serotype 1 capsule. MLST revealed that these isolates belonged to a clonal complex dominated by sequence type
(ST) 217 and its 2 single-locus variants, ST303 and ST612.

Conclusions. The S. pneumoniae ST217 clonal complex represents a hypervirulent lineage with a high pro-
pensity to cause meningitis, and our results suggest that this lineage might have the potential to cause an epidemic.
Serotype 1 is not included in the currently licensed pediatric heptavalent pneumococcal vaccine. Mass vaccination
with a less complex conjugate vaccine that targets hypervirulent serotypes should, therefore, be considered.

Neisseria meningitidis, Streptococcus pneumoniae, and

Haemophilus influenzae type b (Hib) are the most com-

mon causes of acute bacterial meningitis [1]. Meningitis

caused by N. meningitidis has been considered to be

unique with respect to its epidemic occurrence. A re-

gion of sub-Saharan Africa extending from Ethiopia to

Senegal, designated “the African meningitis belt,” has

been particularly vulnerable to meningococcal disease
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epidemics. In addition to sporadic disease, which oc-

curs mainly during the annual dry season, epidemics

have occurred in the African meningitis belt every 8–

12 years over the past 100 years [2, 3].

Information on the epidemiologic profile of pneu-

mococcal meningitis in the African meningitis belt is

fragmentary, but some studies have found S. pneumo-

niae to be the most important causative agent of bac-

terial meningitis in certain areas [4]. The incidence in

these areas is 10–20 cases/100,000 people/year, which

is ∼10 times higher than that in western Europe and

the United States [5, 6]. Cases of S. pneumoniae men-

ingitis occur throughout the year, and most studies re-

port the youngest (!2 years) and the oldest (160 years)

people to be at greatest risk [4, 5]. For unknown rea-

sons, the case-fatality rate for pneumococcal meningitis

(∼50%) is 5–10 times higher than that for meningo-

coccal meningitis.
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Figure 1. No. of laboratory-confirmed (by culture and/or latex agglu-
tination assay) meningitis cases in the Kassena-Nankana District of north-
ern Ghana between 1998 and 2003. No laboratory data were available
on the patients with suspected meningitis that was diagnosed during the
wet season of 1998–1999. �, Neisseria meningitidis; �, Streptococcus
pneumoniae; �, Haemophilus influenzae type b.

Although there are ∼90 known pneumococcal serotypes, only

a limited number account for most of the invasive infections.

The serotype distribution varies with time, location, and age

group [6]. Clonal dominance and global spread has been de-

scribed for a small number of highly successful drug-resistant

(and often multidrug-resistant) pneumococcal clones [7]. Se-

rotype 1 is one of the most common serotypes that cause in-

vasive disease worldwide, particularly in Africa [6, 8, 9]. It has

a high attack rate but is rarely isolated from healthy carriers

or from people with mild occult bacteremia. Outbreaks of in-

vasive serotype 1 pneumococcal disease have occurred in several

communities [4, 6, 10–14].

The present study was conducted between 1998 and 2003 in

the Kassena-Nankana District (KND) of northern Ghana. After

a large meningococcal meningitis epidemic occurred during the

dry season of 1997, all patients with suspected meningitis were

recruited prospectively. Cerebrospinal fluid (CSF) samples were

collected and analyzed by standard microbiological techniques.

Between 2000 and 2003, a continuous increase in the incidence

of pneumococcal meningitis was observed. Here, we demon-

strate that the epidemiological and bacteriological features of

this outbreak closely resemble those usually associated with me-

ningococcal meningitis epidemics, and the implications of these

observations with respect to the control of bacterial meningitis

in the African meningitis belt are discussed.

PATIENTS, MATERIALS, AND METHODS

Study area. The KND has a population of 140,000 and lies

within the Guinea savanna woodland area of northern Ghana.

Two major seasons exist, a short wet season from May to Oc-

tober and a long dry season for the remainder of the year. The

general population is rural, except for those living in the town

of Navrongo, which has a population of 20,000. People live in

compounds with an average of 10 inhabitants.

