
Mon. Not. R. Astron. Soc. 421, 3443–3449 (2012) doi:10.1111/j.1365-2966.2012.20563.x

Modelling supermassive black hole growth: towards an improved
sub-grid prescription

Alexander Hobbs,1� Chris Power,2 Sergei Nayakshin3 and Andrew R. King3

1Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16 CH-8093, Zurich, Switzerland
2International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley WA6009, Australia
3Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH

Accepted 2012 January 15. Received 2011 November 23; in original form 2011 January 11

ABSTRACT
Accretion on to supermassive black holes (SMBHs) in galaxy formation simulations is fre-
quently modelled by the Bondi–Hoyle formalism. Here we examine the validity of this ap-
proach analytically and numerically. We argue that the character of the flow where one
evaluates the gas properties is unlikely to satisfy the simple Bondi–Hoyle model. Only in
the specific case of hot virialized gas with zero angular momentum and negligible radiative
cooling is the Bondi–Hoyle solution relevant. In the opposite extreme, where the gas is in a
state of free-fall at the evaluation radius due to efficient cooling and the dominant gravity of
the surrounding halo, the Bondi–Hoyle formalism can be erroneous by orders of magnitude in
either direction. This may impose artificial trends with halo mass in cosmological simulations
by being wrong by different factors for different halo masses. We propose an expression for the
sub-grid accretion rate which interpolates between the free-fall regime and the Bondi–Hoyle
regime, therefore taking account of the contribution of the halo to the gas dynamics.

Key words: accretion, accretion discs – methods: numerical – galaxies: evolution – galaxies:
formation – galaxies: haloes – galaxies: nuclei.

1 IN T RO D U C T I O N

Over the last decade, compelling observational evidence has re-
vealed that many galaxies in the local Universe harbour supermas-
sive black holes (SMBHs) with masses 106 � Mbh/M� � 109 in
their centres. During the same period, surveys of the distant Uni-
verse uncovered the existence of quasars at z ∼ 7, when the Universe
�1/10th of its current age; this implies that many SMBHs had
already assembled their mass by this time (Mortlock et al. 2011).

Our understanding of the physics that dictates the growth of
SMBHs is incomplete. Black holes grow by accreting low angular
momentum material from their surroundings, yet the character of
the accretion flow on to an SMBH is governed by physical processes
as diverse as galaxy mergers (e.g. Hopkins & Quataert 2010), turbu-
lence induced by stellar feedback (e.g. Hobbs et al. 2011) and black
hole accretion-driven outflows (e.g. Nayakshin & Power 2010).

Black hole growth is now routinely modelled in galaxy formation
simulations (for a fiducial work see Springel, Di Matteo & Hernquist
2005) and the importance of SMBHs in shaping the properties of
galaxies is now well established (e.g. Bower et al. 2006; Croton et al.
2006). The majority of galaxy formation simulations published in
the literature incorporate what we shall term the ‘Bondi–Hoyle
model’ for black hole growth (see e.g. Springel et al. 2005; Sijacki
et al. 2007; Pelupessy, Di Matteo & Ciardi 2007; Di Matteo et al.

�E-mail: ahobbs@phys.ethz.ch

2008; Johansson, Naab & Burkert 2009; Kim et al. 2011), which
derives from the work of Bondi & Hoyle (1944) and Bondi (1952) –
hereafter B&H. This model assumes the simplest possible accretion
flow, where the gas is at rest at infinity and accretes steadily on to
a black hole, subject only to the (Newtonian) gravity of the latter,
which is modelled as a point mass.

Simulations that model the idealized physical problem as it is set
out in B&H, or in idealized generalizations, produce results that are
in good agreement with the analytical solution (Ruffert 1994; Barai,
Proga & Nagamine 2011). In galaxy formation simulations, unfor-
tunately, this idealized picture is far from satisfied, as the gas inflow
is complicated considerably by the properties of the flow at larger
scales. The most notable example of this is the presence of non-
zero angular momentum that provides a natural barrier to eventual
accretion by the SMBH. Gas settles into a disc whose dimensions
are set by the angular momentum of the accretion flow, with only
the very lowest angular momentum material able to accrete. A true
estimate of the accretion rate on to the SMBH must therefore take
account of this angular momentum, and indeed attempts to include
it in an accretion sub-grid model have been made (Levine, Gnedin
& Hamilton 2010; DeBuhr, Quataert & Ma 2011; Power, Nayakshin
& King 2011) along with the presence of turbulence and/or vorticity
in the gas (Krumholz, McKee & Klein 2005, 2006) finding large
departures from the standard Bondi–Hoyle rate.

