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GLOBAL BRANCH OF SOLUTIONS
FOR NON-LINEAR SCHRÖDINGER EQUATIONS

WITH DEEPENING POTENTIAL WELL

C. A. STUART and HUAN-SONG ZHOU

1. Introduction

In this paper, we consider the following non-linear Schrödinger equation:{−∆u + Vλ(x)u = f(u) in R
N ,

u ∈ H1(RN ) with u �≡ 0, N � 1,
(1.1)

where the potential Vλ(x) = 1 + λg(x) with λ > 0 and the functions f and g have
the following properties:
(F1) f ∈ C1(R, R) with f(s)/s → 0 as s → 0;
(F2) there exists α ∈ (0,∞) such that

f(s)/s → α + 1 as |s| → +∞
and

0 � f(s)/s � α + 1 for all s �= 0;

(G1) g ∈ L∞(RN , R) and there exists a non-empty bounded open set Ω ⊂ R
N

with Lipschitz boundary such that

g(x) ≡ 0 on Ω̄, g(x) ∈ (0, 1] on R
N \ Ω and lim

|x|→+∞
g(x) = 1.

Condition (G1) means that Vλ represents a potential well whose depth is
controlled by the parameter λ. The non-linear problem (1.1) with a deep potential
well (λ large) has been studied by several authors using variational methods under
various conditions on f . For example, if f(s) is odd and superlinear in s (that is,
α = ∞), Bartsch, Pankov and Wang in their papers [2, 3] proved that (1.1) has
many solutions in H1(RN ) for large λ. If f(s) is odd and asymptotically linear at
infinity (α < ∞), van Heerden and Wang in their recent paper [12] proved that if
α > ξ1, then problem (1.1) still has many solutions for λ large, where ξ1 is the first
eigenvalue of the following Dirichlet problem:{−∆ϕ = ξϕ in Ω,

ϕ ∈ H1
0 (Ω), Ω is given by (G1).

(1.2)

See also [4, 6, 11] for further interesting developments in this direction.
Our work concerns the existence of positive solutions of (1.1) for values of λ that

are not necessarily large and, in this respect, it is more closely related to some work
[14] by Jeanjean and Tanaka. In our notation, they show that (1.1) has at least one
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positive solution provided that
(i) α + 1 > inf σ(−∆ + Vλ) and
(ii) there exists δ > 0 such that

λ + 1 − δ >
2
s2

∫ s

0

f(t) dt for all s > 0,

where σ(S) denotes the spectrum of a self-adjoint operator S in L2(RN ). More
recently, Liu and Wang [15] have generalized the result in [14], but in our situation
their hypotheses still reduce to (i) and (ii).

The existence results in [14] and [15] are based on concentration–compactness
arguments and the fact that the mountain pass geometry occurs for the associated
energy functional due to (i) and (ii). In our approach the asymptotic linearization
of (1.1) plays a key role and leads to a reformulation of (i) and (ii). On a formal
level, this asymptotic linearization is

−∆u + Vλu = (α + 1)u on R
N , or equivalently,

−∆u − αu + λgu = 0, (1.3)

but, as we show in Appendix B, (1.1) is not asymptotically linear in the rigorous
sense and we have to resort to a truncation procedure to overcome this technical
difficulty. The relevant spectral theory for (1.3) is developed in [23] and it
establishes, for α in a suitable range, the existence of a unique eigenvalue λ = Λ(α)
having a positive eigenfunction in H1(RN ). Alternatively, Λ(α) is characterized
variationally as the unique value of λ for which Σα (λ) = 0 where

Σα (λ) = inf σ(−∆ − α + λg)

and σ(−∆−α+λg) denotes the spectrum of the Schrödinger operator −∆−α+λg.
The conditions (i) and (ii) of Jeanjean and Tanaka can be reformulated as

(i)′ λ < Λ(α) and (ii)′ α < λ, respectively,

and it also follows from our main result that (1.1) has both a positive and a negative
solution for each λ in the interval (α,Λ(α)).

However, our goal is to investigate how the positive and negative solutions of (1.1)
depend on λ. We use topological methods to obtain the existence of connected
sets D± of positive and negative solutions of (1.1) in R × W 2,p(RN ), where p ∈
[2,∞) ∩

(
1
2N,∞

)
, that cover the interval (α,Λ(α)) in the sense that

PD± = (α,Λ(α)) where P (λ, u) = λ,

and furthermore,

lim
λ→Λ(α)−

‖uλ‖L∞(RN ) = lim
λ→Λ(α)−

‖uλ‖W 2, p (RN ) = ∞, for (λ, uλ ) ∈ D±.

This latter property of the branches is sometimes referred to as asymptotic bifurca-
tion (or bifurcation from infinity) as λ approaches Λ(α). Following Rabinowitz [20]
and Toland [24], we use the inversion v = u/‖u‖2 to replace (1.1) by

−∆v + Vλv = ‖v‖2f

(
v

‖v‖2

)
, (1.4)

with a view to proving that there is global bifurcation from (Λ(α), 0) in
R × W 2,p(RN ) for this auxiliary problem. However, unlike the analogous situation
on a bounded domain in R

N , the problem (1.1) is not asymptotically linear in the
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rigorous sense (see Appendix B) and consequently the auxiliary problem (1.4) is not
Fréchet differentiable at v = 0. For this reason, we first replace (1.1) by a truncated
problem which is asymptotically linear and for which the standard approach, based
on the inversion and the use of a topological degree, is applicable. Due to the lack
of compactness that arises from the fact that even the truncated problem is posed
on R

N , we cannot use the classical Leray–Schauder degree and we appeal to a
degree for Fredholm maps. In its most widely used form, this degree is defined
for C1-Fredholm maps of index 0 that are proper on closed bounded subsets, [9,
16]. However, although inversion of the truncated version of (1.1) does lead to a
map that is Fréchet differentiable everywhere, this map cannot be continuously
differentiable at v = 0; see Lemma B.3 in Appendix B. Therefore we have to use a
recent extension of the degree to continuous compact perturbations of C1-Fredholm
maps due to Rabier and Salter [18]. In the usual way, this degree leads to a global
result, in the spirit of the original one due to Rabinowitz about bifurcation from the
trivial solution (Λ(α), 0) of the inverted truncated problem. By a limiting procedure,
we obtain a similar conclusion about global bifurcation for the inverted version of
(1.1). Finally, to obtain the desired information about a connected set of solutions
of the problem (1.1) itself, we use some refinements of the more standard methods
involving connectedness that were introduced by Alexander [1].

The various steps that we have just sketched are presented in the following way.
Section 2: preliminary results and statements of the main theorems concerning

the asymptotic linearization (1.3) and the problem (1.1).
Section 3: definition of the truncated problem and proofs of some preparatory

lemmas concerning the inversion and the associated auxiliary problems.
Section 4: proof of global bifurcation at Λ(α) from the trivial solution for the

inverted truncated problem.
Section 5: global bifurcation for the inverted version of (1.1) and deduction of the

main conclusions concerning (1.1) from this, including the proof of Theorem 2.3.
Appendix A: a global bifurcation theorem for compact perturbations of C1-

Fredholm maps of index zero.
Appendix B: on asymptotic linearity.
Appendix C: lemmas about point set topology.

Notation. Throughout this paper, we denote the usual norm of Lp(RN ) for
1 � p � +∞ by | · |p . By (F1) and (F2), we may define two functions h and k in
C(R, R) having the following properties:

f(s) = h(s)s (1.5)
with lim

s→0
h(s) = 0, lim

|s|→+∞
h(s) = α + 1 and 0 � h(s) � α + 1.

k(s) = α + 1 − h(s) (1.6)
with lim

s→0
k(s) = α + 1, lim

|s|→+∞
k(s) = 0 and 0 � k(s) � α + 1.

Moreover, let ϕ1 ∈ H1
0 (Ω) denote the unique eigenfunction of (1.2) for the eigenvalue

ξ1 satisfying the conditions
∫
Ω

ϕ2
1 dx = 1 and ϕ1 > 0 on Ω. (1.7)
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2. The main results

We begin by introducing a quantity Γ that plays a fundamental role in our study
of (1.1).

To motivate this definition, observe that if u satisfies (1.1) and λ � α, it is easily
seen that (F1) and (F2) imply that

(α + 1)
∫

RN

u2 dx >

∫
RN

f(u)u dx

=
∫

RN

{|∇u|2 + (1 + λg)u2}dx

�
∫

RN

{|∇u|2 + (1 + αg)u2}dx

and so ∫
RN

|∇u|2 < α

∫
RN

(1 − g)u2 dx.

Setting

Γ = inf
{∫

RN

|∇u|2 dx : u ∈ H1(RN ) and
∫

RN

(1 − g)u2 dx = 1
}

, (2.1)

one finds that α > Γ is a necessary condition for (1.1) to have solutions with λ � α.
Clearly, Γ � 0 and as we show in [23], Γ < ξ1. In [23] we also establish estimates

for Γ; in particular, we show that Γ = 0 for N = 1 and 2. As our main result shows,
the conditions (F1), (F2) and (G1) with Γ < α < ξ1 are sufficient to ensure that the
problem (1.1) has positive solutions with λ > α. The quantity Γ does not appear
explicitly in [14] and [15], but their hypothesis (ii) implies that λ � α and then we
can deduce from (i) that α > Γ.