Patients. CSF samples were collected between January 1998

and December 2003 from patients with suspected meningitis

who reported to the War Memorial Hospital in Navrongo or

to 1 of 4 health centers in the KND. In line with Ghana’s stan-

dard diagnostic procedures, samples were analyzed at the lab-

oratory of the War Memorial Hospital, for confirmation of the

clinical diagnosis. Additional samples were obtained from the

Bolgatanga Regional Hospital in the Upper East Region and

from health facilities in the Bongo and Builsa Districts. In 1998–

1999, only samples collected during the dry season were ana-

lyzed. Thereafter, samples collected from the few patients with

suspected meningitis who presented during the wet season were

also included. Ethical clearance for the study was obtained from

the responsible institutional review boards and the Ghanaian

Ministry of Health. Clinical and demographic information was

recorded for all patients. Personal data were linked with the

database of the Navrongo Demographic Surveillance System

(NDSS). The denominators used for calculation of incidence

rates represent the average annual population of the KND be-

tween 1995 and 1999 [15].

Analysis of CSF samples. CSF samples were analyzed by

direct staining with Gram stain. Boiled CSF supernatants were

tested serologically for capsular polysaccharide antigens of N.

meningitidis (serogroups A, B, C, and W135), S. pneumoniae,

and Hib (Slidex Meningite Kit, bioMérieux; Pasteurex Kit, Bio-

Rad). CSF samples were inoculated onto blood, chocolate, and

Thayer Martin agar and then incubated in candle jars for 24

h at 37�C. S. pneumoniae colonies were identified on the basis

of colony morphological structure, Gram-stain behavior, and

resistance to optochin (Taxo P discs, BD). All pneumococcal

isolates were serotyped on the basis of the Quellung reaction,

with antisera from the Statens Serum Institute (Copenhagen).

Antibiotic resistance testing. All isolates from the KND were

tested for resistance to penicillin G and chloramphenicol (the 2

antibiotics commonly used in standard therapy for bacterial

meningitis in Ghana) as well as cefotaxime and ciprofloxacin,

by use of E-test strips (Diagnostic Medical Distribution) [16].

The breakpoints of the NCCLS protocol were applied. For cip-

rofloxacin, 4 mg/mL was taken as the breakpoint for resistance

[17]. The ATCC 49619 strain was included as control.

Multilocus sequence typing (MLST). Bacteria were grown

overnight in Todd-Hewitt medium. DNA extraction [18], MLST

[19], and direct sequencing of polymerase chain reaction prod-

ucts by use of an ABI Prism 310 genetic analysis system was

performed in accordance with standard protocols. Allelic pro-

files were analyzed by use of applications on the MLST home

page (available at: http://spneumoniae.mlst.net/). For analysis

of the relationships between closely related isolates, eBURST
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Figure 2. Seasonal patterns of rainfall and no. of laboratory-confirmed (by culture and/or latex agglutination assay) pneumococcal and meningococcal
meningitis cases in the Kassena-Nankana District (KND) of northern Ghana. Data on total monthly rainfall (indicated by shaded areas) are from the
meteorological station of the KND. �, Neisseria meningitidis; �, Streptococcus pneumoniae.

Figure 3. Incidence of meningococcal (gray bars) and pneumococcal (black bars) meningitis in the Kassena-Nankana District of northern Ghana,
by age. Cases were laboratory confirmed by culture and/or latex agglutination assay.

software (available at: http://eburst.mlst.net/) with the most-

stringent group definition (6/7 alleles identical) was used. All

allelic profiles obtained were compared with the complete list-

ing of the sequence types (STs) available in the database.

RESULTS

Meningitis cases. Between 1998 and 2003, a total of 140 me-

ningococcal, 117 pneumococcal, and 14 Hib meningitis cases

were confirmed by culture and/or latex agglutination assay in

the KND. The number of pneumococcal meningitis cases re-

mained low during the first 2 years of the study but increased

continuously during the following years (figure 1). Two subse-

quent outbreaks of serogroup A meningococcal infection were

reported during the study period. After a large meningococcal

meningitis epidemic occurred in Ghana in 1997, 50 confirmed

serogroup A meningococcal meningitis cases occurred in 1998

[20]. After 2 years of absence, from 2001 onward, serogroup A

meningococcal meningitis cases reemerged, causing annual out-

breaks until 2004 (authors’ unpublished data). The number of

Hib meningitis cases remained low throughout the study period

and mainly occurred in children !7 years old (figure 1).