In this short paper we wish to make a simple and more fun-
damental point that in galaxy formation simulations even spher-
ically symmetric accretion cannot be correctly modelled by the
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Bondi–Hoyle formalism, except in the most specific of cases. To
make this point we suspend, for the moment, our disbelief that
gaseous infall can proceed entirely radially from large scales and
consider zero angular momentum accretion flows on to an SMBH
embedded in the potential of a massive dark matter halo. Indeed,
this is an example of a situation where one might expect the B&H
formula to provide a reasonable estimate of the accretion rate.

The layout of this paper is as follows. In Section 2 we show
analytically that in large-scale simulations of cosmological volumes
the Bondi–Hoyle approach is invalid, and in Section 3 we present
some numerical tests of this hypothesis. Finally in Sections 4 and 5
we discuss our conclusions.

2 A NA LY T I C A L A R G U M E N T S

2.1 Classical Bondi–Hoyle accretion

We first recap the main assumptions underpinning the classical
B&H papers. These are nicely summarized in the first sentence of
the abstract of Bondi (1952): ‘the special accretion problem is inves-
tigated in which the motion is steady and spherically symmetrical,
the gas being at rest at infinity’. We have italicised the part of the
sentence that bears the most importance for us here.

Physically, gas can be at rest at infinity only when it is not subject
to any forces. The only external force acting on the gas in the
restricted B&H problem, i.e. the gravitational force, is due to the
black hole. Self-gravity of the gas is neglected. The ‘infinity’ in
question is a region at a distance large enough from the SMBH
that the gravitational force exerted by the latter is negligible when
compared to the pressure forces within the gas. This is quantified
by defining the Bondi (or the ‘capture’) radius,

rB = 2GMBH/c2
∞, (1)

where MBH is the mass of the central object and c∞ is the sound
speed of the gas far from the hole. The Bondi radius divides the flow
into two distinct regions (Frank, King & Raine 2002). Far from rB,
gas is hardly aware of the existence of the black hole, and the flow
is very subsonic. The pressure and density of a subsonic flow are
approximately constant, therefore we can set ρ(r) ≈ ρ∞ at r � rB.

Inside the capture radius, on the other hand, ρ(r) begins to in-
crease above the initial value, and the flow eventually reaches a
sonic point where |vr| = c∞, within which it plunges essentially at
free-fall. The sonic point is found from rs = GMBH/2c2

s (rs), where
cs(rs) is the sound speed at rs. This local quantity1 is related to the
sound speed at infinity (Frank et al. 2002) via cs(rs) = c∞(2/(5 −
3�))1/2 where � is the polytropic index of the gas that relates the
gas pressure and density by P = Kρ� , with K a positive constant.

Applying the Bondi–Hoyle formalism to black hole growth as-
sumes that the accretion rate on to the SMBH is commensurate
with the accretion rate through the Bondi radius (i.e. the flow is
steady-state) and therefore is given by

ṀBH = πλ(�)r2
Bρ∞c∞ = 4πλ(�)G2M2

BHρ∞
c3∞

(2)

where λ(�) contains all the corrections arising due to the finite pres-
sure gradient force in the problem. This function varies relatively
weakly, i.e. between 1.12 for � = 1 and 0.25 for � = 5/3 (Bondi
1952). For the remainder of this paper our fiducial assumption is a
soft equation of state, i.e. � ≈ 1.

1 Note that rs here is the sonic radius, not the scale radius as it is commonly
used in descriptions of dark matter halo profiles.

2.2 When is Bondi–Hoyle accretion applicable?

The Bondi–Hoyle formalism has been widely adopted as a ‘sub-
grid’ prescription for the accretion rate on to the SMBH in large-
scale cosmological simulations. The standard argument is that while
one cannot usually resolve the scales of the Bondi radius, one can
at least use the smallest resolved scales to approximately determine
the value of the gas density and the sound speed ‘at infinity’ for
use in the Bondi formula (see e.g. Booth & Schaye 2009). Indeed,
the smallest resolvable scales are usually about a fraction of a kpc,
whereas the Bondi radius is of the order of a few to a few tens of
pc.