To prove the asymptotic bifurcation result, we study first the following formal
asymptotic linearization of (1.1) at infinity (see (1.3)):{

−∆u − αu + λgu = 0 in R
N ,

u ∈ H1(RN ), λ > 0.
(2.2)

A number λ > 0 is said to be an eigenvalue of (2.2) whenever there exists u ∈
H1(RN )\{0} such that∫

RN

[∇u · ∇v − αuv + λguv]dx = 0 for all v ∈ H1(RN ).

For the discussion of the non-linear problem (1.1), it is desirable to take advantage
of the additional regularity of solutions that follows from our assumptions.

Proposition 2.1. (1) Let the conditions (F1), (F2) and (G1) be satisfied and
let u ∈ H1(RN ) satisfy (1.1). Then u ∈ W 2,p(RN ) for all p ∈ [2,∞) and hence
u ∈ C1(RN ) with lim|x|→∞ u(x) = 0 and lim|x|→∞ ∇u(x) = 0.

(2) If g satisfies (G1) and v ∈ H1(RN ) is an eigenfunction of (2.2), then v ∈
W 2,p(RN ) for all p ∈ [2,∞).
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Proof. Setting H(x) = f(u(x))/u(x) if u(x) �= 0 and H(x) = 0 if u(x) = 0,
then, if u satisfies (1.1), we have∫

RN

(∇u · ∇z + wuz)dx = 0 for all z ∈ C∞
0 (RN ),

where w ≡ 1 + λg − H ∈ L∞(RN ). The conclusions (1) and (2) now follow by
standard elliptic regularity and boot-strapping. See [22, Corollary 2.15] for example,
or [17] for a deeper discussion.

The main results of our paper [23] concerning the linearized problem (2.2) can
be summarized as follows.

Proposition 2.2. Let the condition (G1) be satisfied.

(i) If α � ξ1, then there is no eigenvalue of (2.2) in [α,∞) with a non-negative
eigenfunction.

(ii) If Γ < α < ξ1, then there exists a unique eigenvalue λ = Λ(α) of (2.2)
having a positive eigenfunction. Furthermore, Λ(α) > α, and it is simple in the
sense that ker(−∆−α + Λ(α)g) = span

{
uΛ(α)

}
where uΛ(α) > 0 on R

N . All other
eigenvalues of (2.2) are less than Λ(α) and their eigenfunctions change sign.

(iii) The function Λ ∈ C∞((Γ, ξ1)) and is strictly increasing with

lim
α→Γ+

Λ(α) = Γ and lim
α→ξ1−

Λ(α) = +∞.

(iv) For Γ < α < ξ1, Λ(α) is characterized as the unique value of λ for which
Σα (λ) = 0 where

Σα (λ) = inf
{

aλ(u) : u ∈ H1(RN ) and

∫
RN

u2 dx = 1
}

(2.3)

and

aλ(u) =
∫

RN

(|∇u|2 − αu2 + λgu2)dx.

In other words, Λ(α) is the unique value of λ for which 0 is the infimum of the
spectrum of the Schrödinger operator

Aα
λ u = −∆u − (α − λg)u. (2.4)

(v) If α � Γ, the problem (2.2) has no eigenvalues λ in the interval (α,∞).

We can now state our main result concerning the non-linear problem (1.1).

Theorem 2.3. Let the conditions (F1), (F2) and (G1) hold with Γ < α < ξ1

and fix p ∈
(

1
2N,∞

)
∩ [2,+∞). Then there exist two connected subsets D+ and D−

of R × W 2,p(RN ), whose elements (λ, u) are, respectively, positive and negative
solutions of problem (1.1), such that

inf{λ : (λ, u) ∈ D±} = α and sup{λ : (λ, u) ∈ D±} = Λ(α),

where Λ(α) is given by Proposition 2.2(ii). Furthermore, D± is bounded away from
the line of trivial solutions R× {0} and if {(λn , un )} ⊂ D± with λn

n→ λ > α, then
maxx∈RN |un (x)| n→ ∞ if and only if λ = Λ(α).
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3. The truncated problem and some estimates

Throughout this section we suppose that the conditions (F1), (F2) and (G1) are
satisfied with Γ < α < ξ1. Furthermore, p ∈

(
1
2N,∞

)
∩ [2,+∞) is fixed and we set

X = W 2,p(RN ) with ‖ · ‖ = ‖ · ‖W 2, p (RN ),

Y = Lp(RN ) with | · |p = ‖ · ‖Lp (RN ).

In the notation (1.6), the equation (1.1) is equivalent to

−∆u − αu + λgu + k(u)u = 0

where k(s) → α + 1 as s → 0 and k(s) → 0 as |s| → ∞. This means that,
at least formally, −∆u − αu + λgu is the asymptotic linearization of
−∆u−αu+λgu+ k(u)u. However, since we are considering (1.1) on R

N , it can be
shown that (see Lemma B.1)

|k(u)u|p / ‖u‖ �→ 0 as ‖u‖ → ∞.

This leads us to introduce the following truncated problem. For n ∈ N\{0}, let

ψn (x) =

{
1 if |x| � n,

0 if |x| > n.
(3.1)

The following result is an immediate consequence of Lemma B.2.

Lemma 3.1. Let n ∈ N\{0} be fixed. The mapping Qn : X → Y defined by
Qn (u) = ψnk(u)u for u ∈ X is continuous, bounded, compact and asymptotically
linear with asymptotic derivative equal to zero.

Define L(λ) : W 2,p(RN ) → Lp(RN ) and G : R × W 2,p(RN ) → Lp(RN ) by

L(λ)u = −∆u − αu + λg(x)u (3.2)

and
G(λ, u) = L(λ)u + k(u)u. (3.3)

Let
Gn (λ, u) = L(λ)u + ψnk(u)u. (3.4)

In order to exploit the asymptotic linearity of Gn that follows from Lemma 3.1, we
introduce

Fn (λ, v) =

{
‖v‖2Gn (λ, v/‖v‖2) = L(λ)v + ψnk(v/‖v‖2)v if v �= 0,

0 if v = 0.
(3.5)

Similarly, we set

F (λ, v) =

{
L(λ)v + k(v/‖v‖2)v if v �= 0,

0 if v = 0.
(3.6)

Remark 3.1. It follows from Proposition 2.1 that any solution u ∈ H1(RN )
of (1.1) belongs to X and G(λ, u) = 0. Conversely, if (λ, u) ∈ R × X with λ > α
and G(λ, u) = 0, it follows from Lemma 3.4 below that u ∈ L2(RN ). Since 0 �
k(s) � (α + 1) for all s ∈ R, it follows that u ∈ H1(RN ); see [22, Theorem 2.8], for
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example. Hence, at least for λ > α, the problem (1.1) is equivalent to the equation
G(λ, u) = 0 for u ∈ X.

Using the inversion, u 
→ v = u/‖u‖2, one transforms non-trivial solutions of
G(λ, u) = 0 and Gn (λ, u) = 0 to non-trivial solutions of F (λ, v) = 0 and Fn (λ, v) =
0, respectively, and vice versa. This leads us to introduce the following sets:

Zn = {(λ, v) ∈ (α,∞) × X : Fn (λ, v) = 0 and v �≡ 0}, (3.7)
Z = {(λ, v) ∈ (α,∞) × X : F (λ, v) = 0 and v �≡ 0}. (3.8)

Next, we set

Kn (v) =

{
ψnk(v/ ‖v‖2)v for v ∈ X\{0},
0 for v ≡ 0,

(3.9)

where ψn is defined by (3.1), so that the equation Fn (λ, v) = 0 becomes

L(λ)v + Kn (v) = 0. (3.10)

Since 0 � k(s) � α + 1 for all s ∈ R, it is clear that Kn (v) ∈ Y for all v ∈ X.

Lemma 3.2. For all n ∈ N, Kn ∈ C(X,Y ) ∩ C1(X \ {0} , Y ),Kn : X → Y is
compact and it is also Fréchet differentiable at 0 with K ′

n (0) = 0.

Proof. Apart from the assertion about compactness, all these conclusions follow
from Lemma B.3.

For the compactness, let us consider a bounded sequence {vi} in X. Passing to a
subsequence we may assume that

vi
i

⇀ v weakly in X,

vi
i→ v uniformly on Bn = {x ∈ N : |x| < n},

‖vi‖ i→ c � 0.

Since |Kn (vi)|p � (α+1) |vi |p � (α+1) ‖vi‖ , it follows that |Kn (vi)|p
i→ 0 if c = 0.

We suppose henceforth that c > 0. Now

vi/ ‖vi‖2 i→ v/c2 uniformly on Bn

and so

k

(
vi

‖vi‖2

)
vi

i→ k

(
v

c2

)
v and ψnk

(
vi

‖vi‖2

)
vi

i→ ψnk

(
v

c2

)
v uniformly on Bn,

showing that Kn (vi) converges to ψnk(v/c2)v in Y. This proves the compactness of
Kn : X → Y.

We end this section with some results concerning a priori bounds and exponential
decay.

Lemma 3.3. There exists T > 0 such that:
(i) ‖v‖ � T for all (λ, v) ∈ Z;
(ii) for any given µ > α, there exists Nµ ∈ N such that ‖v‖ � T for all (λ, v) ∈ Zn

with λ � µ and n � Nµ .
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Remark 3.2. Recalling that X is continuously embedded in L∞(RN ), we see
that these results imply L∞-bounds too.

Proof of Lemma 3.3. We begin by defining the bound T . Since k(0) = α + 1,
there exists a constant S > 0 such that k(s) � α for all |s| � S. Also there is a
constant C > 0 such that |u|∞ � C‖u‖ for all u ∈ X. Set T = C/S.

