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POSITIVE EIGENFUNCTIONS OF
A SCHRÖDINGER OPERATOR

C. A. STUART and HUAN-SONG ZHOU

Abstract

The paper considers the eigenvalue problem

−∆u − αu + λg(x)u = 0 with u ∈ H1(RN ), u �= 0,

where α, λ ∈ R and

g(x) ≡ 0 on Ω, g(x) ∈ (0, 1] on R
N \ Ω and lim

|x |→+∞
g(x) = 1

for some bounded open set Ω ∈ R
N .

Given α > 0, does there exist a value of λ > 0 for which the problem has a positive solution?
It is shown that this occurs if and only if α lies in a certain interval (Γ, ξ1) and that in this case
the value of λ is unique, λ = Λ(α). The properties of the function Λ(α) are also discussed.

1. Introduction

In this paper we discuss the eigenvalue problem{
−∆u − αu + λgu = 0 in R

N

u ∈ H1(RN ), u �= 0,
(1.1)

where the function g has the following properties.

g ∈ L∞(RN , R), and there exists a non-empty bounded open set Ω ⊂ R
N

with Lipschitz boundary such that g(x) ≡ 0 on Ω̄, g(x) ∈ (0, 1] on R
N \Ω

and lim|x|→+∞ g(x) = 1. (G1)

Thus g represents a potential well that deepens as λ > 0 increases. In (1.1), both
α and λ are real numbers and we are concerned with the following question. Given
α > 0, does there exist a value of λ for which the problem has a positive solution?
More precisely, a number λ is said to be an eigenvalue of (1.1) whenever there exists
u ∈ H1(RN )\{0} such that∫

RN

[∇u · ∇v − αuv + λguv] dx = 0 for all v ∈ H1(RN ).

In our discussion we take advantage of the additional regularity of eigenfunctions
that follows from our assumptions.

Proposition 1.1. If g satisfies (G1) and v ∈ H1(RN ) is an eigenfunction of
(1.1), then v ∈ W 2,p(RN ) for all p ∈ [2,∞). Hence v ∈ C1(RN ).
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Proof. See [9, Corollary 2.15] for example, or [7] for a deeper treatment.

There are values of α for which (1.1) has no eigenvalues and the following
quantities enable us to clarify the situation. Let ξ1 be the first eigenvalue of the
Dirichlet problem {

−∆ϕ = ξϕ in Ω
ϕ ∈ H1

0 (Ω), Ω is given by (G1). (1.2)

As is well known, ξ1 > 0, and there is a unique eigenfunction satisfying the conditions∫
Ω

ϕ2 dx = 1 and ϕ > 0 on Ω. (1.3)

Next set

Γ = inf
{∫

RN

|∇u|2 dx : u ∈ H1(RN ) and
∫

RN

(1 − g)u2 dx = 1
}

. (1.4)

We begin by establishing the following result concerning the quantity Γ.

Lemma 1.2. Let (G1) be satisfied.
(i) 0 � Γ < ξ1.
(ii) If N = 1, 2, then Γ = 0.
(iii) If N � 3 and

� = lim inf
|x|→+∞

[1 − g(x)]|x|2 > 0,

then Γ � ((N − 2)/2)2/�. In particular, Γ = 0 if � = ∞.
(iv) If N � 3 and ‖1 − g‖LN / 2(RN ) < ∞, then Γ � SN /‖1 − g‖LN / 2(RN ), where

SN := inf{
∫

RN |∇u|2 dx : u ∈ H1(RN ) and
∫

RN |u|2∗
dx = 1} and 2∗ = 2N/(N − 2).

Remark 1.3. Observe that, if there exists γ > 2 such that

lim
|x|→+∞

sup[1 − g(x)]|x|γ < ∞,

then ‖1 − g‖LN / 2(RN ) < ∞, whereas if

� = lim
|x|→+∞

inf[1 − g(x)]|x|2 > 0,

then ‖1 − g‖LN / 2(RN ) = ∞.

Furthermore, the value of SN can be found in [6], for example.
Problem (1.1) may have no eigenvalues λ in the interval (−∞, α). In order to

formulate a precise result of this kind, we introduce the following condition.

(G2)

∫∞

−∞
{1 − g(x)} dx < ∞ N = 1

lim
|x|→∞

|x|{1 − g(x)} = 0 N � 2.