For the Bondi (1952) solution to be applicable even to spherical
flow, we need to make sure that the ‘gas being at rest at infinity’
assumption is satisfied where the relevant gas properties (density
and sound speed) are evaluated. In cosmological simulations we
expect SMBHs to be immersed in stellar bulges and dark matter
haloes that are typically ∼103 to 104 times more massive than the
SMBH (see e.g. Häring & Rix 2004; Guo et al. 2010). If gas in the
halo (or bulge) is as hot as the halo virial temperature, it will be in
hydrostatic balance (see e.g. Komatsu & Seljak 2001; Suto, Sasaki
& Makino 1998). It seems that in this situation, which is common
for low-luminosity SMBHs in giant elliptical galaxies where the gas
is rather tenuous and hot since the cooling time is long (Churazov
et al. 2005), the Bondi–Hoyle solution is potentially useful.

However, in the epoch when SMBHs grow rapidly, their hosts
are very gas rich, and the inflow of gas from large scales cannot be
easily captured by gradual cooling from a tenuous hot halo (see e.g.
Birnboim & Dekel 2003; Kereš et al. 2005, 2009; Dekel et al. 2009;
Kimm et al. 2011). Higher density gas is likely to cool much faster
and hence is likely to be much cooler than the virial temperature.
In this case, the gas is not able to support its own weight, and must
collapse to the centre, where it feeds the SMBH and forms stars.
Therefore, we expect a radial inflow of gas to the centre rather than
a hydrostatic balance ‘far’ from the SMBH. We note that Ricotti
(2007) has demonstrated how the Bondi–Hoyle formalism must be
modified in the presence of an external potential for the specific
case of the growth of primordial black holes in a dark matter halo
with a power-law density profile.

In actuality, even the meaning of the Bondi radius becomes un-
clear in this situation, as gas is not virialized near the SMBH, and
the halo potential plays an important role. In the ‘naked SMBH’
problem, rB delineates the region inside which the potential energy
of the hole starts to become greater than the internal energy of the
gas. For an SMBH plus host halo system, one should introduce a
modified Bondi radius,

r̃B = 2GMh/c
2
∞, (3)

that takes into account the total mass of the halo. In order for the
gas to accrete efficiently on to a dark matter halo, its temperature
must be, at most, comparable with the virial temperature at the outer
edge of the halo (White & Frenk 1991). Thus, we set c∞ � GMh/rh,
where rh is the halo virial radius, giving us a modified Bondi radius
of r̃B � 2rh. The gravitational potential energy starts to dominate
the internal energy of the infalling gas before the latter has even
reached the edge of the halo, and so the standard rB is meaningless
in this case.

Fig. 1 illustrates this point graphically by comparing the potential
energy of gas as a function of radius for a variety of halo profiles
with c2

vir/2, assuming that the gas temperature is virial at rh. These
profiles are described in the Appendix. The cosmology we have
assumed for the haloes is λcold dark matter with �m = 0.27, �λ =
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Figure 1. Plot of potential energies for a selection of dark matter halo
profiles (some realistic, some instructive) modified by a central SMBH,
compared to the thermal energy of the gas at the virial temperature at
the halo virial radius. The halo profiles are normalized to contain a mass
Mh = 1011 M� within the halo radius rh, outside of which the potential
is Keplerian by construction. The potential due to the central SMBH by
itself is also plotted. The classical Bondi radius for three different values
of temperature are indicated as crosses – the greater the separation between
the cross denoting rB and the curves of potential energy for a given halo the
more inaccurate the standard Bondi–Hoyle approach. It is clear then that
the latter becomes more accurate at higher T . The modified Bondi radius
for the fiducial Tvir is denoted by a rhombus, demonstrating that at this
temperature the potential energies are dominant for the entirety of the halo.

0.73 and a virial overdensity parameter of � = 200 at a redshift of
z = 2 (although we note that our conclusions are unchanged for a
wide range in z, from the early Universe to the present day).

The ∝1/r potential due to the SMBH of mass MBH = 108 M� is
shown with the dash–triple-dot power law. The traditional Bondi (or
capture) radius is at r = 0.002, where the SMBH potential crosses
the c2

vir/2 line. For all the haloes considered, the potential energy
of the host makes a significant contribution at all radii except those
within the very inner parts of the halo, exceeding the gas internal
energy by a large factor everywhere outside the SMBH radius of
influence.