(i) Suppose that v ∈ X with ‖v‖ � T . Then, for all x ∈ R
N , we have

|v(x)|
‖v‖2

� |v|∞
‖v‖2

� C

‖v‖ � C

T
= S

and so k(v(x)/‖v‖2) � α. Hence,

−α + λg(x) + k

(
v(x)
‖v‖2

)
� 0 for all x ∈ R

N

since λg � 0, and if (λ, v) ∈ Z, we find that

v(x)∆v(x) = v(x)2
[
− α + λg(x) + k

(
v(x)
‖v‖2

)]
� 0 for all x ∈ R

N .

The maximum principle now leads to a contradiction as follows. For ε > 0, let

D(ε) = {x ∈ R
N : v(x) > ε}.

Recalling that v ∈ X ⊂ C(RN ) and lim|x|→∞ v(x) = 0, we see that D(ε) is a
bounded open subset of R

N and that v(x) = ε on ∂D(ε). But ∆v � 0 on D(ε) and
so the weak maximum principle (see [10, Theorem 8.1] for example) implies that
v � ε on D(ε), a contradiction, unless D(ε) = ∅. Hence we must have v � 0 on R

N .
But a similar argument shows that we must have v � 0 on R

N too, so that in
fact v ≡ 0, contradicting the assumptions that (λ, v) ∈ Z with ‖v‖ � T .

(ii) Consider (λ, v) ∈ R × X with λ � µ > α. There exists δµ > 0 such that
µ(1 − δµ) > α and, since lim|x|→∞ g(x) = 1, there exists an integer Nµ such that

g(x) � 1 − δµ for all |x| � Nµ.

Hence,

λg(x) � µ(1 − δµ) > α for all |x| � Nµ. (3.11)

On the other hand, for n � Nµ and |x| � Nµ , we have

ψn (x)k
(

v(x)
‖v‖2

)
= k

(
v(x)
‖v‖2

)
� α (3.12)

as in case (i) if ‖v‖ � T .
Combining (3.11) and (3.12), we find that we again have

v(x)∆v(x) = v(x)2
[
− α + λg(x) + ψn (x)k

(
v(x)
‖v‖2

)]
� 0 for all x ∈ R

N ,

provided that n � Nµ and the proof can now be completed as in case (i).

The next result establishes some uniform exponential decay of solutions and, in
particular, it enables us to derive Lp -bounds from L∞-bounds.
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Lemma 3.4. Fix µ > α. Then, for any ε ∈ (0, (µ − α)/µ), there exists Cε > 0
such that

|u(x)| � |u|∞e−
√

ξ(|x|−Cε ) for all x ∈ R
N ,

where ξ = µ(1 − ε) − α > 0 for all (λ, u) ∈ [µ,+∞) × X with uL(λ)u � 0 on R
N .

Proof. Since µ > α, there exists ε0 ∈ (0, 1) such that µ(1 − ε0) > α and, since
g(x) → 1 as |x| → ∞, for any ε ∈ (0, ε0) there exists Cε > 0 such that

g(x) � 1 − ε for all |x| � Cε.

Setting q(x) = |u|∞e−
√

ξ(|x|−Cε ) − u(x), we consider the set

Dε = {x ∈ R
N : |x| � Cε and q(x) < 0}.

Clearly u(x) > 0 for x ∈ Dε and so

0 � L(λ)u = −∆u − αu + λgu � −∆u − αu + µ(1 − ε)u
= −∆u + ξu, for all x ∈ Dε,

since λ � µ. Hence, for x ∈ Dε,

∆q(x) = |u|∞e
√

ξCε

(
ξ − N − 1

|x|
√

ξ

)
e−

√
ξ |x| − ∆u

� |u|∞e
√

ξCε ξe−
√

ξ |x| − ξu = ξq(x) < 0. (3.13)

But q(x) � 0 when |x| = Cε so that q(x) � 0 for all x ∈ ∂Dε and q(x) → 0 as
|x| → ∞. If Dε �= ∅, the weak maximum principle [10, Theorem 8.1] now implies
that q � 0 in Dε , a contradiction. Thus we see that Dε = ∅ and consequently,

u(x) � |u|∞e−
√

ξ(|x|−Cε ) for all |x| � Cε.

Replacing u by −u, we obtain the desired inequality for |u(x)| in the region |x| � Cε .
But for |x| � Cε the estimate is trivial so the proof is complete.

The next result enables us to exploit the properness on closed bounded sets of
linear Fredholm operators. In what follows we use some of the notation introduced
in Appendix A.

Lemma 3.5. Consider λ > α and any p ∈ [2,∞).
(i) The map L(λ) : X = W 2,p(RN ) → Lp(RN ) with p ∈ [2,∞) is a Fredholm

operator of index zero.
(ii) Let {vn} ⊂ X, vn

n
⇀ v weakly in X and let {L(λ)vn} converge strongly in

Lp(RN ). Then vn
n→ v strongly in X.

Proof. (i) Since lim|x|→∞(−α + λg(x)) = λ − α > 0, this follows from [13,
Theorem 4.3].

(ii) Since L(λ) : X → Lp(RN ) is a Fredholm operator of index 0, by [5,
Chapter I, Theorem 3.15], there exists T ∈ B(Lp(RN ),X) such that

TL(λ) = I + K

where K : X → X is a compact linear operator. Let L(λ)vn
n→ w strongly in

Lp(RN ) for some w ∈ Lp(RN ); then TL(λ)vn
n→ Tw strongly in X. It follows from
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TL(λ) = I + K and since vn
n
⇀ v weakly in X that

(I + K)vn
n→ Tw strongly in X and Kvn

n→ Kv strongly in X.

This implies that vn
n→ Tw − Kv strongly in X, and hence that

vn
n→ v = Tw − Kv strongly in X.

We end this section with some results concerning the way in which solutions can
approach the line R × {0} of trivial solutions.

Lemma 3.6. Let {(λn , vn )} ⊂ R ×X be a sequence such that λn
n→ λ > α and

‖vn‖ n→ 0 with ‖vn‖ �= 0 and vnL(λn )vn � 0 on R
N for all n ∈ N. Then:

(i) vn ∈
⋂

1�r<∞ Lr (RN ) and |k(vn/‖vn‖2)vn |r /‖vn‖ n→ 0 for all r ∈ (1,+∞),
and

(ii) λ = Λ(α) if |L(λn )vn |p/‖vn‖ n→ 0 and v2
n > 0 on R

N for all n ∈ N, where
Λ(α) > 0 is defined in Proposition 2.2(ii).

Proof. (i) Since vnL(λn )vn � 0, it follows from Lemma 3.4 that there exist
D > 0 and γ > 0 which are independent of n such that

|vn (x)| � D|vn |∞e−γ |x| for all x ∈ R
N . (3.14)

Using this estimate, one can easily see that vn ∈
⋂

1�r<∞ Lr (RN ).
We claim that, for every fixed x ∈ R

N ,∣∣∣∣k(
vn (x)
‖vn‖2

)
vn (x)

∣∣∣∣/‖vn‖ n→ 0. (3.15)

By contradiction, suppose that for some x0 ∈ R
N there exist δ > 0 and a

subsequence {vnj
} of {vn} such that∣∣∣∣k(

vnj
(x0)

‖vnj
‖2

)
vnj

(x0)
∣∣∣∣/‖vnj

‖ � δ for all nj ∈ N. (3.16)

Let wnj
(x) = vnj

(x)/‖vnj
‖. Then

‖wnj
‖ = 1 and |wnj

(x0)| � |wnj
|∞ � C‖wnj

‖ = C,

so we may assume that wnj
(x0)

j→ τ . If τ = 0, it is easy to see that∣∣∣∣k(
vnj

(x0)
‖vnj

‖2

)
vnj

(x0)
∣∣∣∣/‖vnj

‖ =
∣∣∣∣k(

vnj
(x0)

‖vnj
‖2

)∣∣∣∣|wnj
(x0)|

j→ 0 (3.17)

since |k(s)| � α + 1, contradicting (3.16). If τ �= 0, then

vnj
(x0)

‖vnj
‖2

=
wnj

(x0)
‖vnj

‖
j→ ∞

since ‖vnj
‖ j→ 0. Hence k(vnj

(x0)/‖vnj
‖2) → 0, so we still have (3.17), again

contradicting (3.16). This proves (3.15).
Since vnL(λn )vn � 0, it follows from (3.14) that∣∣∣∣k(

vn (x)
‖vn‖2

)
vn (x)

∣∣∣∣/‖vn‖ � (α + 1)CDe−γ |x| for all x ∈ R
N .

Therefore, part (i) follows from (3.15) and dominated convergence.
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(ii) Let wn = vn/‖vn‖. Then ‖wn‖ = 1. Since v2
n (x) > 0, on passing to a

subsequence, we may assume that either wn (x) > 0 or wn (x) < 0 for all n ∈ N and,
for some w ∈ X,

wn
n
⇀ w weakly in X with w � 0 or w � 0.

By the definition of L(λ) (see (3.2)), it is easy to see that

L(λ)wn = L(λn )wn − (λn − λ)g(x)wn
n→ 0 in Y.

Since λ > α, by Lemma 3.5(i), we know that L(λ) : X → Y is a Fredholm
operator of index 0. Then it follows from Lemma 3.5(ii) that wn

n→ w strongly in
X, and w �≡ 0 since ‖wn‖ = 1. So L(λ)w = 0 and, as in Remark 3.1, this implies
that w ∈ H1(RN). Therefore, λ = Λ(α) by Proposition 2.2(ii) since either w � 0
or w � 0.