The vast majority of meningococcal and pneumococcal

meningitis cases occurred during the dry season (figure 2).

The pneumococcal meningitis cases peaked 1–2 months ear-

lier than the meningococcal cases. During the remainder of

the year, only sporadic meningitis cases, mostly caused by S.

pneumoniae, were observed.

Both the patients with meningococcal meningitis and the pa-
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Table 1. Host age distribution of serotype 1 and non–serotype 1 Streptococcus pneumoniae isolates from the Kassena-Nankana
District of northern Ghana, found between 2000 and 2003.

Category

Age group

Total

Host age,
range (median),

years
!1

year
1–4

years
5–14
years

15–29
years

30–59
years

160
years NS

No. of isolates
Serotype 1 isolates 0 2 24 11 11 5 5 58 0.75–72 (15)
Non–serotype 1 isolates 2 2 5 1 3 4 1 18 0.33–85 (13)

Total 2 4 29 12 14 9 6 76 0.33–85 (14)
Serotype(s) of non-1 isolates 14a 3a 3,a 7F, 8, and 12F 8 6A, 8, and 10F 8, 12F, 14, and 38 2 … …

NOTE. Data are no. of isolates, unless otherwise noted. NS, age not specified.
a Two isolates.

tients with pneumococcal meningitis exhibited a broad age range

(figure 3). Infants (!1 year old) had the highest incidence for

both pneumococcal and meningococcal meningitis (43 cases/

100,000 people/year, for both). For pneumococcal meningitis,

the incidences in all other age groups were 15–26 cases/100,000

people/year. For meningococcal meningitis, the incidences were

comparable for children of all age groups and decreased steadily

for the older age groups. As a result, in the patients 160 years

old, the incidence of pneumococcal meningitis was significantly

higher than the incidence of meningococcal meningitis (2.6 vs.

23.4 cases/100,000 people/year). The overall case-fatality rates

were 43.6% (51/117) and 4.3% (6/140) for pneumococcal and

meningococcal meningitis, respectively.

The geographic locations of the homes of 74 patients with

pneumococcal meningitis and 102 patients with meningococcal

meningitis were mapped by use of the NDSS, but neither pneu-

mococcal nor meningococcal cases were geographically clus-

tered (data not shown). Furthermore, no significant family clus-

tering was observed.

Characterization of pneumococcal isolates. Between 1998

and 2003, 76 pneumococcal isolates were obtained from patients

with meningitis in the KND. Fifty-eight (76%) of these belonged

to serotype 1, which was the dominant serotype through-

out the study (table 1). The 18 non–serotype 1 isolates belonged

to 9 different serotypes. Only 33% (2/6) of the isolates from

infants and children �4 years old belonged to serotype 1; the

remainder belonged to serotypes 3 and 14. In contrast, in older

children (5–14 years), young adults (15–29 years), and grown-

ups (30–59 years), the proportions of isolates that belonged to

serotype 1 were 180% (24/29, 11/12, and 11/14, respectively).

In patients 160 years old, the proportion of isolates that be-

longed to serotype 1 was 56% (5/9).

Antibiotic-resistance testing showed that all but 2 of the 58

serotype 1 strains from the KND were completely susceptible

to penicillin G, cefotaxime, chloramphenicol, and ciprofloxa-

cin. The MICs for the 2 strains (both isolated in 2002) with

antibiotic resistances were determined. For strain P1036, the

MICs were as follows: penicillin G, 0.5 mg/mL (intermediate);

cefotaxime, 2 mg/mL (resistant); and chloramphenicol, 5 mg/

mL (intermediate). For strain P1037, the MICs were as follows:

penicillin G, 0.5 mg/mL (intermediate); cefotaxime, 1 mg/mL (in-

termediate); and chloramphenicol, 8 mg/mL (resistant).