Therefore, if we assume that the gas has a relatively soft equation
of state and accretes spherically on to the halo at or below Tvirial(rh),
the character of the inflow becomes that of supersonic inside the
halo instead of being stationary at infinity. In the Appendix we
quantify this by calculating the sonic point for isothermal gas flows
at or below the virial temperature and for all of the halo mass profiles
considered. We show that for typical dark matter haloes the sonic
point is reached while still at very large distances from the central
black hole.

From Fig. 1 it can also be seen that for hotter gas, the classical
rB estimate becomes more accurate, as the potential energy of the
(halo + SMBH) system starts to asymptote to the SMBH solution
and no longer dominates over the value of c2

vir/2. If the gas thermal
energy is comparable to that of the potential energy we naturally
expect near hydrostatic equilibrium to be maintained and in this
case the Bondi–Hoyle formalism is applicable to spherical flow.

Of course, this is a simplified picture. In reality gas that has
accreted on to a halo from outside the virial radius may shock
at smaller radii, heating up to the local Tvir at that radius. In the

‘cold mode’ where the galaxy is assembled via cold streams that
penetrate far inside the halo, such shock heating is likely to occur
when the infalling gas reaches the radius of the galactic disc, at a
small fraction of rh (Kereš et al. 2005). However, due to the high
densities reached for the shocked gas the cooling time is likely to be
short (Birnboim & Dekel 2003; Kereš et al. 2005), and in particular
in the presence of Compton cooling from a quasar radiation field it
will be significantly less than the free-fall time at that radius (Nulsen
& Fabian 2000). Gas may therefore be stationary temporarily at the
shock radius but as it cools and begins to infall it will quickly tend
to the free-fall velocity, and certainly by the time a radial inflow
reaches the classical Bondi radius – values for which can be seen in
Fig. 1 for different temperatures – the assumption of being at rest
will no longer be satisfied.

Put simply, this is an energy argument. Regardless of where
the gas might begin to infall from, the halo imposes a far stronger
gravitational potential energy than the SMBH everywhere outside of
the SMBH radius of influence (by definition). The potential energy
due to a typical halo also increases to smaller radii from any point
at which the gas is likely to have reached the virial temperature (see
Fig. 1). As a result, it is clear that gravity will often dominate over
thermal energy at scales significantly larger than the classical Bondi
radius for the SMBH.

In the interest of completeness we now demonstrate numerically
the form of the radial infall in a realistic background potential within
a galaxy. We choose a dynamic range that lies inside the sonic point
(as would always be the case for efficiently cooled gas at these
scales, as we have shown in the Appendix) in order to highlight
why the standard Bondi estimate is inaccurate here.

3 N U M E R I C A L T E S T S

To perform the simulations we employ the three-dimensional
smoothed particle hydrodynamics (SPH)/N-body code GADGET-3,
an updated version of the code presented in Springel (2005). The
gas is evolved in a static external potential that includes a point
mass black hole at the centre. The computational domain extends
from a kiloparsec down to an ‘accretion radius’ around the black
hole at racc = 1 pc, and we remove the particles that come within
this distance of the SMBH.

For the external potential in our model we use a Jaffe cusp as per
equation (A3) but with a core at the centre of our computational
domain to prevent divergence in the gravitational force. The radius
of the core, rc, corresponds to approximately the dynamical influ-
ence radius of the SMBH. With this (modified) potential the mass
enclosed within radius r is given by

M(r) = Mbh +

⎧⎪⎨
⎪⎩

Mc

(
r
rc

)3
, r < rc

Mc + aM
(

1
rc+a

− 1
r+a

)
, r ≥ rc ,

(4)

where Mc = 2 × 108 M�, M = 1011 M�, rc = 20 pc and a =
10 kpc. The mass of the SMBH is set to Mbh = 108 M�.

For simplicity, the gas is kept isothermal throughout the entirety
of the simulation and self-gravity is turned off.