We use this condition in the next result to ensure that the Schrödinger operator
−∆ − λ(1 − g) has no L2-eigenvalues in the interval (0,∞). It can be replaced by
any other hypothesis that yields the same conclusion, such as [8, Theorem XIII.58].

Lemma 1.4. Under the hypotheses (G1) and (G2), problem (1.1) has no
eigenvalues λ in the interval (−∞, α].
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Proof. If u satisfies (1.1), then

−∆u − λ(1 − g)u = (α − λ)u,

and so α− λ is an L2-eigenvalue of the Schrödinger operator −∆− λ(1− g). Using
(G2) and [2, Proposition 10.10], this implies that λ > α if N � 2. For N = 1, the
same conclusion follows from the asymptotic form of all solutions of the differential
equation; see the proof of [8, Theorem XIII.56] for example.

Henceforth, we concentrate on the existence of eigenvalues of (1.1) in the interval
(α,∞). Our main results concerning problem (1.1) can be summarized as follows.

Theorem 1.5. Let the condition (G1) be satisfied.
(i) If α � ξ1, then there is no eigenvalue of (1.1) in [α,∞) with a non-negative

eigenfunction.
(ii) If Γ < α < ξ1, then there exists a unique eigenvalue λ = Λ(α) of (1.1) having

a positive eigenfunction. Furthermore, Λ(α) > α, and it is simple in the sense that
ker(−∆−α+Λ(α)g) = span{uΛ(α)}, where uΛ(α) > 0 on R

N . All other eigenvalues
of (1.1) are less than Λ(α), 1 and their eigenfunctions change sign.

(iii) The function Λ ∈ C∞((Γ, ξ1)) and is strictly increasing with

lim
α→Γ+

Λ(α) = Γ and lim
α→ξ1−

Λ(α) = +∞.

(iv) For Γ < α < ξ1, Λ(α) is characterized as the unique value of λ for which
Σα (λ) = 0, where

Σα (λ) = inf
{

aλ(u) : u ∈ H1(RN ) and

∫
RN

u2 dx = 1
}

(1.5)

and

aλ(u) =
∫

RN

|∇u|2 − αu2 + λgu2 dx.

In other words, Λ(α) is the unique value of λ for which 0 is the infimum of the
spectrum of the Schrödinger operator

Aα
λ u = −∆u − (α − λg)u. (1.6)

(v) If α � Γ, then problem (1.1) has no eigenvalues λ in the interval (α,∞).

Remark 1.6. Of course the alternative point of view in which λ is fixed and
we seek values of α for which (1.1) has a solution is the standard eigenvalue for the
Schrödinger operator −∆+λg(x), and it is well understood. However, even for this
problem, our work yields the following non-trivial conclusion. If α(λ) denotes the
lowest eigenvalue of −∆ + λg(x), then α(λ) increases from Γ to ξ1 as λ increases
from Γ to ∞. A more intuitive form of this result is obtained by shifting the top of
the potential well to the level zero. In this case, (1.1) can be written as

−∆u + λ(g − 1)u = ρu,

where ρ = α − λ, and we have

ρ(λ) = −λ + ξ1 + ◦
(

1
λ

)
as λ → ∞,

where ρ(λ) is the lowest eigenvalue of this problem.
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Our work involves describing the eigenvalue λ as a function of the parameter α
rather than the eigenvalue α as a function of the parameter λ in the traditional
treatment. We were confronted by this form of the problem in our work [10]
on the following nonlinear eigenvalue problem, which has (1.1) as its asymptotic
linearization. {

−∆u + u + λg(x)u = f(u) in R
N

u ∈ H1(RN ) with u �≡ 0, N � 1,
(1.7)

where g satisfies (G1) and f has the following properties.
(F1) f ∈ C1(R, R) and f(s)/s → 0 as s → 0.
(F2) There exists α > 0 such that f(s)/s → α+1 as |s| → +∞ and 0 � f(s)/s �

α + 1 for all s �= 0.

Replacing f(u) by its asymptotic linearization (α+1)u leads to (1.1) with α > 0.

