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Background. Biofilm formation is considered to be an important virulence factor of the opportunistic pathogen
Staphylococcus epidermidis. We hypothesized that biofilm formation could interfere with the deposition of immuno-
globulins and complement on the bacterial surface, leading to diminished activation of the complement system and
protection from killing by human phagocytes.

Methods. The killing of biofilm-encased and planktonically grown wild-type (wt) S. epidermidis and the killing of
an isogenic biofilm-negative ica mutant (ica�) by human polymorphonuclear neutrophils (PMNs) were compared.
C3a induction and deposition of C3b and immunoglobulin G (IgG) on the bacteria after opsonization with human
serum were assessed by enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. The viru-
lence of the bacterial strains was compared in a mouse model of catheter-associated infection.

Results. Biofilm-embedded wt S. epidermidis was killed less well by human PMNs and induced more C3a than
planktonically grown wt and ica� S. epidermidis. However, the deposition of C3b and IgG on the bacterial surface was
diminished in biofilm-encased staphylococci. wt S. epidermidis was more virulent in implant-associated infections
and was killed more slowly than ica� in ex vivo assays of killing by PMNs.

Conclusions. The results indicate that prevention of C3b and IgG deposition on the bacterial surface contributes
to the biofilm-mediated protection of S. epidermidis from killing by PMNs.

Staphylococcus epidermidis has emerged as a frequent

cause of hospital-acquired infections, especially in pa-

tients with indwelling medical devices [1–3]. Biofilm

formation is typically involved in device-associated S.

epidermidis infections [4] and is considered to be an im-

portant virulence factor because bacteria in biofilms are

less accessible to antibiotics and immune defenses [5, 6].

S. epidermidis biofilms are covered by extracellular ma-

terial (“slime”) [7], protecting them from uptake by

polymorphonuclear neutrophils (PMNs) [8]. More-

over, slime-mediated inhibition of phagocytosis also

help planktonic (free-floating) S. epidermidis evade kill-

ing by PMNs [9, 10]. The specific evasion factors and

molecular mechanisms of protection remain largely un-

known [11].

The S. epidermidis slime component polysaccha-

ride intercellular adhesin (PIA) is a �-1,6-linked

N-acetylglucosamine (GlcNAc) homoglycan [12] en-

coded by the icaADBC operon [13, 14] and is sometimes

referred to as “poly-N-acetylglucosamine” (PNAG)

[15]. The ica operon is involved in biofilm formation, a

process characterized by the initial attachment of bacte-

ria to an artificial surface, PIA-mediated cell-cell adhe-

sion, and formation of multilayered clusters [16, 17].

Recently, it has been demonstrated that PIA contributes
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to the antiphagocytic property of S. epidermidis slime; in the

absence of opsonins, a S. epidermidis ica mutant was killed faster

by human PMNs than its parental strain, and the difference was

attributed to an enhanced phagocytosis and correlated with an

increased susceptibility of the mutant to host antimicrobial pep-

tides [10]. The underlying resistance mechanisms may include

repulsion of antimicrobial peptides, because a portion of the

GlcNAc residues are deacetylated by IcaB, resulting in a positive

net charge of the polymer [18]. The large amount of PNAG/PIA

in S. epidermidis biofilms acts as a sink for anti-PNAG antibod-

ies, diminishing opsonization of the bacterial surface and in-

creasing the resistance to PMN killing [19]. Supporting the im-

portance of PIA as a factor in pathogenicity, in animal models of

infection S. epidermidis ica mutants have been found to be atten-

uated in virulence [18, 20 –23].

Because PMN killing of S. epidermidis is known to be comple-

ment dependent [24], biofilm-mediated immune evasion may

be attributed to diminished opsonization. This may be accom-

plished by inhibiting the deposition of antibodies on the bacte-

rial surface and/or the activation of the host’s complement sys-

tem. Microbes activate complement via 3 routes. The classic

pathway is initiated by antibody-mediated recognition, the al-

ternative pathway is antibody independent and is triggered by

microorganisms themselves, and the lectin pathway is activated

by the interaction between mannose-binding lectin or serum

ficolins and microbial polysaccharides. All complement path-

ways generate the proinflammatory chemoattractant C3a and

lead to deposition of C3b on the bacterial surface, promoting

phagocytic uptake [24, 25]. In the present study, we investigated

whether biofilm formation helps protect S. epidermidis from

neutrophil killing in vitro and ex vivo and modulates comple-

ment activation and complement and IgG deposition.

METHODS

Bacterial strains. The isogenic biofilm-negative ica mutant

(ica�) was obtained by insertion of Tn917 into icaA of S. epider-

midis 1457 (wt), leading to a PIA-deficient and thereby to a

biofilm-negative phenotype and erythromycin resistance [26].