3.1 Initial conditions

The starting condition for our simulations is that of a uniform den-
sity, spherically symmetric thick gaseous shell with mass Mshell =
108 M�, which ranges from rin = 0.1 kpc to rout = 1 kpc and is
centred on the black hole. The temperature of the gas is varied
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Figure 2. The mass flux (steady-state value) from the simulations through
each radius (red), i.e. Ṁ(r), together with the Bondi–Hoyle estimate as per
equation (2) and the free-fall estimate as per equations (5) and (6).

between tests, ranging from 103 to 105 K. To minimize initial inho-
mogeneities we cut the shell from a relaxed, glass-like configuration.

The gas infalls from rest within our static potential. After a time
of the order of the dynamical time at the outer edge of the shell, a
steady-state radial mass flux is reached for the majority of the gas
and it is at this time that we make our comparisons between the
various accretion rates in the next section.

3.2 Results

We define a radius-dependent ‘measured’ accretion rate as Ṁ(r) =
4πr2ρvr, where vr is the radial velocity of the gas. Since the system
has been allowed to settle into an approximate steady-state, this
function (shown as an average by the long dashed red line) is almost
constant with radius, and is the same as the time-averaged accretion
rate measured at the black hole.

The solid, the dotted and the dashed curves in Fig. 2 show the
standard Bondi–Hoyle estimate for the accretion rate (equation 2)
as a function of radius for three different values of gas temperature.
Each of these curves uses a ‘local’ ρ, the density at each radius, in
order to represent where the ρ∞ might be evaluated in a large-scale
simulation.

Clearly, as Fig. 2 shows, the Bondi–Hoyle estimate is very inaccu-
rate for these isothermal simulations. At intermediate temperatures,
e.g. 105 K, the formula in the inner parts results in a significant
overestimate of the accretion rate and an underestimate at large
radii.

3.2.1 Free-fall rate

A simple but physically well motivated alternative to the Bondi–
Hoyle formula for efficiently cooled spherically symmetric flows is
a free-fall rate estimate,

Ṁff (r) = Mgas,enc(r)

tff (r)
, (5)

where Mgas,enc(r) is the enclosed gas mass within radius r, and tff =
(r3/2GM(r))1/2 is the free-fall time. Alternatively, one may wish

to approximate the enclosed gas mass in the above equation as
(4π/3)r3ρgas(r), so that

Ṁff (r) ∼ 4πr3ρgas(r)

3tff (r)
. (6)

Both of the above estimates provide a much better match to the
accretion rate in our numerical tests than the Bondi–Hoyle approach,
as shown in Fig. 2. It should be noted too that since the free-fall
estimates have no dependence on cs, the profiles are converged
regardless of the temperature.

4 D I SCUSSI ON

Based on our analytical arguments and numerical tests, we conclude
that the Bondi (1952) formula, designed for accretion on to ‘naked
black holes’, can only be applied to accretion on to astrophysical
SMBHs, i.e. those embedded in massive dark matter haloes, if the
gas in the latter is at or near hydrostatic equilibrium. It is only in
this case that one of the key assumptions of Bondi (1952) – the ‘gas
being at rest at infinity’ – is satisfied (infinity meaning outside the
Bondi radius). If the gas cooling time is long then it is possible that
this state may be reached, and indeed this is probably the case in
giant gas-poor elliptical galaxies, where the gas is tenuous and hot
(see e.g. Churazov et al. 2005).

However, in the most interesting phase of SMBH and galaxy
buildup, when the halo is likely to be awash with gas to feed both
the SMBH and star formation, densities are high and the cooling
time is expected to be short, with gas cooling far below the virial
temperature. Hydrostatic balance is then extremely unlikely for gas
in the halo, and if it is not supported by either shock heating or
angular momentum it will tend to the free-fall velocity. We have
run a series of simple numerical tests to explore this limit, allowing
a thick, spherical shell of gas to accrete on to an SMBH at the
centre of a background halo potential. These tests showed that a
free-fall accretion rate estimate is indeed much more accurate than
the Bondi–Hoyle formalism in this case. What is most concerning is
that the error of the latter strongly depends on gas temperature (and
thus the cooling function) and cannot be ‘predicted’. The Bondi–
Hoyle accretion formalism may thus be wrong by significant (and
unknown) factors in either direction. The error may well depend on
the galaxy mass and type systematically. Predictions based on the
Bondi–Hoyle formalism alone are therefore unlikely to be robust.