Lemma 3.7. Let {(λm , vm )} ⊂ Zn with v2
m > 0 on R

N , and let ‖vm‖ m→ 0 and
λm

m→ λ > α. Then λ = Λ(α), where Λ(α) > 0 is defined in Proposition 2.2(ii).

Proof. Since (λm , vm ) ∈ Zn , we have

L(λm )vm + ψnk

(
vm

‖vm‖2

)
vm = 0. (3.18)

Setting wm (x) = vm (x)/‖vm‖2, we see that this becomes

L(λm )wm + ψnk (wm ) wm = 0

where ‖wm‖ → ∞ and so by Lemma 3.1,

|ψnk (wm ) wm |p / ‖wm‖ → 0 as m → ∞.

This implies that |L(λm )vm |p /‖vm‖ m→ 0. Since vm L(λm )vm � 0 by (3.18), Lemma
3.6(ii) yields λ = Λ(α).

4. Global bifurcation for the truncated problem

Our goal here is to establish that there is global bifurcation from the trivial
solution v = 0 at λ = Λ(α) for the inverted truncated equation Fn (λ, v) = 0 by
using Theorem A.1. We use some of the notation introduced there. As in § 3, we
suppose that the conditions (F1), (F2) and (G1) are satisfied with Γ < α < ξ1 and
p ∈

(
1
2N,∞

)
∩ [2,∞). Clearly,

L(λ)u = −∆u − αu + λgu (4.1)

defines a bounded linear operator from X = W 2,p(RN ) into Y = Lp(RN ) and
L ∈ C∞(R, B(X,Y )). As we have already noted in Lemma 3.5, it follows from [13,
Theorem 4.3] that

L(λ) ∈ Φ0(X,Y ) for all λ > α,

and it is also shown in that theorem that

Y = ker L(λ) ⊕ rge L(λ) for all λ > α. (4.2)

We already have enough information to enable us to apply the global bifurcation
theorem, Theorem A.1, to the inverted truncated problem, but before doing so we
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establish one further result that will help us to obtain a much sharper form of the
conclusion.

Lemma 4.1. For each n ∈ N, there exists an open neighbourhood U of (Λ(α), 0)
in R × X such that, for all (λ, u) ∈ U ∩ Zn , we have u2 > 0 on R

N , where Zn is
defined by (3.7).

Proof. We argue by contradiction. If the conclusion is false, then there exists a
sequence {(λi, ui)} ⊂ Zn such that λi

i→ Λ(α) and ‖ui‖ i→ 0 and we can choose
this sequence so that for every i ∈ N, the continuous function ui has at least one
zero in R

N . We now show that this leads to a contradiction.
Setting zi = ui/ ‖ui‖ , we have

L(λi)zi +
Kn (ui)
‖ui‖

= 0 on R
N ,

and so

L(Λ(α))zi = {Λ(α) − λi}gzi −
Kn (ui)
‖ui‖

i→ 0 in Y

by Lemma 3.2. On the other hand, by passing to a subsequence we may suppose
that zi

i
⇀ z weakly in X. Since L(Λ(α)) ∈ Φ0(X,Y ), Lemma 3.5 implies that zi

i→ z
strongly in X. This means that ‖z‖ = 1 and that L(Λ(α))z = 0. By Lemma 3.6
and Remark 3.1, we have z ∈ H1(RN ) and so it follows from Proposition 2.2(ii)
that z2 > 0 on R

N . Recalling that X ⊂ C(RN ), we suppose first that z > 0 on
R

N . Since Λ(α) > α, there exists i0 ∈ N such that λi � 1
2{Λ(α) + α} for all i � i0.

Setting

ε =
Λ(α) − α

2{Λ(α) + α} ,

we deduce that there exists R � n such that g(x) � 1− ε for all |x| � R and hence

−α + λig � −α + 1
2{Λ(α) + α}(1 − ε) = 1

4{Λ(α) − α} > 0

for all |x| � R and all i � i0. Since zi
i→ z strongly in X and δ = inf |x|�R z(x) > 0,

it follows that there exists i1 � i0 such that zi(x) � 1
2δ for all |x| � R and i � i1.

But, since R � n, for |x| > R, we have

0 = L(λi)zi = −∆zi + {−α + λig}zi

where zi � 1
2δ for |x| = R and lim|x|→∞ zi(x) = 0. The weak maximum principle

[10, Theorem 8.1] now implies that z � 0 in the region |x| � R, and the strong
maximum principle [10, Theorem 8.19] shows that in fact we must have zi > 0 in
the region |x| � R for all i � i1. Thus ui > 0 on R

N for all i � i1.
A similar argument shows that ui < 0 on R

N for all large i in the case
where z < 0.

We now come to the main result of this section. In it we consider the set Zn

of non-trivial solutions of Fn (λ, u) = 0 defined in (3.7) with the metric inherited
from R × X.

Theorem 4.2. Let Cn denote the connected component of Zn ∪ {(Λ(α), 0)}
containing the point (Λ(α), 0). Then:
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(a) u2 > 0 on R
N and λ � Λ(α) for all (λ, u) ∈ Cn\{(Λ(α), 0)};

(b) for any µ > α there exist T > 0 and Nµ ∈ N such that, for all n � Nµ,

inf PCn := inf{λ : (λ, u) ∈ Cn} < µ and ‖u‖ � T

for all (λ, u) ∈ Cn with λ � µ.

Proof. The first step is to show that Theorem A.1 can be invoked to give some
initial information about the global behaviour of Cn . Then we use the results of § 3
to deduce that it has the sharper properties claimed above.

From what has already been established in this section, Proposition 2.2(ii) and
Lemma 3.2, we can apply Theorem A.1 for L(λ) defined by (4.1) on the interval
J = (α,∞) provided that (A.1) holds with λ0 = Λ(α). But L′(λ)u = gu and, by
Lemma 3.6 and Remark 3.1, we have

ker L(Λ(α)) = span{zα} and L′(Λ(α)) ker L(Λ(α)) = span{gzα}, (4.3)

where zα = uΛ(α) > 0 on R
N is given by Proposition 2.2(ii). Hence

dim L′(Λ(α)) ker L(Λ(α)) = 1.

If v ∈ [L′(Λ(α)) ker L(Λ(α))] ∩ rge L(Λ(α)), we have

v = tgzα = L(Λ(α))w on R
N , for some t ∈ R and w ∈ X.

Furthermore, [13, Theorem 4.1] implies that w and zα ∈ W 2,q (RN ) for all q ∈
(1,∞). Hence

t

∫
RN

gz2
α dx =

∫
RN

{L(Λ(α))w}zα dx =
∫

RN

{L(Λ(α))zα}w dx = 0,

where
∫

RN gz2
α dx �= 0 since zα > 0 on R

N . This proves that t = 0 and
consequently

[L′(Λ(α)) ker L(Λ(α))] ∩ rge L(Λ(α)) = {0}.
By (4.2) and (4.3) we know that codim rgeL(Λ(α)) = 1, and we have already noted
that

dim L′(Λ(α)) ker L(Λ(α)) = 1.

This establishes (A.1) and we can assert that Cn satisfies the conclusion of
Theorem A.1.

The next step is to show that if (λ, u) ∈ Cn\{(Λ(α), 0)} then u has no zeros. For
this we set

Q = {(λ, u) ∈ Cn : u2 > 0 on R
N } ∪ {(Λ(α), 0)}

and prove that Q = Cn by showing that Q is both an open and closed subset of Cn .
First we prove that Q is open in Cn . Given (λ, u) ∈ Q, we must show that

there exists an open neighbourhood U of (λ, u) in R × X such that U ∩ Cn ⊂ Q.
For (λ, u) = (Λ(α), 0) this is established in Lemma 4.1, so we can suppose that
(λ, u) ∈ Cn with u2 > 0 on R

N . Since X ⊂ C(RN ), this means that u does not
change sign on R

N . Let us suppose that u > 0 on R
N , the case u < 0 being similar.

As in the proof of Lemma 4.1, since λ > α and lim|x|→∞ g(x) = 1, there exist η > 0
and R > 0 such that for all µ with |λ − µ| � η,

−α + µg > 0 for all |x| � R.
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Let δ = inf |x|�R u(x). Since δ > 0, there exists a neighbourhood U of (λ, u) in
R×X such that |λ − µ| � η and inf |x|�R v(x) � 1

2δ for all (µ, v) ∈ U. In particular,
v∆v � 0 for |x| � R, v > 0 when |x| = R and lim|x|→∞ v(x) = 0, for (µ, v) ∈ U∩Zn .
Therefore, as in the proof of Lemma 4.1, the maximum principle implies that v > 0
when |x| > R, too. Hence U ∩ Cn ⊂ Q and Q is open.