2. Proof of Lemma 1.2

(i) Let ϕ ∈ H1
0 (Ω) be an eigenfunction of (1.2) corresponding to ξ1 with∫

Ω
ϕ2 dx = 1. Extending ϕ by zero outside Ω, we construct a function ϕ̃ ∈ H1(RN )

such that gϕ̃ ≡ 0, and hence
∫

RN (1 − g)ϕ̃2 dx = 1. Thus∫
RN

|∇ϕ̃|2 dx =
∫
Ω

|∇ϕ|2 dx = ξ1

∫
Ω

ϕ2 dx = ξ1

∫
RN

(1 − g)ϕ̃2 dx,

showing that Γ � ξ1. However, if Γ = ξ1, it follows that ϕ̃ ∈ H1(RN ) minimizes∫
RN |∇u|2 dx under the constraint

∫
RN (1 − g)u2 dx = 1 and consequently∫

RN

∇ϕ̃ · ∇v dx = ξ1

∫
RN

(1 − g)ϕ̃v dx for all v ∈ H1(RN ).

Since gϕ̃ ≡ 0, on R
N , this implies that ϕ̃ is an L2-eigenfunction of −∆ on R

N .
However, as is well known (see [9, Theorem 3.8] for example), −∆ has no such
eigenfunctions and hence Γ < ξ1.

(ii) By (G1), there exists a function ψ ∈ C∞
0 (RN ) such that ψ �≡ 0 and g − 1 �

ψ � 0 on R
N . Given any ε > 0, it follows from [8, Theorem XIII.11] that there

exists vε ∈ H2(RN )\{0} and µε < 0 such that (−∆ + εψ)vε = µεvε . Hence∫
RN

[
|∇vε |2 + ε(g − 1)v2

ε

]
dx �

∫
RN

(
|∇vε |2 + εψv2

ε

)
dx = µε

∫
RN

v2
ε dx < 0,

showing that Γ � ε.

(iii) Consider any T > ((N − 2)/2)2/�. We can choose ε ∈ (0, 1) and C = C(ε) ∈
(0, �) such that [

N − 2
2

+ ε

]2

< TC.

There exists R = R(C) > 0 such that

(1 − g(x))|x|2 � C for all |x| � R.

Then we set

ψ(x) =
{

1 |x| � R

(|x|/R)−[(N −2/2)+ε] |x| > R.
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Now ψ /∈ H1(RN ), but ∇ψ and ψ/|x| ∈ L2(RN ) with∫
|x|�R

|x|−2ψ(x)2 dx = ωN RN −2+2ε

∫∞

R

r−1−2ε dr

∫
RN

|∇ψ(x)|2 dx = ωN RN −2+2ε

[
N − 2

2
+ ε

]2 ∫∞

R

r−1−2ε dr,

where ωN denotes the (N−1)-dimensional measure of the unit sphere in R
N . Hence∫

RN

|∇ψ(x)|2 dx −TC

∫
|x|�R

|x|−2ψ(x)2 dx

= ωN RN −2+2ε


(

N − 2
2

+ ε

)2

− TC


∫∞

R

r−1−2ε dr < 0.

Let ζ ∈ C1(RN ) be such that

ζ(x) ≡ 1 for |x| � 1 and ζ(x) ≡ 0 for |x| � 2,

and set ψk (x) = ζ(x/k)ψ(x). It follows that ψk ∈ H1(RN ) for any fixed k ∈ N with∫
|x|�R

|x|−2ψk (x)2 dx →
∫
|x|�R

|x|−2
ψ(x)2 dx

as k → ∞. Furthermore,

∇ψk (x) =
1
k

ψ(x)∇ζ

(
x

k

)
+ ζ

(
x

k

)
∇ψ,

where ∫
RN

ζ

(
x

k

)2

|∇ψ(x)|2 dx
k→

∫
RN

|∇ψ(x)|2 dx

by dominated convergence, and∫
RN

[
1
k

ψ(x)∇ζ

(
x

k

)]2

dx
k→ 0,

since∫
RN

[
1
k

ψ(x)∇ζ

(
x

k

)]2

dx

=

( ∫
|x|�R

+
∫
|x|�R

)[
1
k

ψ(x)∇ζ

(
x

k

)]2

dx

� C2

k2

∫
|x|�R

dx +
1
k2

kN

∫
R/k�|y |�2

|∇ζ(y)|2
(

k|y|
R

)
−N +2−2ε dy

� C2

k2

∫
|x|�R

dx + k−2εRN −2+2ε

∫
1�|y |�2

|∇ζ(y)|2|y|−N +2−2ε dy
k→ 0.

Hence ∫
RN

|∇ψk |2 dx
k→

∫
RN

|∇ψ|2 dx.