We note too that this problem persists even for simulations that
are able to resolve down to the classical Bondi radius of the SMBH.
While the properties of the gas (density, sound speed) evaluated
at this radius may be correct in the sense that they do not suffer
from resolution problems, it is unlikely that this radius will be a
true ‘infinity’ where the gas is in hydrostatic equilibrium – again,
the reason for this is the influence of the more massive background
halo potential on the dynamics of the gas.

For realistic flows of course the situation is more complex. Here
we find that the best way to present our argument is in terms of
‘supporting’ mechanisms for the gas at the radius where one eval-
uates the gas properties in a simulation. To start with, we have
the two extremes: (i) Bondi–Hoyle, where the gas is completely
supported and stationary at the evaluation radius; and (ii) free-fall,
where the gas is entirely radial and influenced only by gravity, i.e.
has zero support. It is important to recognize that the reality will
lie somewhere in-between. Specific cases that lie between these ex-
tremes are: (iii) the gas is unsupported at the evaluation radius but is
shocked at smaller radii, after which it may begin to tend to free-fall
once again if the cooling time is short, and (iv) the gas possesses
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angular momentum, and is thus supported by rotation but inflows
through viscous processes.

What we therefore desire is a formula for the sub-grid accretion
rate that interpolates between the two extremes based on the relevant
supporting mechanism. As we mentioned in the Introduction, angu-
lar momentum concerns are extremely important in determining the
correct accretion rate; and indeed the picture can be further compli-
cated by the effect of star formation, where it is not clear whether
forming stars would deprive the SMBH of fuel (as may have been
the case with Sgr A∗– see e.g. Nayakshin & Cuadra 2005), or if feed-
back from star formation would actually enhance accretion through
a broadening of the angular momentum distribution (Hobbs et al.
2011). Feedback from the AGN itself must also be a consideration,
and in particular the interplay between SMBH feeding and AGN
feedback, due to the fact that these processes connect the small to
the large scales. Indeed, a number of authors have conducted de-
tailed investigations into the multi-scale coupling between feeding
and feedback (see e.g. Cattaneo & Teyssier 2007; Dubois et al.
2010; Kim et al. 2011), often finding that SMBH growth enters into
a self-regulated state that oscillates between periods of high and
low activity. We plan to investigate all of the processes relevant to
SMBH growth and thereby to further develop the sub-grid model;
for now, however, we focus on a direct interpolation between the
Bondi–Hoyle regime and the free-fall regime as a starting point.

The formula we propose is a minor modification of the full Bondi–
Hoyle–Lyttleton (Hoyle & Lyttleton 1939; Bondi 1952) expression
for an accretor that is moving relative to the gas, namely

ṀBHL = 4πλ(�)G2M2
BHρ∞(

c2∞ + v2
rel

)3/2 (7)

where vrel is the relative velocity between the SMBH and the gas,
which in purely radial flow is zero. In order to interpolate between
this and the free-fall rate (equation 5) we make two changes: (1)
replace the relative velocity with the velocity dispersion for the
external potential, σ ∼ (GMenc(r)/r)1/2, and (2) replace the black
hole mass with the enclosed mass of the external potential, Menc(r).
The resulting expression,

Ṁinterp = 4πλ(�)G2M2
encρ∞(

c2∞ + σ 2
)3/2 , (8)

tends to the standard Bondi–Hoyle formula (equation 2) in the
limit that c∞ � σ , i.e. the gas internal energy dominates over the
potential energy of the halo, and Menc → MBH, i.e. as we approach
the SMBH radius of influence. In the opposite limit, where the
halo potential energy dominates, σ � c∞, we recover the free-fall
estimate, equation (5). Finally, in order to incorporate (in a crude
fashion) the effect of AGN feedback on the accretion the rate should
be capped at Eddington, namely

Ṁacc = max(Ṁinterp, ṀEdd) (9)

as is commonly employed in the majority of the simulations of
SMBH growth that we have mentioned so far.

We hope that with this interpolated expression the sub-grid
SMBH accretion rate will take account of the presence of the halo
and indeed any other external potential (e.g. stellar bulge, stel-
lar halo, etc.) that contributes significantly to the dynamics of the
infalling gas. We note that some simulations may already use a ve-
locity dispersion as a cap on the vrel parameter in order to avoid ex-
cessive relative velocities as a result of poor resolution (e.g. Dubois
et al. 2010), in which case the change to the sub-grid expression is
minimal.