Serum and isolation of human PMNs. Normal human

serum (NHS) was collected from 20 healthy donors, pooled, and

stored in aliquots at –70°C. In addition, serum from an asplenic

patient with C2 deficiency was used (see the case report [27]). No

total hemolytic activity was detectable in this serum, but the

alternative pathway hemolytic activity was found to be in the

same range as the NHS pool. Blood PMNs were isolated from

healthy volunteers by a density gradient technique (Percoll)

[28]. Informed consent was obtained from blood donors.

PMN killing of S. epidermidis. For each experiment,

staphylococci were grown from frozen stock cultures. Briefly,

cryoculture beads (Pro-Lab) were incubated in 1 mL of tryptic

soy broth (TSB) with 0.25% glucose for 8 h at 37°C without

shaking. Cultures were then diluted 1:100 in TSB with 0.25%

glucose and incubated for 16 h at 37°C in either pyrogen-free

polypropylene tubes (to obtain planktonically grown bacteria)

or in nonpyrogenic, flat-bottomed microtiter plates (to obtain

biofilms).

For microtiter plate assays, biofilms were washed 3 times with

saline to remove nonadherent bacteria, and wells were filled with

50 �L of Hank’s balanced salt solution (HBSS) with 1 mmol/L

calcium, 0.05% glucose, and 5 mmol/L HEPES (HBSS-HEPES).

Next, the average number of wt cells per well was quantified.

Briefly, bacteria were detached by pipetting, wells were washed

with saline, and bacteria were transferred to microreaction tubes

placed on ice. Residual bacteria were detached with 0.5% trypsin

and 0.2% EDTA in saline for 5 min, as described elsewhere [8,

29], and were collected. The complete removal of the bacteria

was confirmed by light microscopy. The samples were diluted in

0.9% sodium chloride, 0.15% EDTA, and 0.1% Triton X-100

and were vortexed and sonicated for 1 min at 120 W. Subse-

quently, the cell numbers were evaluated using a Petroff-

Hausser counting chamber for bacteria. In parallel, liquid-

grown wt and ica� bacteria were washed, and cells equal in

number to those determined for the biofilm-containing wells

were centrifuged in the microtiter plates in 50 �L of HBSS-

HEPES.

Colony-forming units were counted by plating serial dilutions

on Mueller-Hinton broth agar plates. For biofilm-encased wt

bacteria, we found a mean � SD of 5.8 � 107 � 4.6 � 106 cfu/

well and 5.6 � 107 � 8.1 � 106 cells/well, corresponding to a

colony-forming unit to cell ratio of 1.08 � 0.05:1, which indi-

cated that all bacterial cells were alive under this condition. Sim-

ilar ratios were found for planktonically grown wt and ica� bac-

teria, ensuring that equal amounts of colony-forming units (and

cells) of the staphylococcal strains were used for the experi-

ments. To initiate phagocytic killing, 50 �L of HBSS-HEPES,

20% NHS, and 2.5 � 106 PMNs was added to the bacteria. After

30 min at 37°C, bacteria and PMNs were collected from the

wells, vortexed, and sonicated as described above. PMNs were

hypotonically lysed, and colony-forming units were quantified.

To compare the killing of preopsonized wt and ica� bacteria

by human PMN, wt bacteria were grown as biofilm, and ica�

bacteria were grown planktonically, washed, and pelleted into

the microtiter plates. Bacteria were opsonized in HBSS-HEPES

and 10% NHS for 30 min and then detached by pipetting and

washing. Subsequently, 2.5 � 106 cfu/mL were incubated for 30

min with PMNs at a ratio of 1:1 in 200 �L of HBSS-HEPES at

37°C and 200 rpm, and the remaining colony-forming units

were counted as described above.

To assess which complement pathways contribute to the ef-

fective opsonization of S. epidermidis, 2.5 � 106 cfu/mL of

planktonically grown wt bacteria were mixed with PMNs at a

ratio of 1:1 and shaken at 200 rpm and 37°C in 200 �L of HBSS-

HEPES containing 10% NHS, heat-inactivated human serum, or
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C2-deficient human serum. Samples were drawn after 0, 30, and

60 min, and colony-forming units were counted as described

above. In all PMN assays, bacteria were also incubated without

neutrophils as a control. Compared with the initial counts, no

significant changes in colony-forming unit numbers were ob-

served in these samples.