All isolates from the KND and 15 isolates from neighboring

districts were analyzed by MLST. The results showed that all

serotype 1 isolates were clonally related (table 2). Ten distinct

STs were identified, but they all shared at least 6 of 7 alleles

with one other ST. ST217 and its 2 single-locus variants, ST303

and ST612, were dominant. In addition, single-locus variants

of the 3 dominant STs were sporadically found. All isolates ob-

tained in 1998 and 2000 had ST217. ST303 isolates were dom-

inant from 2001 onward (6/15 in 2001, 9/18 in 2002, and 14/

20 in 2003).

An eBURST analysis that included the STs of the Ghanaian

strains and all strains available in the MLST database was per-

formed (figure 4). Three of the 10 STs found in the Ghanaian

isolates (ST217, ST303, and ST612) have been previously de-

scribed in 34 serotype 1 lineage B isolates [9]; 16 of these isolates

came from Africa, and the others came from either Israel, Eu-

rope, or the United States. In addition, Brueggemann et al. [9]

defined 3 lineage B–associated STs (ST613, ST614, and ST618),

represented by 4 African isolates and 1 European isolate. The

eBURST diagram demonstrates that all Ghanaian serotype 1

strains found in the present study and all the lineage B isolates

described by Brueggemann et al. are part of a single clonal

complex in which all isolates share 100% genetic identity at 6

or 7 MLST housekeeping loci with at least 1 other member of

the group.

Of the non–serotype 1 isolates, only the serotype 14 isolates

exhibited allelic profiles that were closely related to those of

the serotype 1 clonal complex (table 2). One of the serotype 14

isolates (ST1324) was a single-locus variant of ST1323 (shown

in figure 4), 2 of the serotype 14 isolates (ST1314 and ST1315)

were double-locus variants of ST1323, and the remaining sero-
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Table 2. Serotype distribution and sequence types (STs) of Streptococcus pneumoniae isolates from northern Ghana, found between
1998 and 2003.

Serotype ST
No. of

isolates
Year of
isolation

Allelic profile

Origin (district)aaroE gdh gki recP spi xpt ddl

Serotype 1 217 15 1998–2003 10 18 4 1 7 19 9 KND (13), Bongo (1), and Builsa (1)
612 8 2001–2003 10 18 4 1 7 19 31 KND (7) and Bolgatanga (1)
303 36 2001–2003 10 5 4 1 7 19 9 KND (29) and Bolgatanga (7)

1322 1 2001 10 5 4 1 7 19 31 KND
1316 1 2002 2 18 4 1 7 19 9 KND
1325 2 2002 10 8 4 1 7 19 9 KND
1331 2 2002 13 8 4 1 7 19 9 KND
1327 1 2003 10 18 4 1 13 19 31 KND
1328 1 2003 10 18 4 1 7 21 31 KND
1323 1 2003 10 5 4 1 7 21 9 KND

Serotype 2 74 1 1998 2 13 4 1 6 6 14 KND
Serotype 3 458 7 2001 2 32 9 47 6 21 17 KND (3) and Bolgatanga (4)
Serotype 4 1321 1 2002 8 8 47 18 46 122 31 Bolgatanga
Serotype 6A 1320 1 2002 7 13 8 6 6 8 8 KND
Serotype 7F 1326 1 2002 10 16 4 1 6 21 9 KND
Serotype 8 1317 1 2003 7 5 15 11 83 58 70 KND

1318 1 2000 7 9 15 11 83 58 70 KND
1335 1 2003 7 9 4 60 83 28 70 KND
1319 1 2003 7 9 15 11 83 25 70 KND

Serotype 10F 909 1 2003 2 42 2 1 6 19 20 KND
Serotype 12F 989 1 2003 12 5 89 8 6 112 14 KND

1330 1 2003 12 5 89 8 13 112 14 KND
Serotype 14 1324 1 2002 10 5 4 17 7 21 9 KND

1313 1 2003 2 5 4 12 7 21 14 KND
1315 1 2003 2 5 9 1 7 21 9 KND
1314 1 2003 2 5 4 1 7 21 14 Builsa

Serotype 38 1329 1 2003 12 5 4 10 42 49 9 KND

NOTE. KND, Kassena-Nankana District.
a Values in parentheses indicate the no. of isolates found in each district (given only for those isolates found in 11 district).

type 14 isolate (ST1313) shared 5 alleles with ST1314 and 4 alleles

with ST1323.