Therefore there exists k0 such that∫
RN

|∇ψk |2 dx − TC

∫
|x|�R

|x|−2ψk
2 dx < 0 for all k � k0.
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It follows that∫
RN

|∇ψk |2 dx − T

∫
RN

(1 − g)ψk
2 dx

�
∫

RN

|∇ψk |2 dx − T

∫
|x|�R

(1 − g)ψk
2 dx

�
∫

RN

|∇ψk |2 dx − TC

∫
|x|�R

|x|−2ψk
2 dx < 0

for all k � k0, showing that Γ � T. Hence Γ � ((N − 2)/2)2/�. Clearly Γ = 0 if
� = +∞.

(iv) For all u ∈ H1(RN ),

0 �
∫

RN

(1 − g)u2 dx �
(∫

RN

|1 − g|N/2 dx

)
2/N

(∫
RN

|u|2∗
dx

)
(N −2)/N

� ‖1 − g‖LN / 2(RN )‖u‖2
L2∗ (RN )

� ‖1 − g‖LN / 2(RN )S
−1
N

∫
RN

|∇u|2 dx,

and the proof of (iv) is complete.

3. Existence and properties of Λ(α)

It follows from Proposition 1.1 that any eigenfunction u of problem (1.1) belongs
to C(RN )∩H2(RN ), and this leads us to introduce a Schrödinger operator having
u as an eigenfunction. Define

Aλ : D(Aλ ) = H2(RN ) ⊂ L2(RN ) −→ L2(RN )

by
Aλu = −∆u − αu + λgu = −∆u − (α − λg)u. (3.1)

Then Aλ is a self-adjoint operator in L2(RN ) with spectrum σ(Aλ) and essential
spectrum σe(Aλ ) = [λ−α,∞) (see [9, Section 3] for example). Furthermore, setting

Σ(λ) = inf σ(Aλ),

we have

Σ(λ) = inf
{

aλ(u) : u ∈ H1(RN ) and
∫

RN

u2 dx = 1
}

> −∞, (3.2)

where

aλ (u) =
∫

RN

[|∇u|2 − αu2 + λgu2] dx

(see [9, Theorem 3.10] for example). In fact, all the quantities just mentioned depend
on α as well as λ. In most of the discussion, the value of α is fixed and it is the
variation with respect to λ that is of interest. However, when the dependence on α
is relevant, we use the more explicit notation

Aα
λ , aα

λ (u) and Σα (λ).

If we set

Sα := {λ � α : Σα (λ) < 0} and Tα := {λ � α : Σα (λ) > 0},
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it is clear from (3.2) that Sα and Tα are intervals since Σα (λ) is non-decreasing
in λ.

Lemma 3.1. If (G1) holds and λ > α, we have Σ(λ) = 0 if and only if λ is an
eigenvalue of (1.1) with a non-negative eigenfunction uλ . In this case, 0 is a simple
eigenvalue of Aλ , ker Aλ = span{uλ} and uλ > 0 on R

N .

Proof. Suppose first that Σ(λ) = 0. Then 0 = inf σ(Aλ) by (3.2) and 0 < λ−α =
inf σe(Aλ ). Hence 0 is an eigenvalue of Aλ and there exists uλ ∈ C(RN ) ∩H2(RN )
such that ker Aλ = span{uλ} and uλ > 0 on R

N (see [9, Theorem 3.20] for example).
Thus λ is an eigenvalue of (1.1) with eigenfunction uλ .

Conversely, if λ is an eigenvalue of (1.1) with an eigenfunction uλ � 0, then we
have already observed that uλ ∈ C(RN )∩H2(RN ) and Aλuλ = 0. Thus 0 ∈ σ(Aλ ),
and so Σ(λ) � 0 < inf σe(Aλ ). By [9, Theorem 3.20], this implies that Σ(λ) is a
simple eigenvalue of Aλ with a positive eigenfunction v ∈ H2(RN ). Thus

Σ(λ)〈uλ , v〉 = 〈uλ ,Aλv〉 = 〈Aλuλ , v〉 = 0 and 〈uλ , v〉 > 0,

where 〈·, ·〉 is the usual scalar product in L2(RN ), showing that Σ(λ) = 0.

Lemma 3.2. If (G1) holds, then α ∈ Sα if and only if Γ < α.