Now we show that Q is closed in Cn . Suppose that (λ, u) ∈ Cn and that there
exists a sequence {(λi, ui)} ⊂ Q such that λi

i→ λ and ‖ui − u‖ i→ 0. If u = 0, then
λ = Λ(α) since Cn ∩ [R×{0}] = {(Λ(α), 0)} and so (λ, u) ∈ Q. Consider now u �= 0.
We have L(λ)u + Kn (u) = 0 and, passing to a subsequence, we can suppose that
either ui > 0 for all i ∈ N or ui < 0 for all i ∈ N. In the first case it follows that
u � 0 on R

N and
−∆u + c+u = c−u � 0 on R

N

where c = −α + λg + ψnk(u/ ‖u‖2), and the strong maximum principle [10, Theo-
rem 8.19] shows that either u ≡ 0 or u > 0 on R

N . Hence (λ, u) ∈ Q. In the case
where ui < 0 for all i ∈ N, a similar argument shows that either u ≡ 0 or u < 0 on
R

N . Thus, in all cases (λ, u) ∈ Q and Q is closed in Cn .
We have shown that Cn = Q and we claim that this means that case (ii) in

Theorem A.1 cannot occur. Indeed, if Cn has the property (ii), there exist λ ∈
J\{Λ(α)} and a sequence {(λi, ui)} ⊂ Cn such that λi

i→ λ and ‖ui‖ i→ 0. We can
suppose that ‖ui‖ > 0 since Cn ∩ [R×{0}] = {(Λ(α), 0)}. Setting zi = ui/ ‖ui‖ and
arguing as in the proof of Lemma 4.1, we see that, by passing to a subsequence,
we may assume that zi

i→ z in X and that L(λ)z = 0 with ‖z‖ = 1. By [13,
Corollary 4.1] with V = λg, we can deduce that z ∈ H1(RN ) and satisfies (2.2). It
follows from Proposition 2.2(ii) that λ < Λ(α), and z changes sign on R

N . But since
{(λi, ui)} ∈ Q\{(Λ(α), 0)} the sequence {zi} can be chosen so that either zi > 0 on
R

N for all i ∈ N or zi < 0 on R
N for all i ∈ N. In the first case we have z � 0 on

R, and in the second z � 0 on R, which contradicts the earlier conclusion.
We now know that Cn has at least one of the properties (i) and (iii) of Theorem

A.1. If (λ, u) ∈ Cn\{(Λ(α), 0)}, we have

−∆u − αu + λgu + ψnk

(
u

‖u‖2

)
u = 0 and u2 > 0 on R

N . (4.4)

By [13, Corollary 4.1] with V = λg + ψnk(u/ ‖u‖2), we have u ∈ W 2,q (RN ) for all
q ∈ (1,∞). Hence, using Proposition 2.2, we have

0 = inf{aΛ(α)(v) : v ∈ H1(RN )}

� aΛ(α)(u) =
∫

RN

(
|∇u|2 − αu2 + Λ(α)gu2

)
dx

�
∫

RN

(
|∇u|2 − αu2 + Λ(α)gu2 + ψnk

(
u

‖u‖2

)
u2

)
dx

= {Λ(α) − λ}
∫

RN

gu2 dx

where
∫

RN gu2 dx > 0 since u2 > 0 on R
N . Thus

λ � Λ(α) for all (λ, u) ∈ Cn\{(Λ(α), 0)}. (4.5)

Now consider some µ > α. By Lemma 3.3(ii), there exists Nµ ∈ N such that
‖u‖ � T for all (λ, u) ∈ Cn with λ � µ and n � Nµ. Thus, if n � Nµ and
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inf Cn � µ, the component Cn is bounded in R × X and inf Cn > α = inf J, which
contradicts Theorem A.1. Hence inf Cn < µ for all n � Nµ .

5. Proof of Theorem 2.3

We suppose throughout this section that the conditions (F1), (F2) and (G1) are
satisfied with Γ < α < ξ1 and we fix p ∈ [2,∞) ∩

(
1
2N,∞

)
.

Lemma 5.1. If (λ, u) is a solution of problem (1.1), then λ < Λ(α).

Proof. If (λ, u) is a solution of problem (1.1), then∫
RN

(|∇u|2 − αu2 + λg(x)u2 + k(u)u2) dx = 0, (5.1)

where k is given by (1.6). Recalling Proposition 2.2(iv), we have

0 = inf{aΛ(α)(v) : v ∈ H1(RN )}

� aΛ(α)(u) = (Λ(α) − λ)
∫

RN

gu2 dx −
∫

RN

k(u)u2 dx.

Hence,

0 �
∫

RN

k(u)u2 dx � (Λ(α) − λ)
∫

RN

gu2 dx.

But, in fact,
∫

RN k(u)u2 dx > 0 since u ∈ C(RN ), u �≡ 0, lim|x|→∞ u(x) = 0 and
k(0) = α + 1. Hence λ < Λ(α).

By using the global bifurcation results for the truncated problem Fn (λ, v) = 0 (see
Theorem 4.2), we prove first the following bifurcation result for the inverted problem
F (λ, v) = 0, and then the asymptotic bifurcation Theorem 2.3, for G(λ, u) = 0, that
is, (1.1).

Let X be as in § 3 and consider Z̃ ∪{(Λ(α), 0)} as a metric space with the metric
inherited from R × X where Z̃ is defined below.

Theorem 5.2. Let U be an open and bounded subset of R × X such that
(Λ(α), 0) ∈ U with

µ := inf{λ : (λ, u) ∈ U} > α.

Let Z̃ = {(λ, v) ∈ Z : v2 > 0 on R
N }, where Z is given by (3.8). The following

hold.
(i) We have Z̃ ∩ ∂U �= ∅.
(ii) Let C be the connected component of Z̃ ∪ {(Λ(α), 0)} containing (Λ(α), 0).

Then C is bounded with inf PC = α and supPC = Λ(α), where P (λ, v) = λ for all
(λ, v) ∈ R × X. In fact, P{C \ {(Λ(α), 0)}} = (α,Λ(α)).

(iii) If {(λn , vn )} ⊂ C with λn
n→ λ > α and limn→∞ ‖vn‖ = 0, then λ = Λ(α).

Furthermore, if {(λn , vn )} ⊂ C with limn→∞ λn = Λ(α) then limn→∞ ‖vn‖ = 0.

Proof. (i) By Theorem 4.2, since µ > α there exists Nµ ∈ N such that

Cn ∩ ∂U �= ∅ for all n � Nµ,

where Cn is the connected component of Zn ∪ {(Λ(α), 0)} containing {(Λ(α), 0)}.
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Let (λn , vn ) ∈ Cn ∩ ∂U for all n � Nµ . Then, by Theorem 4.2(a) we have

α < µ � λn � Λ(α) and v2
n > 0.

By passing to a subsequence we may suppose that either vn > 0 or vn < 0 for all
n � Nµ since vn ∈ C(RN ), and

λn
n→ λ ∈ [µ,Λ(α)],

vn
n
⇀ v weakly in X with v � 0 or v � 0,

‖vn‖ n→ � � 0.

(5.2)

We claim that � > 0. In fact, if � = 0 we have

(λn , vn ) n→ (λ, 0) ∈ ∂U.

Consequently, λ �= Λ(α).
On the other hand, it follows from (λn , vn ) ∈ Zn that

L(λn )vn + ψnk

(
vn

‖vn‖2

)
vn = 0 (5.3)

and this implies that vnL(λn )vn � 0 since ψn � 0 and k(s) � 0. By Lemma 3.6(i)
we know that ∣∣∣∣k(

vn

‖vv‖2

)
vn

∣∣∣∣
p

/
‖vn‖ n→ 0.

Then it follows from (5.3) that

|L(λn )vn |p /‖vn‖ =
∣∣∣∣−ψnk

(
vn

‖vv‖2

)
vn

∣∣∣∣
p

/
‖vn‖ �

∣∣∣∣k(
vn

‖vv‖2

)
vn

∣∣∣∣
p

/
‖vn‖ n→ 0.

So, λ = Λ(α) by Lemma 3.6(ii), contradicting our earlier conclusion. Hence � > 0.
Next, we show that

‖vn − v‖ n→ 0. (5.4)

For any R > 0, the compactness of Sobolev embeddings implies that
vn

‖vn‖2

n→ v

�2
uniformly on BR := {x ∈ R

N : |x| � R}.

So,

k

(
vn

‖vn‖2

)
vn

n→ k

(
v

�2

)
v uniformly on BR.

Therefore,

ψnk

(
vn

‖vn‖2

)
vn

n→ k

(
v

�2

)
v uniformly on BR.

By (1.6), |ψnk(s)| � α + 1, so using Lemma 3.4 and dominated convergence, we
easily deduce that

ψnk

(
vn

‖vn‖2

)
vn

n→ k

(
v

�2

)
v in Lp(RN ) for all 2 � p < ∞. (5.5)

Using (5.3), we now have

L(λ)vn = −(λn − λ)gvn − ψnk

(
vn

‖vn‖2

)
vn

n→ −k

(
v

�2

)
v in Y, by (5.5). (5.6)
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Since λ � µ > α, we have L(λ) ∈ Φ0(X,Y ) and Lemma 3.5 yields vn
n→ v strongly

in X, proving (5.4).
Therefore, limn→∞ ‖vn‖ = ‖v‖ = � > 0, (λ, v) ∈ ∂U , and

L(λ)v = −k

(
v

‖v‖2

)
v, that is, F (λ, v) = 0. (5.7)

We now claim that v2 > 0 on R
N . Indeed, by (5.2) we know that either v � 0 on

R
N or v � 0 on R

N . Suppose that v � 0 on R
N . It follows from (5.7) that

−∆v + c+v = c−v � 0,

where c := −α + λg + k(v/‖v‖2) and c± = max{±c, 0}. Since lim|x|→∞ v(x) = 0,
with v �≡ 0, the strong maximum principle [10, Theorem 8.19] gives v > 0 on R

N .
Similarly, if v � 0 on R

N , then we have v < 0 on R
N . Thus, v2 > 0 and (λ, v) ∈ Z̃,

so that Z̃ ∩ ∂U �= ∅.
(ii) Let Q = Z̃ ∪ {(Λ(α), 0)} and let C be the connected component of Q

containing (Λ(α), 0).
For any (λ, v) ∈ Z, we have F (λ, v) = 0 with v �≡ 0. Then it is easy to see that

(λ, u) with u = v/‖v‖2 is a solution of G(λ, u) = 0. Since λ > α, it follows from
Lemma 3.4 and Remark 3.1 that (λ, u) is a solution of (1.1) and hence by Lemma
5.1, we have λ < Λ(α). In particular, {λ : (λ, v) ∈ C \ {(Λ(α), 0)}} ⊂ (α,Λ(α)) and
hence sup PC = Λ(α). Therefore, it follows from Lemma 3.3(i) that Z is bounded in
R × X, as are Z̃, Q and C. Suppose that

µ := inf PC > α

and note that µ � Λ(α). For any µ̄ ∈ (α, µ), let

V = {(λ, v) ∈ Q : λ ∈ [µ̄,Λ(α)]} = {(λ, v) ∈ Q : λ � µ̄},
V1 = {(Λ(α), 0)} and V2 = Q∩ [{µ̄} × X] = {(λ, v) ∈ Q : λ = µ̄}.