This interpolation approach is particularly relevant to the picture
of the ‘hot’ and ‘cold’ modes of accretion in galaxy formation,
which emerged in the 1970s with the paradigm of hot halo gas
that is at or near Tvir after being shock heated at the virial radius
(see the original papers by e.g. Rees & Ostriker 1977; Silk 1977;
White & Rees 1978), and has since been adjusted by results from
simulations (although was suggested also in the 1970s based on
analytical arguments – see Binney 1977) to include cold gas with a
soft equation of state that penetrates down to small scales through
streams and filaments (see e.g. Katz et al. 1994; Fardal et al. 2001;
Kereš et al. 2005, 2009).

There is typically a halo mass scale which delineates the relative
importance of each mode, although this varies somewhat in the lit-
erature, with Birnboim & Dekel (2003) finding Mhalo ∼ 1011 as the
result of 1D numerical calculations and Kereš et al. (2005) finding
a factor of 2–3 higher from fully 3D N-body/hydrodynamical sim-
ulations. However, in a subsequent paper, Kereš et al. (2009) find
that although this transition mass marks the point above which hot,
virialized gas atmospheres develop in haloes, the actual contribution
to the accretion rate to small scales is still dominated by the cold
filamentary mode even at higher mass, with hot mode accretion
only starting to become important at late times (z < 1). In addi-
tion, there is (indirect) observational evidence for cold accretion
flows in galaxies through the H I column density distribution (van
de Voort et al. 2011). This suggests that utilizing purely a ‘gas being
fully supported’ Bondi–Hoyle accretion prescription is unlikely to
capture enough of the relevant accretion behaviour in galaxy forma-
tion. Using the interpolation expression above (equation 8) would
automatically adjust for the hot and cold mode dominance, via the
relative importance of the c2

∞ and σ 2 terms in the denominator. We
note that semi-analytic models of galaxy formation often employ a
distinction in the treatment of accretion rate between the two modes
(see e.g. Hirschmann et al. 2012).

We would like, however, to emphasize again the most important
caveat with the picture we have presented – the lack of angular
momentum. If indeed the free-fall mode of accretion becomes more
dominant as a result of employing the interpolated accretion rate
expression then one must be very careful, for it is possible that the
residual angular momentum of gas infalling at free-fall velocities
from large scales becomes even more relevant to the accretion rate
(Nulsen & Fabian 2000), due to the formation of a centrifugally
supported disc at small scales. In this case we argue that any ex-
pression which does not take account of angular momentum should
be viewed as more of a ‘capture’ rate, with the actual accretion on
to the SMBH modelled with a viscous time-scale, the parameters
of which are set by the properties of the gas at the transition point
between ‘infall’ and ‘disc-mode’ provided it is sufficiently resolved
(see Power et al. 2011). We note for completeness, however, that
an alternative picture where the formation of a disc is not in fact a
hindrance to SMBH growth was presented by Mayer et al. (2010),
who found that global instabilities in the disc-like structure that
formed from a merger led it to collapse and feed the SMBH on a
dynamical time-scale (and see also the multi-scale simulations by
Hopkins & Quataert 2010).

5 C O N C L U S I O N

In this paper we have shown that the de facto industry standard,
namely the Bondi–Hoyle formalism for the accretion rate on to the
SMBH, fails for more than one reason in a realistic cosmological
simulation whenever gas cooling is efficient. We have shown that
a free-fall estimate is more appropriate in this case (provided that
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angular momentum does not impede accretion of gas even further).
We suggested an approximate interpolation formula that bridges the
rapidly cooling and the inefficient cooling regimes which we hope
will be useful for cosmological simulations that cannot resolve gas
flow all the way down to the Bondi radius (a few to few tens of
parsecs).