Proof. If Σα (α) < 0, then

inf
{∫

RN

|∇u|2 − α(1 − g)u2 dx : u ∈ H1(RN ) and
∫

RN

u2 dx = 1
}

= Σα (α) < 0,

and so there exists u ∈ H1(RN ) such that∫
RN

u2 dx = 1 and
∫

RN

[|∇u|2 − α(1 − g)u2] dx < 0.

It follows that
∫

RN (1 − g)u2 dx > 0 and that Γ < α.
On the other hand, if Γ < α, then there exists u ∈ H1(RN ) such that∫

RN |∇u|2 dx < α
∫

RN (1 − g)u2 dx, and hence Σα (α) < 0.

Lemma 3.3. Let (G1) hold.
(i) Sα and Tα are open subsets of [α,+∞).
(ii) If α � ξ1, then Sα = [α,∞).
(iii) If Γ < α < ξ1, then there exists Λ(α) ∈ (α,+∞) such that Sα = [α,Λ(α)),

where α < Λ(α) < ∞.

Proof. (i) By the definition of aλ , we see that, for all λ, µ ∈ R and u ∈ H1(RN ),

aλ (u) − aµ(u) = (λ − µ)
∫

RN

g(x)u2 dx. (3.3)

Suppose that λ ∈ Sα . Then there exists u ∈ H1(RN ) such that∫
RN

u(x)2 dx = 1 and aλ (u) < 0.

Since

aµ(u) � aλ(u) + |λ − µ|
∫

RN

gu2 dx � aλ(u) + |λ − µ|,
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it follows that Σ(µ) < 0 for all µ � α such that |λ − µ| � 1
2 |aλ (u)|, showing that

Sα is open.
Suppose now that λ ∈ Tα . Then for all u ∈ H1(RN ) with

∫
RN u(x)2 dx = 1, we

have

aµ(u) � aλ (u) − |λ − µ| � Σ(λ) − |λ − µ| � 1
2Σ(λ) > 0

for all µ such that |λ − µ| � 1
2Σ(λ). Thus Σ(µ) � 1

2Σ(λ) > 0 for all µ such that
|λ − µ| � 1

2Σ(λ), showing that Tα is open.

(ii) Let ϕ1 ∈ H1
0 (Ω) be the eigenfunction of (1.2) satisfying (1.3), and set

ϕ = ϕ1 in Ω, ϕ ≡ 0 in R
N \Ω.

We now have ϕ ∈ H1(RN ) and

aλ (ϕ) =
∫
Ω

(
|∇ϕ1|2 − αϕ2

1

)
dx = ξ1 − α and

∫
RN

ϕ2 dx = 1,

showing that Σ(λ) < 0 if α > ξ1. Furthermore, if α = ξ1 and Σ(λ) = 0, then

0 = aλ(ϕ) = min
{∫

RN

aλ (u) dx : u ∈ H1(RN ) and
∫

RN

u2 dx = 1
}

.

Hence there is a Lagrange multiplier ξ ∈ R such that∫
RN

{∇ϕ · ∇v − [α − λg]ϕv} dx = ξ

∫
RN

ϕv dx for all v ∈ H1(RN ).

Putting v = ϕ, we see that ξ = ξ1 − α = 0, and then∫
RN

(∇ϕ · ∇v − ξ1ϕv) dx = 0 for all v ∈ H1(RN )

since gϕ ≡ 0 in R
N . As in the proof of Lemma 1.2(iv), this is in contradiction to

the fact that −∆ has no eigenfunctions in L2(RN ). Hence Σ(λ) < 0 if α = ξ1 too.

(iii) Suppose now that Γ < α < ξ1. Then α ∈ Sα by Lemma 3.2, and there
exists Λ(α) > α such that Sα = [α,Λ(α)) since Sα is an open subset (interval) of
[α,∞). If Λ(α) = ∞, then Sα = [α,+∞), and for any integer n � α, there exists
un ∈ H1(RN ) with

∫
RN u2

n dx = 1 such that

an (un ) =
∫

RN

(
|∇un |2 − [α − ng]u2

n

)
dx < 0. (3.4)

Since g(x) � 0, this implies that∫
RN

|∇un |2 dx � α

∫
RN

u2
n dx = α,

and so {un} is bounded in H1(RN ). Passing to a subsequence, still denoted by un ,
we may assume that, for some u ∈ H1(RN ),

un
n
⇀ u weakly in H1(RN ), un

n→ u strongly in L2
loc(R

N ). (3.5)