(5.8)

By Lemma C.1, V is a compact subset of R × X. We now deduce from a result of
Whyburn [26] (see Lemma C.2) that there exists a connected subset V0 of V such
that

V0 ∩ V1 �= ∅ and V0 ∩ V2 �= ∅. (5.9)

In fact, if there is no connected subset of V such that (5.9) holds, then by Lemma
C.2 there must exist compact subsets U1 and U2 of V such that

V = U1 ∪ U2, V1 ⊂ U1, V2 ⊂ U2, U1 ∩ U2 = ∅.
So, there exists δ > 0 such that dist(U1, U2) = 2δ. Let

Wδ = {x ∈ R × X : dist(x,U1) < δ} ∩ {(µ̄,∞) × X},
which is an open bounded set in R × X. Furthermore, Wδ ∩ U2 = ∅. Clearly,
inf PWδ � µ > α. Then Z̃ ∩∂Wδ �= ∅ by part (i). However, for any (λ, v) ∈ Z̃∩∂Wδ

we have µ � λ < Λ(α) and (λ, v) ∈ Q, so that (λ, v) ∈ V = U1 ∪ U2. But if
(λ, v) ∈ ∂Wδ , then (λ, v) ∈ Wδ and (λ, v) �∈ U2. This implies that (λ, v) ∈ U1 which
is impossible since (λ, v) ∈ ∂Wδ . So, (5.9) is proved.

By (5.9), it is obvious that inf PV0 = µ < µ. But V0 ⊂ C and so inf PC � µ < µ,
a contradiction. Hence inf PC = α.

(iii) Let {(λn , vn )} ⊂ C \ {(Λ(α), 0)} be such that λn → λ > α and ‖vn‖ n→ 0.
Then v2

n > 0 and vnL(λn )vn � 0 so it follows from Lemma 3.6 that λ = Λ(α).
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On the other hand, suppose that there exists a sequence

{(λn , vn )} ⊂ C \ {(Λ(α), 0)}

such that λn
n→ Λ(α) and ‖vn‖ � δ > 0 for all n ∈ N. Since ‖vn‖ � T by Lemma 3.3,

passing to a further subsequence, we may assume that vn
n
⇀ v weakly in X. Then

repeating the proof of (5.4), just replacing ψn (x) by 1, we find that vn
n→ v strongly

in X and F (Λ(α), v) = 0. Thus (Λ(α), v) ∈ Z, whereas, at the beginning of the
proof of part (ii) we showed that λ < Λ(α) for all (λ, v) ∈ Z. Thus ‖vn‖ → 0 if
λn

n→ Λ(α).

Theorem 5.2 establishes the global properties of a connected subset of
Z̃ ∪ {(Λ(α), 0)}. However, in order to maintain connectedness under inversion, we
need to find a connected subset of Z̃ having similar properties. This can be achieved
by a procedure due to J. C. Alexander [1].

Corollary 5.3. Let Z̃ and C be as given in Theorem 5.2. Then there exists
a bounded connected subset C0 of Z̃ such that inf PC0 = α and (Λ(α), 0) ∈ C0. In
particular, supPC0 = Λ(α) and 0 < ‖v‖ � T for all (λ, v) ∈ C0.

Proof. Recall that C is bounded in R × X with 0 � ‖v‖ � T for all (λ, v) ∈ C
by Lemma 3.3, and that there exists a sequence {(λn , vn )} ⊂ C with λn

n→ α. Let
T denote the topology on C, that is,

T = {C ∩ W : W is an open subset of R × X}.
We now make a one-point compactification of C by adding a ‘point at α’ to C as
follows:

C∞ := C ∪ {∞};
and we define a topology T ∞ on C∞ as follows:

A ∈ T ∞ ⇐⇒


A ∈ T if ∞ �∈ A;
or
A is the union of an element in T and a set of the form
Nβ ∪ {∞} for some β ∈ (α,Λ(α)] if ∞ ∈ A,

where Nβ = {C ∩ [(α, β) × X] : β ∈ (α,Λ(α)]}.
It is not difficult to verify that T ∞ is indeed a topology in C∞ and we claim

that (C∞, T ∞) is a compact topological space. In fact, let {Ai} be an open cover of
C∞. Then there exists i0 such that ∞ ∈ Ai0 with Ai0 = Bi0 ∪ Ci0 , where Bi0 ∈ T
and Ci0 = Nβ1 ∪ {∞} for some β1 ∈ (α,Λ(α)]. Note that C ⊂

⋃∞
i=1(Ai \ {∞}) and

Ai\{∞} ∈ T . Setting γ = 1
2 (α+β1), we see from Lemma C.1 that {[γ,Λ(α)]×X}∩C

is compact and is also covered by Ai \ {∞}. So, there exists a finite subcover Aij
,

for j = 1, 2, . . . , k, such that {[γ,Λ(α)]×X}∩C ⊂
⋃k

j=1 Aij
and the claim is proved

since C∞ ⊂ Ai0 ∪
(
{[γ,Λ(α)] × X} ∩ C

)
.

The sets A = {(Λ(α), 0)} and B = {∞} are closed in C∞. If A and B are
separated in C∞, then there exist VA and VB in T ∞ such that

VA ∪ VB = C∞, VA ∩ VB = ∅ and A ⊂ VA , B ⊂ VB .

Clearly ∞ �∈ VA , so VA ∈ T . Also VB \ {∞} ∈ T and it is non-empty. But,
VA ∩ [VB \{∞}] = ∅ and VA ∪ [VB \{∞}] = C, contradicting the connectedness of C.
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Hence, A and B are not separated in C∞. By Lemma C.3, there exists a connected
set C0 in C∞ \ {A∪B} = C \ {(Λ(α), 0)} such that (Λ(α), 0) ∈ CT ∞

0 and ∞ ∈ CT ∞

0 ,
where CT ∞

0 denotes the closure of C0 in (C∞, T ∞). Then C0 is also connected in
(C, T ). Otherwise, there are non-empty sets P,Q ∈ T such that

P ∩ Q = ∅ and C0 = P ∪ Q.

However, since P,Q ∈ T ∞, this contradicts the connectedness of C0 in T ∞.
Now, we claim that (Λ(α), 0) ∈ CT

0 . Indeed, let U ∈ T with (Λ(α), 0) ∈ U .
Clearly, U ∈ T ∞. Hence it follows from (Λ(α), 0) ∈ CT ∞

0 that U ∩ C0 �= ∅ and
(Λ(α), 0) ∈ CT

0 . This implies that supPC0 = Λ(α).
Finally, we show that inf PC0 = α. For this purpose, it is enough to prove that

C0 ∩ {[(α, β) × X] ∩ C} �= ∅ for any β ∈ (α,Λ(α)].

In fact, since {[(α, β) × X] ∩ C} ∪ {∞} ∈ T ∞ and ∞ ∈ CT ∞

0 , we have

[{[(α, β) × X] ∩ C} ∪ {∞}] ∩ C0 �= ∅.

But ∞ �= C0 and hence {[(α, β) × X] ∩ C} ∩ C0 �= ∅.

Remark 5.1. Since Z ⊂ R × W 2,p(RN ) ⊂ R × C(RN ), it follows that the set
C0 obtained in Corollary 5.3 satisfies either

C0 ⊂ Z+ := {(λ, v) ∈ Z : v > 0 on R
N }

or

C0 ⊂ Z− := {(λ, v) ∈ Z : v < 0 on R
N }.

Corollary 5.4. Suppose that, in addition to the hypotheses of Corollary 5.3,
the function f is odd. Then there exist two bounded connected subsets C+

0 and C−
0

of Z+ and Z−, respectively, each of which has the same properties as C0.

Proof. It is sufficient to note that

C̃0 = {(λ,−v) : (λ, v) ∈ C0}

is also a connected subset of Z̃ and that either C0 ⊂ Z+ and C̃0 ⊂ Z− or vice versa.

Finally, we can prove our main Theorem 2.3.

Proof of Theorem 2.3. Let fR and fL be the odd functions defined by

fR (s) =

{
f(s) for s � 0,

−f(−s) for s < 0,
and fL (s) =

{
−f(−s) for s � 0,

f(s) for s < 0.