Finally, we conclude with the answer to the question posed in
the paper title, which we feel is worth re-iterating: what matters
in a simulation is the character of the flow where one evaluates
the accretion/capture rate. If it is (a) spherical, (b) at rest and (c)
sufficiently far away to count as ‘infinity’, with (d) the enclosed mass
dominated by the SMBH, and finally (e) the flow is uninterrupted
between the evaluation radius and the black hole, then and only then
is Bondi–Hoyle accretion applicable as a sub-grid model. As we
have mentioned, these latter requirements may be met to a sufficient
degree by massive gas-poor ellipticals if sufficiently resolved in a
simulation, but are not by any situation where there is appreciable
infall from large scales. We note that the interpolation formula
we have proposed is applicable to both cases, although it requires
further development in order to take account of the full range of
accretion regimes as discussed.
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Kereš D., Katz N., Fardal M., Davé R., Weinberg D. H., 2009, MNRAS,

395, 160
Kim J.-h., Wise J. H., Alvarez M. A., Abel T., 2011, ApJ, 738, 54
Kimm T., Devriendt J., Slyz A., Pichon C., Kassin S. A., Dubois Y., 2011,

preprint (arXiv e-prints)
Komatsu E., Seljak U., 2001, MNRAS, 327, 1353
Krumholz M. R., McKee C. F., Klein R. I., 2005, ApJ, 618, 757
Krumholz M. R., McKee C. F., Klein R. I., 2006, ApJ, 638, 369
Levine R., Gnedin N. Y., Hamilton A. J. S., 2010, ApJ, 716, 1386
Mayer L., Kazantzidis S., Escala A., Callegari S., 2010, Nat, 466, 1082
Mortlock D. J. et al., 2011, Nat, 474, 616
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Nayakshin S., Cuadra J., 2005, A&A, 437, 437
Nayakshin S., Power C., 2010, MNRAS, 402, 789
Nulsen P. E. J., Fabian A. C., 2000, MNRAS, 311, 346
Pelupessy F. I., Di Matteo T., Ciardi B., 2007, ApJ, 665, 107
Power C., Nayakshin S., King A., 2011, MNRAS, 412, 269
Rees M. J., Ostriker J. P., 1977, MNRAS, 179, 541
Ricotti M., 2007, ApJ, 662, 53
Ruffert M., 1994, ApJ, 427, 342
Sijacki D., Springel V., Di Matteo T., Hernquist L., 2007, MNRAS, 380,

877
Silk J., 1977, ApJ, 211, 638
Springel V., 2005, MNRAS, 364, 1105
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Suto Y., Sasaki S., Makino N., 1998, ApJ, 509, 544
van de Voort F., Schaye J., Altay G., Theuns T., 2011, preprint

(arXiv:1109.5700)
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

A P P E N D I X A : T H E S O N I C PO I N T

For an isothermal gas flow, the sonic point for an extended mass dis-
tribution satisfies r = GM(r)/2c2

s (r), where M(r) is the enclosed
mass. Depending on the mass profile, this may be inside or outside
the halo. We now consider several profiles for dark matter haloes,
solve for the sonic point and plot its location versus gas tempera-
ture in Fig. A1. In particular, for a power-law density profile with

Figure A1. Sonic radius, scaled in units of rh, for a variety of halo profiles,
assuming a halo of 1011 M�.
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index q,

M(r) = Mh

(
r

rh

)3−q

(A1)

so that rs = 21/(2−q)rh for gas at Tvir(rh). The enclosed mass in the
Navarro, Frenk and White (NFW) profile (Navarro, Frenk & White
1996) is

M(r) = 4πρ0a
3

[
ln

(
1 + r

a

)
− r

a(r + a)

]
(A2)

where a is the scale radius of the halo and ρ0 is a characteristic
density. The scale radius a depends on the concentration c = rh/a
of the halo, where 5 ≤ c ≤ 15 for haloes of mass 1014 − 1010 M�
(e.g. Bullock et al. 2001).

Elliptical galaxies and bulges that follow the R1/4 law of de Vau-
couleurs (1948) can usually be modelled by one of a family of

spherical density profiles characterized by an exponent γ (Dehnen
1993). Here the enclosed mass goes as

M(r) = 4πρ0a
3

(
r

r + a

)3−γ

(A3)

with the Hernquist profile (Hernquist 1990) and the Jaffe cusp (Jaffe
1983) corresponding to γ = 1 and γ = 2, respectively.

Referring now to Fig. A1, we can see that the sonic point is
in all these cases a significant fraction of the halo radius at T =
Tvir(rh), and becomes larger than rh for cooler gas. Thus, for a
spherically symmetric problem, the infalling gas at or below the
virial temperature (defined at rh) must quickly tend to a free-fall
solution once inside the halo.
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