By (3.4),

n

∫
RN

gu2
n dx < α

∫
RN

u2
n dx = α. (3.6)
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Since lim|x|→+∞ g(x) = 1, there exists a compact set K ⊂R
N such that g(x) � 1

2
for almost all x /∈ K. By (3.6), we have

n

2

∫
RN \K

u2
n dx � n

∫
RN \K

gu2
n dx � n

∫
RN

gu2
n dx < α,

that is, ∫
RN \K

u2
n dx <

2α

n
,

and so

1 =
∫

RN

u2
n dx =

∫
K

u2
n dx +

∫
RN \K

u2
n dx <

∫
K

u2
n dx +

2α

n
.

Since K is compact, this implies that

1 � lim
n→∞

∫
K

u2
n dx =

∫
K

u2 dx �
∫

RN

u2 dx.

However, ∫
RN

u2 dx � lim inf
n→∞

∫
RN

u2
n dx = 1

and hence ∫
RN

u2 dx =
∫
K

u2 dx = 1.

However,

an (un ) =
∫

RN

(
|∇un |2 − [α − ng]u2

n

)
dx �

∫
RN

|∇un |2 dx − α

∫
RN

u2
n dx,

and, by (3.4),

0 � lim inf
n→+∞

an (un ) �
∫

RN

|∇u|2 dx − α. (3.7)

On the other hand, by (3.6),

0 �
∫

RN

gu2 dx � lim inf
n→∞

∫
RN

gu2
n dx � lim inf

n→∞

α

n
= 0.

However, g(x) ≡ 0 in Ω̄ and g(x) > 0 in R
N \Ω by (G1). Hence this implies that

u = 0 a.e. on R
N \ Ω and u = 0 a.e. on R

N \ Ω.

Since Ω has a Lipschitz boundary, we have ũ ∈ H1
0 (Ω), where ũ is the restriction

of u to Ω (see [1, Lemma A 5.11] for example). By (1.2),
∫
Ω
(|∇ũ|2 − ξ1ũ

2) dx � 0.
Thus

0 �
∫
Ω

(|∇ũ|2 − ξ1ũ
2) dx =

∫
RN

|∇u|2 dx − ξ1 <

∫
RN

|∇u|2 dx − α,

since
∫

RN u2 dx = 1 and α < ξ1, which contradicts (3.7). Thus Λ(α) = supSα <
+∞.

Lemma 3.4. Let (G1) be satisfied with Γ < α < ξ1, and consider λ � α.
Then Σ(λ) = 0 if and only if λ = Λ(α), where Λ(α) is given by Lemma 3.3(iii).
Furthermore, Λ(α) < Λ(β) for Γ < α < β < ξ1.
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Proof. By Lemma 3.2, α ∈ Sα . If λ � α and Σ(λ) = 0, then λ /∈ Sα and λ > α.
By Lemma 3.1, there exists uλ ∈ C(RN ) ∩ H2(RN ) with

uλ > 0, Aλuλ = 0 and
∫

RN

u2
λ dx = 1.

Since g(x) > 0 on R
N \Ω, ∫

RN

gu2
λ dx �= 0.

For any ε > 0, it follows from (3.3) that

aλ−ε(uλ ) = aλ(uλ ) − ε

∫
RN

gu2
λ dx = −ε

∫
RN

gu2
λ dx < 0,

and this means that λ − ε ∈ Sα for any ε > 0. Therefore λ = supSα = Λ(α).
Conversely, if λ = Λ(α), it follows from Lemma 3.3 that λ /∈ Sα ∪ Tα , and, since

λ � α, we must have Σ(λ) = 0.
Consider α, β ∈ (Γ, ξ1) with α < β. Since Σα (Λ(α)) = 0, it follows from Lemma

3.1 that there exists zα ∈ H2(RN )\{0} such that ker Aα
Λ(α) = span{zα} and hence

aα
Λ(α)(zα ) = 0. However,

aβ
Λ(α)(zα ) = aα

Λ(α)(zα ) + (α − β)
∫

RN

z2
α dx = (α − β)

∫
RN

z2
α dx < 0,

showing that Λ(α) ∈ Sβ and consequently Λ(β) > Λ(α).