Both of these functions satisfy the hypotheses (F1) and (F2) and so Corollary 5.4
is valid with f replaced by fR and fL . Let C+

0 and C−
0 be the connected subsets of

positive or negative solutions for the problem with fR or fL , respectively. Then we
have C±

0 ⊂ Z± for f with

inf PC±
0 = α and (Λ(α), 0) ∈ C±

0 .
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Setting

D± =
{(

λ,
v

‖v‖2

)
: (λ, v) ∈ C±

0

}
,

we deduce that D± are connected sets of (α,Λ(α)) × W 2,p(RN ) consisting of,
respectively, positive and negative solutions of (1.1) with

inf PD± = α, supPD± = Λ(α) and ‖u‖ � T for all (λ, u) ∈ D±.

Suppose that {(λn , un )} ⊂ D± with λn
n→ λ > α and maxx∈RN |un | n→ ∞. Then

‖un‖ n→ ∞ by the Sobolev embedding. Hence (λn , vn ) ∈ C with vn = un/‖un‖2, and
‖vn‖ n→ 0. By Theorem 5.2(iii), λ = Λ(α). On the other hand, if {(λn , un )} ⊂ D±

with λn
n→ Λ(α), by setting vn = un/‖un‖2 we know that (λn , vn ) ∈ C and then

‖vn‖ n→ 0 by Theorem 5.2, which means that ‖un‖ n→ ∞. Moreover, we claim that
maxx∈RN |un | n→ ∞, since otherwise, by passing to a subsequence, we may suppose
that there is C > 0 such that maxx∈RN |un | � C for all n ∈ N. But (λn , un ) is a
solution of problem (1.1), so we have

L(λn )un + k(un )un = 0, (5.10)

which implies that unL(λn )un � 0. Then by Lemma 3.4, {un} is bounded in
Lp(RN ). Therefore, {(−∆ + 1)un} is bounded in Lp(RN ) since

(−∆ + 1)un = (α + 1)un + λngun + k(un )un

by (5.10). But −∆ + 1 : X → Y is an isomorphism (see [22, Theorem 2.14] for
example), and this implies that {un} is bounded in W 2,p(RN ), a contradiction.

Appendix A. On global bifurcation

Let X and Y be real Banach spaces and let P : R×X → R denote the projection
P (λ, u) = λ. We use the following notation: B(X,Y ) is the space of bounded linear
operators from X into Y with its usual norm,

Φ0(X,Y ) = {L ∈ B(X,Y ) : L is a Fredholm operator of index zero}
and

GL(X,Y ) = {L ∈ B(X,Y ) : L : X → Y is an isomorphism}.

Theorem A.1. Let L ∈ C1(J,B(X,Y )) where J is an open interval and L(λ) ∈
Φ0(X,Y ) for all λ ∈ J. Suppose that λ0 ∈ J is such that dim ker L(λ0) is odd and
that

[L′(λ0) ker L(λ0)] ⊕ rge L(λ0) = Y. (A.1)

Let K ∈ C(X,Y ) be such that K : X → Y is compact and

lim
‖u‖X →0

‖K(u)‖Y

‖u‖X

= 0. (A.2)

Let

Z̃ = Z ∪ {(λ0, 0)} where Z = {(λ, u) ∈ J × X : u �= 0 and L(λ)u + K(u) = 0}
be considered with the metric inherited from R×X, and let C denote the connected
component of Z̃ containing (λ0, 0). Then C has at least one of the following
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properties:
(i) C is an unbounded subset of R × X;
(ii) C ∩ [J × {0}] �= {(λ0, 0)}, where C is the closure of C in J × X;
(iii) either supPC = sup J or inf PC = inf J.

Remarks A.1. (1) The condition (A.1) implies that there exists ε > 0 such
that [λ0 − ε, λ0 + ε] ⊂ J , L(λ) ∈ GL(X,Y ) for all λ ∈ [λ0 − ε, λ0 + ε]\{λ0}, and

π(L, [λ0 − ε, λ0 + ε]) = (−1)dim ker L(λ0)

where π(L, [λ0 − ε, λ0 + ε]) denotes the parity of the path

L : [λ0 − ε, λ0 + ε] → Φ0(X,Y ).

See [7, 8].
(2) For K ∈ C(X,Y ), the condition (A.2) is equivalent to the properties K(0) =

0 and K : X → Y is Fréchet differentiable at zero with K ′(0) = 0.

Proof of Theorem A.1. Let F (λ, u) = L(λ)u + K(u). We begin by establishing
an appropriate property concerning the properness of F .

Let W be a bounded subset of R × X such that

inf J < inf PW � supPW < supJ

and let S be a compact subset of Y . We claim that W ∩F−1(S) is a compact subset
of R × X.

To see this, consider a sequence {(λn , vn )} ⊂ W ∩ F−1(S). Then F (λn , vn ) ∈ S
and, by passing to a subsequence, we may suppose that

F (λn , vn ) → y strongly in Y by the compactness of S,
K(vn ) → z strongly in Y by the compactness of K,
λn → λ ∈ J by the compactness of [inf PW, sup PW ].

Hence

L(λ)vn = [L(λ) − L(λn )]vn + L(λn )vn

= [L(λ) − L(λn )]vn + F (λn , vn ) − K(vn )
→ 0 + y − z strongly in Y,

since ‖L(λ) − L(λn )‖ → 0. But since L(λ) ∈ Φ0(X,Y ), there exist T ∈ B(Y,X)
and a compact linear operator C : X → X such that TL(λ) = I + C; see [5,
Chapter I, Theorem 3.15] for example. Hence (I + C)vn → T (y − z) strongly in X.
Now, passing to a further subsequence, we may suppose that C(vn ) → u strongly
in X and hence vn → T (y − z) − u strongly in X, establishing the compactness of
W ∩ F−1(S).

Given this kind of properness, we find that the conclusion of the theorem is
a simple variant of [18, Theorem 9.1] where a degree for continuous compact
perturbations of C1-Fredholm maps of index zero is defined; see also [21]. The
degree for compact perturbations of C1-Fredholm maps of index zero has also been
developed by Benevieri and Furi (and communicated in a private communication).
In fact, in the above setting, it is not necessary to appeal to the full degree theory
for compact perturbations of C1-Fredholm maps of index zero that are proper
on closed bounded sets. As Professor P. J. Rabier pointed out to us, under our
assumptions, the map L(λ)+K : X → Y can be reduced to a compact perturbation
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of the identity on X that depends continuously on λ ∈ J by the introduction of a
parametrix for the path L ∈ C(J,Φ0(X,Y )).

Appendix B. On asymptotic linearity

Definition. Let X and Y be real Banach spaces. A map M : X → Y is
asymptotically linear if there exists L ∈ B(X,Y ) such that

‖M(u) − L(u)‖Y /‖u‖X → 0 as ‖u‖X → ∞,

where L is called the asymptotic derivative of M .

Example. Let k ∈ C(R, R) be such that lim|t|→∞ k(t) = 0. Then the function
M = k(t)t : R → R is asymptotically linear with asymptotic derivative L = 0.

However, this property is not always inherited by the Nemytskii operator
associated with M .

Lemma B.1. Let k ∈ C(R, R) be such that k(0) �= 0 and lim|t|→∞ k(t) = 0. For
some p ∈ [1,∞), let X = W 2,p(RN ) and Y = Lp(RN ). For u ∈ X, k(u)u ∈ Y and
the mapping M : X → Y defined by M(u) = k(u)u for u ∈ X is continuous and
bounded. However, M : X → Y is not asymptotically linear.

Proof. Let θ = maxt∈R |k(t)|. Then |M(t)| � θ|t| for all t ∈ R and so by
the fundamental result concerning Nemytskii operators (see [25], for example), M
maps Y continuously and boundedly into Y . Hence, M : X → Y is continuous and
bounded, since X is continuously embedded in Y .

If M : X → Y is asymptotically linear, there exists L ∈ B(X,Y ) such that
‖M(u) − Lu‖Y /‖u‖X → 0 as ‖u‖X → ∞. First we show that L ≡ 0 and then we
show that this leads to a contradiction.

Consider any ϕ ∈ C∞
0 (RN ) such that ϕ �≡ 0. Then ‖tϕ‖X → ∞ and so

‖M(tϕ) − L(tϕ)‖Y /‖tϕ‖X → 0 as |t| → ∞.

But

‖M(tϕ) − L(tϕ)‖Y /‖tϕ‖X = ‖k(tϕ)ϕ − Lϕ‖Y /‖ϕ‖X

and ‖k(tϕ)ϕ‖Y → 0 as |t| → ∞ by dominated convergence. Hence Lϕ = 0 for all
ϕ ∈ C∞

0 (RN ) and so L ≡ 0. Therefore

lim
‖u‖X →∞

‖M(u)‖Y /‖u‖X = 0. (B.1)

Since k(0) �= 0, there exist δ > 0 and T > 0 such that |k(t)| � δ for all |t| � T .
Choose some u ∈ X \ {0} such that u(x) ∈ [−T, T ] for all x ∈ R

N . For τ > 0, set
uτ (x) = u(τx) for x ∈ R

N . Then uτ ∈ X with

‖uτ ‖p
Y = τ−N ‖u‖p

Y

and

‖uτ ‖p
X = τ−N ‖u‖p

Y + τp−N
N∑

i=1

‖∂iu‖p
Y + τ2p−N

N∑
i,j=1

‖∂i∂ju‖p
Y .
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In particular, ‖uτ ‖p
X → ∞ as τ → 0 since ‖u‖Y �= 0. However,

‖M(uτ )‖p
Y

‖uτ ‖p
X

=
1

‖uτ ‖p
X

∫
RN

|k(u(τx))uτ (x)|p dx

� δp ‖uτ ‖p
Y

‖uτ ‖p
X

= δp ‖u‖p
Y

τN ‖uτ ‖p
X

,

where τN ‖uτ ‖p
X → ‖u‖p

Y as τ → 0. Hence lim infτ→0 ‖M(uτ )‖p/‖uτ ‖p
X � δp ,

contradicting (B.1). Thus M cannot be asymptotically linear.