DISCUSSION

N. meningitidis is considered to be uniquely capable of causing

bacterial meningitis epidemics. Our observation of a meningi-

tis outbreak caused by S. pneumoniae in the KND of northern

Ghana is, therefore, intriguing. The outbreak exhibited epi-

demiological and bacteriological features that are characteristic

of African meningococcal meningitis epidemics [2], including

strong seasonality, a broad host age range, and clonal domi-

nance. The increase in pneumococcal meningitis cases was ac-

companied by 2 successive outbreaks of meningococcal men-

ingitis. In the KND, the burden of disease for pneumococcal

meningitis has met the criterion for the alert status included

in the World Health Organization’s definition of epidemic me-

ningococcal outbreaks (a threshold of 5 cases/100,000 persons/

week); in the neighboring Bolgatanga District, even the criterion

for the epidemic status (a threshold of 10 cases/100,000 per-

sons/week) has been fulfilled, in March 2001. Cases of both me-

ningococcal and pneumococcal meningitis were concentrated

in the dry season, suggesting that similar factors might have

triggered both types of outbreaks. Such factors may include

mucosal defenses damaged by the extreme environmental con-

ditions and/or coinfections of the nasopharynx [2]. Care was

taken to avoid a bias associated with the well-known seasonality

of meningococcal meningitis in the study area: to account for

the fact that lumbar punctures were less likely to be performed

during the wet season, standardized guidelines for lumbar

puncture were applied.

Interestingly, the pneumococcal meningitis cases peaked 1–

2 months earlier than the meningococcal meningitis cases. This

finding may either (1) reflect a very high invasive capacity of

the causative clonal complex of serotype 1 pneumococci or (2)

indicate that the factors that trigger pneumococcal and me-

ningococcal meningitis are not entirely the same. In this con-

text, differences in climatic conditions between the early dry

season (which includes the Harmattan period, with its cold nights

and extremely dusty air) and the late dry season (which brings

intense heat) may be relevant. The broad host age range for
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Figure 4. e-BURST diagram of the sequence type (ST) 217 clonal complex. Included are all Ghanaian serotype 1 Streptococcus pneumoniae isolates
and 1 Ghanaian serotype 14 S. pneumoniae isolate from the present study as well as all serotype 1 lineage B S. pneumoniae isolates described by
Brueggemann et al. [9]. Lines connect all single-locus variants with each other. Black circles indicate STs found in northern Ghana in the present
study, and the no. of isolates found are given. Gray circles indicate serotype 1 lineage B–associated STs not found in northern Ghana [9], and the
countries of origin of the isolates are given. Shown is a modification of the original diagram produced by e-BURST, which was edited for the no. of
isolates, the origin of non-Ghanaian isolates, and multiple single-locus variant connections.

both meningococcal and pneumococcal meningitis cases shows

that age-related differences in the capacity of natural and adap-

tive immune effector functions are less important for suscep-

tibility to invasive disease than for other epidemiological sit-

uations. Lack of spatial clustering suggests that colonization

with serotype 1 pneumococci is not focal.

Clonally related bacteria from a common epidemiological

source often show limited genotypic variation [21]. Groups of

frequent genotypes plus their epidemiologically associated de-

scendents have been designated “clonal complexes” [21] or “ge-

noclouds” [22], which are determined on the basis of a thresh-

old level of MLST allelic identity. The pneumococcal meningitis

outbreak in the KND was caused by a serotype 1 clonal com-

plex. The 3 most frequently found STs (ST217 and its 2 single-

locus variants, ST303 and ST612) have been described previ-

ously [9], indicating that these genetic variants evolved before

the outbreak in the KND. However, some of the infrequently

isolated locus variants, such as ST1316, ST1322, ST1327, and

ST1328, may have emerged locally. It is interesting to note that

ST1331 and ST1325, which were each found twice in the Gha-

naian isolates, link an ST618 isolate from The Netherlands with

the clonal complex.