Lemma 3.5. Let L : X = W 2,p(RN ) −→ Lp(RN ), where p ∈ [2,∞) is a
Fredholm operator of index zero. Let {vn} ⊂ X, vn

n
⇀ v weakly in X, and let

{Lvn} converge strongly in Lp(RN ). Then vn
n→ v strongly in X.

Proof. Since L : X −→ Lp(RN ) is a Fredholm operator of index zero, by [3,
Chapter I, Theorem 3.15], there exists T ∈ B(Lp(RN ),X) such that

TL = I + K,

where K : X −→ X is a compact linear operator. Let Lvn
n→ w strongly in Lp(RN )

for some w ∈ Lp(RN ); then (I + K)vn = TLvn
n→ Tw strongly in X. Since K

is compact, it follows that Kvn
n→ Kv strongly in X. Therefore, vn

n→ Tw − Kv
strongly in X, and hence that vn

n→ v = Tw − Kv strongly in X.

4. Proof of Theorem 1.5

(i) If α � ξ1, it follows from Lemma 3.3 that Σ(λ) < 0 for all λ � α. Thus

inf σ(Aλ) = Σ(λ) < 0 and inf σe(Aλ ) = λ − α � 0 for λ � α.

Hence there exists vλ ∈ C(RN )∩H2(RN ) such that Aλvλ = Σ(λ)vλ and vλ > 0 on
R

N (see [9, Theorem 3.20] for example). However, if u � 0 satisfies (1.1), it follows
from Proposition 1.1 that u ∈ C(RN ) ∩ H2(RN ) and Aλu = 0 on R

N . As in the
proof of Lemma 3.1, this leads to a contradiction. Hence (1.1) has no non-negative
eigenfunction with λ � α.

(ii) We now have 0 � Γ < α < ξ1. It follows from Lemma 3.3(iii) and 3.4 that
Sα = [α,Λ(α)), Tα = (Λ(α),∞) and λ = Λ(α) > α is the unique point in [α,∞)
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such that Σ(λ) = 0. By Lemma 3.1, Λ(α) is an eigenvalue of (1.1) and 0 is a
simple eigenvalue of AΛ(α) with ker AΛ(α) = span{zα}, where zα = uΛ(α) > 0 on
R

N . Suppose now that µ �= Λ(α) is also an eigenvalue of (1.1) with eigenfunction
w ∈ H1(RN ). Then, by Proposition 1.1, w ∈ H2(RN ) ∩ C(RN ) and so 0 is an
eigenvalue of Aµ. Since Σ(µ) = inf σ(Aµ), this shows that Σ(µ) � 0 and hence
µ � supSα = Λ(α). Therefore Λ(α) is the largest eigenvalue of (1.1). Furthermore,

0 =
∫

RN

{∇zα · ∇w − αzαw + Λ(α)g(x)zαw} dx

=
∫

RN

{∇w · ∇zα − αwzα + µg(x)wzα} dx

so that

(Λ(α) − µ)
∫

RN

g(x)zαw dx = 0.

For µ < Λ(α), this implies that∫
RN \Ω

g(x)zαw dx = 0.

Since zα > 0 and g(x) > 0 on R
N \Ω, it follows that either w ≡ 0 on R

N \Ω or w
must change sign. However, if w ≡ 0 on R

N \Ω, then its restriction w̃ to Ω belongs
to H2(Ω)∩H1

0 (Ω)\{0}, since ∂Ω is Lipschitz (see [1, Lemma A 5.11]) and satisfies
−∆w̃ − αw̃ = 0 on Ω. However, α < ξ1, so this is impossible, and consequently w
must change sign on R

N \Ω.

(iii) By part (ii), we know that for any α ∈ (Γ, ξ1), there exists Λ(α) ∈ (α,+∞)
such that Σα (Λ(α)) = 0, and it is a strictly increasing function of α by Lemma 3.4.

Suppose that {αn} ⊂ (Γ, ξ1) is an increasing sequence such that αn
n→ ξ1.

Then Λ(αn ) n→ Λ, where Λ � ξ1, since Λ(αn ) > αn . If Λ < ∞, for any
u ∈ H1(RN ), aαn

Λ(αn )(u) n→ aξ1
Λ (u). However, by Lemma 3.4, for all n ∈ N,

0 = Σαn (Λ(αn )) = inf{aαn

Λ(αn )(u) : u ∈ H1(RN ) and |u|2 = 1}, and so aαn

Λ(αn )(u) � 0
for all u ∈ H1(RN ). This implies that aξ1

Λ (u) � 0 for all u ∈ H1(RN ) and hence that
Σξ1(Λ) = inf{aξ1

Λ (u) : u ∈ H1(RN ) and |u|2 = 1} � 0. This means that Λ /∈ Sξ1 ,
contradicting the fact that Sξ1 = [ξ1,∞), which was established in Lemma 3.3.
Thus limα→ξ1− Λ(α) = ∞.