Lemma B.2. Under the hypotheses of Lemma B.1 with p > min
{
1, 1

2N
}
, let

ψ ∈ L1(RN ) ∩ L∞(RN ). The mapping Q : X → Y defined by Q(u) = ψk(u)u for
u ∈ X is continuous, bounded, compact and asymptotically linear with asymptotic
derivative equal to zero.

Proof. Since M = k(u)u : X → Y is continuous and bounded by Lemma B.1
and ψ ∈ L∞(RN ), it follows that Q : X → Y is continuous and bounded. Choose
some t ∈ (1,∞) such that X is continuously embedded in Ltp(RN ) and let s =
t/(t − 1). For any R > 0 and any u ∈ X,

∫
|x|�R

|ψk(u)u|p dx � |k|p∞
{ ∫

|x|�R

|ψ|sp
dx

}1/s{ ∫
|x|�R

|u|tp dx

}1/t

� |k|p∞
{ ∫

|x|�R

|ψ|sp
dx

}1/s

|u|ptp

� C(t) |k|p∞ ‖u‖p
X

{ ∫
|x|�R

|ψ|sp
dx

}1/s

.

Given any ε > 0, we can choose R > 0 such that
∫
|x|�R

|ψ|sp
dx < ε. Let

BR = {x ∈ R
N : |x| < R}. Since W 2,p(BR ) is compactly embedded in C(BR )

because p > 1
2N , one easily deduces the compactness of Q : X → Y.

Given any ε > 0, there exists Sε > 0 such that 0 � k(s) < ε for all |s| � Sε by
(1.6). For u ∈ X\{0}, let

D(u, ε) = {x ∈ RN : |u(x)| � Sε}.

Then

|ψk(u)u|pp � |ψ|p∞ εp

∫
D (u,ε)

|u|p dx + |k|p∞ Sp
ε

∫
RN \D (u,ε)

|ψ|p dx

� |ψ|p∞ εp ‖u‖p
X + |k|p∞ Sp

ε |ψ|p−1
∞ |ψ|1 .

Hence

lim sup
‖u‖X →∞

|ψk(u)u|p
‖u‖X

� |ψ|∞ ε for any ε > 0,

which shows that Q : X → Y is asymptotically linear with asymptotic derivative
zero.
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Lemma B.3. In addition to the hypotheses of Lemma B.2 suppose that k ∈
C1(R, R) and that |ψ|∞ �= 0. Set

K(u) =

{
ψk(u/ ‖u‖2

X )u if u ∈ X\{0},
0 if u = 0.

Then K : X → Y is Fréchet differentiable at u for all u ∈ X and we have
K ∈ C1(X\{0}, Y ). However, K ′(0) = 0 but lim sup‖u‖X →0 ‖K ′(u)‖ > 0, so

K �∈ C1(X,Y ).

Proof. First we observe that

K(u) =

{
‖u‖2

X Q(u/ ‖u‖2
X ) if u ∈ X\{0},

0 if u = 0.

Using [19, Lemma 5.3(i)], we deduce that Q ∈ C1(X,Y ). Furthermore, using the
standard properties of substitution operators, we find that

| · |p ∈ C1(Lp(RN )\{0}, R);

see [27, Chapter 1] for example. But if u ∈ X and either ∂αu ≡ 0 or ∂α∂β u ≡ 0 for
some α, β ∈ {1, 2, . . . , N}, then u ≡ 0. Hence ‖·‖X = |·|2,p ∈ C1(W 2,p(RN )\{0}, R)
and it follows by composition that K ∈ C1(X\{0}, Y ).

For the differentiability of K at u = 0, we observe that

lim
‖u‖X →0

‖K(u)‖Y

‖u‖X

= lim
‖u‖X →0

‖u‖X

∥∥∥∥Q

(
u

‖u‖2
X

)∥∥∥∥
Y

= lim
‖v‖X →∞

‖v‖−1
X ‖Q(v)‖Y = 0,

by Lemma B.2 with v = u/‖u‖2
X . Hence K is Fréchet differentiable at u = 0 with

K ′(0) = 0.
Let a, b ∈ R

N with |a − b| > 2 and let Ba and Bb denote the open balls of
unit radius about these points. Consider two functions u, v ∈ C∞

0 (RN )\{0} with
suppu ⊂ Ba and supp v ⊂ Bb. Now

lim
t→0

K(u + tv) − K(u)
t

= K ′(u)v

and ∥∥∥∥K(u + tv) − K(u)
t

∥∥∥∥p

Y

=
∫
Ba

∣∣∣∣K(u + tv) − K(u)
t

∣∣∣∣p dx

+
∫
Bb

∣∣∣∣K(u + tv) − K(u)
t

∣∣∣∣p dx

�
∫
Bb

∣∣∣∣K(u + tv)
t

∣∣∣∣p dx

=
∫
Bb

∣∣∣ψk(tv/ ‖u + tv‖2
X )tv

∣∣∣p
|t|p dx

=
∫
Bb

∣∣∣∣ψk

(
tv

‖u + tv‖2
X

)
v

∣∣∣∣p dx.
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Since ‖u‖X �= 0, it follows by dominated convergence that

lim
t→0

∫
Bb

∣∣∣∣ψk

(
tv

‖u + tv‖2
X

)
v

∣∣∣∣p dx = |k(0)|p
∫
Bb

|ψv|p dx,

whereas

‖K ′(u)v‖p
Y = lim

t→0

∥∥∥∥K(u + tv) − K(u)
t

∥∥∥∥p

Y

and so

‖K ′(u)v‖p
Y � |k(0)|p

∫
Bb

|ψv|p dx.

Hence

‖K ′(u)‖p
B (X,Y ) � |k(0)|p

∫
Bb

|ψv|p dx/ ‖v‖p
X .

Since |ψ|∞ �= 0, we can choose b ∈ R
N such that∫

Bb

|ψ|2p
dx > 0

and this implies that we can choose vψ ∈ C∞
0 (RN ) such that supp vψ ⊂ Bb and∫

Bb

|ψvψ |p dx � 1
2

∫
Bb

|ψ|2p
dx > 0.

Thus we see that, for any u ∈ C∞
0 (RN )\{0} such that suppu ⊂ Ba,

‖K ′(u)‖B (X,Y ) � L where L = |k(0)|
{

1
2

∫
Bb

|ψ|2p
dx

}1/p/
‖vψ‖X .

Considering a sequence {un} ⊂ C∞
0 (RN )\{0} which is such that suppun ⊂ Ba and

‖un‖X → 0, we see that lim sup‖u‖X →0 ‖K ′(u)‖B (X,Y ) � L > 0, completing the
proof.

Appendix C. Some topological lemmas

Lemma C.1. The set V defined in (5.8) is compact.

Proof. Let {(λn , vn )} ⊂ V , for n = 1, 2, 3, . . . , be an infinite sequence. By the
proof of Theorem 5.2(ii), Q is bounded in R×X. So, passing to a subsequence, we
may suppose that either vn > 0 for all n or vn < 0 for all n and

λn
n→ λ ∈ [µ,Λ(α)], (C.1)

vn
n
⇀ v weakly in X with v � 0 or v � 0, (C.2)

‖vn‖ n→ � � 0.

To prove the lemma, it is enough to show that

vn
n→ v strongly in X with (λ, v) ∈ V. (C.3)

By (λn , vn ) ∈ V ⊂ Z, (5.3) holds with ψn (x) ≡ 1, that is,

L(λn )vn + k

(
vn

‖vn‖2

)
vn = 0. (C.4)
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Then, as in the proof of Theorem 5.2(i), we know that vn satisfies (3.14). We now
prove the lemma by considering two cases: � = 0 and � > 0.

Case (A): � = 0. Since � = 0, vn
n→ 0 strongly in X. As in the proof of

Theorem 5.2(i), Lemma 3.6 can be used to show that λ = Λ(α), and we have
the required result: (Λ(α), 0) ∈ V .

Case (B): � > 0. In this case, we can repeat the proof of (5.4), just replacing
ψn (x) by 1, to show that vn

n→ v strongly in X and that (5.7) holds with v2 > 0 in
R

N . Thus (λ, v) ∈ V .

The following lemma was proved in [26, Chapter I, § 9.3].

Lemma C.2 (Whyburn). Suppose that V1 and V2 are closed subsets of a
compact metric space V such that there is no connected component of V that
intersects both V1 and V2. Then there exist disjoint compact sets U1 and U2 such
that

V = U1 ∪ U2, V1 ⊂ U1 and V2 ⊂ U2.

The next lemma is Proposition 5.1 of [1].

Lemma C.3 [1, Proposition 5.1]. Suppose A and B are closed and not separated
in a compact X. Then there exists a connected D in X\{A∪B} such that D̄∩A �= ∅,
and D̄ ∩ B �= ∅.
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