Serotype 1 pneumococci are a common cause of invasive

disease in many parts of the world but are found only rarely

in healthy carriers [6, 9, 23]. Studies comparing the prevalences

of S. pneumoniae subgroups in persons with invasive disease

and in healthy carriers showed that individual serotypes may

differ more than 100-fold in their potential to cause invasive

disease [23, 24]. Individual clonal complexes that belong to the

same serotype have different abilities to cause invasive disease

[23], suggesting that clonal complex–specific virulence deter-

minants might be important as well. It is not clear whether the

virulence of the 3 major subgroups of serotype 1 pneumococci

(which have distinct geographic distributions [9, 25]) is deter-

mined primarily by the capsular serotype—and is, therefore,

uniform—or whether lineage-specific genetic differences mod-

ulate the potential to cause particular types of invasive disease.

Our results suggest that the ST217 clonal complex might have
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a particular propensity to cause meningitis. However, more

studies are needed to verify whether this observation is reflective

of a true bacterial phenotype or is merely the result of host

and/or environmental factors.

We do not know whether the ST217 clonal complex was im-

ported into northern Ghana recently or whether it has been

present for a longer period of time without causing more than

sporadic disease. Clonal dissemination of S. pneumoniae is usually

associated with antibiotic resistance [7], but we observed no

significant resistance in the Ghanaian isolates. Therefore, other

factors must have led to the increased incidence of pneumococcal

meningitis in the KND. Vaccination against S. pneumoniae is

uncommon in Ghana. However, the massive immunization cam-

paigns with a meningococcal A plus C carbohydrate vaccine that

were repeatedly conducted throughout the study period might

have played a role. S. pneumoniae and N. meningitidis both col-

onize the human nasopharynx, and effective interventionsagainst

one of these bacteria is likely to promote competing microor-

ganisms. Vaccination with conjugate vaccines has been shown to

reduce nasopharyngeal carriage of the bacterial types included

in the vaccine and to lead to replacement by bacterial types not

included in the vaccine [26, 27]. Even though polysaccharide

vaccines, such as the unconjugated meningococcal A plus C car-

bohydrate vaccine used in the KND, are generally thought to

not affect the prevalence of nasopharyngeal carriage [2], repeated

immunization against N. meningitis still might modify the bac-

terial flora of the nasopharynx [28]. Thus, it is conceivable that

the increase in pneumococcal meningitis in the KND, as well as

the recently observed outbreaks of non–serogroup A and non–

serogroup C meningococcal meningitis [29–31], may have been

promoted by mass vaccination against N. meningitis. It will be

important to investigate the interactions between these bacteria

more closely, especially in the context of vaccination [32].

Serotype 1 is not included in the currently licensed pediatric

heptavalent pneumococcal vaccine. This vaccine contains poly-

saccharides from the 7 serotypes (4, 6B, 9V, 14, 18C, 19F, and

23F) that cause 185% of severe pneumococcal infections in

infants and young children in the United States and Canada

[6, 26]. The vaccine covers 70% of pediatric isolates from Eu-

rope but only 67% and 43% of those from Africa and Asia,

respectively [6]. In the KND, serotypes 3, 7F, 8, 12, and 14

accounted for the non–serotype 1 pneumococcal meningitis

cases in patients !15 years of age. Excepting serotype 1, the

so-called pediatric serotypes (e.g., 1, 5, 6, 9, and 14) [33] were

either not found at all or found only rarely. In the present

study, the pediatric heptavalent conjugate vaccine would have

covered 6% (2/35) of all pneumococcal meningitis cases and

22% (2/9) of the non–serotype 1 pneumococcal meningitis cases

in this age group. A nonavalent conjugate vaccine that includes

serotype 1 is currently being developed, but such a complex

conjugate vaccine may be too expensive for use in mass im-

munization in the African meningitis belt. However, mass vac-

cination with a less complex conjugate vaccine that targets hy-

pervirulent serotypes should be considered, because increased

incidences of pneumococcal meningitis have also been observed

in other districts of Ghana (data not shown). Serotype 1 dom-

inance and a broad host age range also seem to be features of

the current pneumococcal meningitis situation in Burkina Faso

[34, 35]. In view of the high case-fatality rate of pneumococcal

meningitis, there is an urgent need for improved treatment op-

tions that are suitable for countries with limited resources as well.