Let τ = limα→Γ+ Λ(α), and observe that since Λ(α) > α, we must have τ � Γ.
Let us suppose that τ > Γ. Consider a decreasing sequence {αn} such that αn

n→ Γ.
As in part (ii), there exists {zn} ⊂ H2(RN ) ∩ C(RN ) such that |zn |2 = 1 and

−∆zn − αnzn + Λ(αn )gzn = 0 on R
N .

Hence {∆zn} is bounded in L2(RN ), from which it follows that {zn} is bounded in
H2(RN ). Passing to a subsequence, we suppose henceforth that zn

n
⇀ z weakly in

H2(RN ). However,

−∆zn − Γzn + τgzn = (αn − Γ)zn + (τ − Λ(αn ))gzn on R
N ,

where (αn − Γ)zn + (τ − Λ(αn ))gzn
n→ 0 strongly in L2(RN ) and −∆ − Γ + τg :

H2(RN ) −→ L2(RN ) is a Fredholm operator of index zero since lim|x|→∞{−Γ +
τg(x)} = −Γ + τ > 0 [5, Theorem 2.3]. Then Lemma 3.5 implies that zn

n→ z
strongly in H2(RN ), and hence −∆z − Γz + τgz = 0 with |z|2 = 1. Furthermore,∫

RN gz2 dx > 0, since otherwise z ≡ 0 on R
N \Ω, and we would then have −∆u = Γu
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on R
N , contradicting the fact that −∆ has no L2-eigenfunctions on R

N . However,
by the definition of Γ, we have

0 �
∫

RN

[|∇z|2 − Γ(1 − g)z2] dx =
∫

RN

[Γz2 − τgz2 − Γ(1 − g)z2] dx

= (Γ − τ)
∫

RN

gz2 dx < 0.

This contradiction means that our assumption τ > Γ must be rejected, and so
τ = Γ.
The smoothness of the function Λ : (Γ, ξ1) −→ R follows by a standard application
of the implicit function theorem to the mapping Φ : H2(RN )×R×R −→ L2(RN )×R

defined by

Φ(u, α, λ) =
(
−∆u − αu + λgu,

∫
RN

u2 dx − 1
)

.

Notice that Φ(zα , α,Λ(α)) = 0 for kerAα
Λ(α) = span{zα} with |zα |2 = 1, and that

Aα
Λ(α) := −∆ − α + Λ(α)g : H2(RN ) −→ L2(RN ) is a Fredholm operator of index

zero, since inf σe(Aα
Λ(α)) = Λ(α) − α > 0. Furthermore,

D(u,λ)Φ(zα , α,Λ(α))(v, µ) =
(

Aα
Λ(α)v + µgzα , 2

∫
RN

zαv dx

)
,

and, as above, we have
∫

RN gz2
α dx > 0, since otherwise zα would be an L2-

eigenfunction of −∆ on R
N . It is now straightforward to show that

D(u,λ)Φ(zα , α,Λ(α)) : H2(RN ) × R −→ L2(RN ) × R

is an isomorphism.

(iv) This follows from Lemma 3.4.

(v) Suppose that u satisfies (1.1) with λ > α. Then
∫

RN gu2 dx �= 0, since
otherwise we have gu ≡ 0 on R

N and u would be an L2-eigenfunction of ∆ on
R

N , and, as we have already remarked several times, this is false. However, now
(1.1) now yields

∫
RN

|∇u|2 − α(1 − g)u2 dx = (α − λ)
∫

RN

gu2 dx < 0,

from which it follows that
∫

RN (1 − g)u2 dx �= 0 and that α > Γ.

Remark 4.1. As a by-product of the proof of the smoothness of Λ(α), we obtain
the formula

d

dα
Λ(α) =

∫
RN z2

α dx∫
RN gz2

α dx
=

1∫
RN gz2

α dx
> 0,

confirming the strict monotonicity of Λ that was established directly in Lemma 3.4.
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