Acknowledgments

We acknowledge the use of the pneumococcal multilocus sequence typing
database, which is located at Imperial College London and is funded by
the Wellcome Trust. We thank Mr. Alhassan and his team from the Bol-
gatanga Regional Hospital, for access to data and provision of samples; the
district health authorities of the Kassena-Nankana District, for their sup-
port; and the health facilities of the Bongo and Builsa Districts, for their
kind collaboration. Furthermore, we acknowledge A. Bugri and A. Wahab,
for their indispensable contributions made in the laboratory in Navrongo;
the fieldworkers of the Navrongo Health Research Centre, for their efforts;
and Prof. Gasser (Basel, Switzerland), for his support and practical advice.

References

1. Hart CA, Cuevas LE. Bacterial meningitis. In: Cook GC, Zumla A, eds.
Manson’s Tropical Diseases, 21st ed. London: Elsevier Science, 2003:
981–94.

2. Greenwood B. Manson lecture: meningococcal meningitis in Africa.
Trans R Soc Trop Med Hyg 1999; 93:341–53.

3. Achtman M. Epidemic spread and antigenic variability of Neisseria
meningitidis. Trends Microbiol 1995; 3:186–92.

4. Mar ID, Denis F, Cadoz M. Epidemiologic features of pneumococcal
meningitis in Africa: clinical and serotypical aspects [author’s transl].
Pathol Biol (Paris) 1979; 27:543–8.

5. Greenwood B. The epidemiology of acute bacterial meningitis in trop-
ical Africa. London: Academic Press, 1987:61–91.

6. Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal
serogroups cause the most invasive disease: implications for conjugate
vaccine formulation and use, part I. Clin Infect Dis 2000; 30:100–21.

7. Klugman KP. The successful clone: the vector of dissemination of re-
sistance in Streptococcus pneumoniae. J Antimicrob Chemother 2002;
50(Suppl 2):1–5.

8. Greenwood BM, Hassan-King M, Onyemelukwe G, et al. Pneumo-
coccal serotypes in West Africa [letter]. Lancet 1980; 1:360.

9. Brueggemann AB, Spratt BG. Geographic distribution and clonal di-
versity of Streptococcus pneumoniae serotype 1 isolates. J Clin Microbiol
2003; 41:4966–70.

10. Dagan R, Gradstein S, Belmaker I, et al. An outbreak of Streptococcus
pneumoniae serotype 1 in a closed community in southern Israel. Clin
Infect Dis 2000; 30:319–21.

11. Gratten M, Morey F, Dixon J, et al. An outbreak of serotype 1 Strep-
tococcus pneumoniae infection in central Australia. Med J Aust 1993;
158:340–2.

12. Porat N, Trefler R, Dagan R. Persistence of two invasive Streptococcus
pneumoniae clones of serotypes 1 and 5 in comparison to that of
multiple clones of serotypes 6B and 23F among children in southern
Israel. J Clin Microbiol 2001; 39:1827–32.

13. Henriques NB, Kalin M, Ortqvist A, et al. Dynamics of penicillin-
susceptible clones in invasive pneumococcal disease. J Infect Dis 2001;
184:861–9.



Pneumococcal Meningitis in Northern Ghana • JID 2005:192 (15 July) • 199

14. Tugwell P, Greenwood BM, Warrell DA. Pneumococcal meningitis: a
clinical and laboratory study. Q J Med 1976; 45:583–601.

15. Nyarko P, Wontuo P, Nazzar A, Phillips J, Ngom P, Binka F. Navrongo
DSS, Ghana (chapter 22). In: Population and health in developing
countries: population, health and survival at INDEPTH sites. Vol 1.
Ottawa, Canada: International Development Research Centre, 2002:
247–56.

16. Isenberg HD, ed. Essential procedures for clinical microbiology. Wash-
ington, DC: American Society for Microbiology, 1998.

17. Brueggemann AB, Coffman SL, Rhomberg P, et al. Fluoroquinolone re-
sistance in Streptococcus pneumoniae in United States since 1994–1995.
Antimicrob Agents Chemother 2002; 46:680–8.

18. Vela Coral MC, Fonseca N, Castaneda E, Di Fabio JL, Hollingshead
SK, Briles DE. Pneumococcal surface protein A of invasive Streptococcus
pneumoniae isolates from Colombian children. Emerg Infect Dis 2001;
7:832–6.

19. Enright MC, Spratt BG. A multilocus sequence typing scheme for
Streptococcus pneumoniae: identification of clones associated with se-
rious invasive disease. Microbiology 1998; 144:3049–60.

20. Gagneux S, Hodgson A, Ehrhard I, et al. Microheterogeneity of se-
rogroup A (subgroup III) Neisseria meningitidis during an outbreak in
northern Ghana. Trop Med Int Health 2000; 5:280–7.

21. Feil EJ. Small change: keeping pace with microevolution. Nat Rev Mi-
crobiol 2004; 2:483–95.

22. Zhu P, van der EA, Falush D, et al. Fit genotypes and escape variants
of subgroup III Neisseria meningitidis during three pandemics of ep-
idemic meningitis. Proc Natl Acad Sci USA 2001; 98:5234–9.

23. Sandgren A, Sjostrom K, Olsson-Liljequist B, et al. Effect of clonal and
serotype-specific properties on the invasive capacity of Streptococcus
pneumoniae. J Infect Dis 2004; 189:785–96.

24. Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt
BG. Clonal relationships between invasive and carriage Streptococcus
pneumoniae and serotype- and clone-specific differences in invasive
disease potential. J Infect Dis 2003; 187:1424–32.

25. Gonzalez BE, Hulten KG, Kaplan SL, Mason EO Jr. Clonality of Strep-
tococcus pneumoniae serotype 1 isolates from pediatric patients in the
United States. J Clin Microbiol 2004; 42:2810–2.

26. Bogaert D, Hermans PW, Adrian PV, Rumke HC, De Groot R. Pneu-
mococcal vaccines: an update on current strategies. Vaccine 2004; 22:
2209–20.

27. Lipsitch M. Bacterial vaccines and serotype replacement: lessons from
Haemophilus influenzae and prospects for Streptococcus pneumoniae.
Emerg Infect Dis 1999; 5:336–45.

28. Fernandez S, Arreaza L, Santiago I, et al. Impact of meningococcal
vaccination with combined serogroups A and C polysaccharide vaccine
on carriage of Neisseria meningitidis C. J Med Microbiol 2003; 52:75–7.

29. Gagneux SP, Hodgson A, Smith TA, et al. Prospective study of a se-
rogroup X Neisseria meningitidis outbreak in northern Ghana. J Infect
Dis 2002; 185:618–26.

30. Djibo S, Nicolas P, Alonso JM, et al. Outbreaks of serogroup X me-
ningococcal meningitis in Niger 1995–2000. Trop Med Int Health 2003;
8:1118–23.

31. Chonghaile CN. Meningitis in Africa—tackling W135. Lancet 2002;
360:2054–5.

32. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae col-
onisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4:
144–54.

33. O’Dempsey TJ, McArdle TF, Lloyd-Evans N, et al. Pneumococcal dis-
ease among children in a rural area of west Africa. Pediatr Infect Dis
J 1996; 15:431–7.

34. Parent du Châtelet I, Traore Y, Gessner BD, et al. Bacterial meningitis
in Burkina Faso: surveillance using field-based polymerase chain re-
action testing. Clin Infect Dis 2005; 40:17–25.

35. Robbins JB, Schneerson R, Gotschlich EC. Surveillance for bacterial
meningitis by means of polymerase chain reaction. Clin Infect Dis 2005;
40:26–7.