Complement activation and C3b and IgG deposition. To

measure the induction of C3a by and the deposition of human

IgG and C3b on biofilm-encased wt and planktonically grown wt

and ica� bacteria, staphylococci were incubated in microtiter

plates for 30 min with HBSS-HEPES, 10% NHS, or heat-

inactivated NHS. Subsequently, bacteria were detached by pipet-

ting and washing, transferred into tubes, and centrifuged at

25,000 g for 5 min at 4°C. C3a in the supernatants was measured

using a C3a ELISA Kit (Quidel). IgG and C3b deposition was

determined by immunoelectron microscopy and flow cytome-

try. Briefly, preopsonized bacteria were incubated with anti–

human C3b (Quidel) or anti– human IgG antibodies and

fluorescein-labeled secondary antibodies. The log green fluores-

cence intensities of 50,000 stained bacterial particles per sample

were recorded after excitation with a 488-nm laser, using a Bec-

ton Dickinson FACSCalibur flow cytometer.

Electron microscopy. For scanning electron microscopy,

staphylococci were fixed in PBS with 2.5% glutaraldehyde for 2 h

at room temperature, washed in PBS and double-distilled water,

and dehydrated in ethanol. Thin-section scanning electron mi-

croscopy was performed as described elsewhere [30]. Briefly,

bacteria were prefixed for 20 min on ice in 2% formaldehyde and

2.5% glutaraldehyde in cacodylate buffer, 75 mmol/L ruthenium

red, and 75 mmol/L lysine acetate. Samples were washed, fixed

without lysine for 3 h on ice, washed again, and postfixed for 1 h

with cacodylate buffer and 1% osmium tetroxide. Next, samples

were dehydrated and embedded in Epon 812 resin. Thin sections

were prepared on an ultramicrotome and collected on carbon/

collodium-coated electron microscopic grids. Immunogold la-

beling was performed with a purified anti– human IgG antibody

(Jackson Immunoresearch) or an anti– human C3b antibody

(RDI Fitzgerald Industries) and by subsequent treatment with a

colloidal gold–labeled secondary antibody.

Infection models. C57BL/6 mice (10 –14 weeks old) were

obtained from RCC and kept in the animal facility of the Depart-

ment of Research, University Hospitals Basel; animal experi-

mentation guidelines were followed in accordance with the reg-

ulations of Swiss veterinary law. One day before infection, mice

Figure 1. A, Protection of Staphylococcus epidermidis by biofilm formation from killing by human polymorphonuclear leukocytes (PMNs). S.
epidermidis wild-type (wt) bacteria were grown as biofilm in microtiter plates (black bar), equal numbers of planktonically grown wt (gray bar) and
biofilm-negative ica� bacteria (white bar) were pelleted onto the plates, and bacteria were incubated with human PMNs in the presence of 10% normal
human serum (NHS) as the opsonin source. After 30 min, the residual colony-forming units were counted. The mean � SD percentages of surviving
bacteria are shown, based on the initial counts in 3 independent experiments. *P � .01 and **P � .005 (analysis of variance [ANOVA]); n.s., not
significant. B, Scanning electron micrographs of biofilm-encased wt and planktonically grown wt and ica� bacteria. C, Killing of preopsonized,
biofilm-encased wt (black symbols) and pelleted ica� (white symbols) bacteria. Bacteria were preopsonized for 30 min with 10% NHS, removed from
the microtiter plates, washed, and incubated in suspension with human PMNs at a ratio of 1:1 without any further opsonin source. The percentages
of surviving colony-forming units in 4 independent experiments are shown. White and black symbols of the same shape represent data obtained in the
same experiment. *P � .03 (ANOVA).
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were anesthetized with isofluorane, and 1 flank in each mouse

was shaved and depilated. Biofilms were grown on 1-cm seg-

ments of Vialon IV catheters (diameter of 2.1 mm; Becton Dick-

inson). Precultures of wt cells were diluted 1:100 in 1 mL of TSB

with 0.25% glucose and placed in microreaction tubes contain-

ing 1 catheter segment each. After 16 h, the catheters were

washed 4 times with saline, and the average number of biofilm-

encased bacteria was determined. Three catheters per experi-

ment were vortexed in saline, 0.15% EDTA, and 0.1% Triton

X-100 and sonicated for 2 min at 250 W, and colony-forming

units were counted as described above. By this method, S. epi-

dermidis can be quantitatively removed from foreign bodies

[31]. For all experiments, the average count on the catheters was

1 � 107 cfu.

Mice were infected as described elsewhere [20], with minor

modifications. Briefly, mice were anesthetized with 20 mg/kg

Ketalar (Pfizer) and 4 mg/kg xylazinum (Graeub), and the

shaved flank was cleaned with 70% ethanol. A 3– 4-mm incision

was made 1–1.5 cm lateral to the spine, and 1 catheter segment,

either uncoated or precoated with wt biofilms, was inserted sub-

cutaneously. Next, 20 �L of pyrogen-free saline containing

1 � 107 cfu of ica� bacteria, grown and washed as described

above, was injected into the beds of uncoated catheters, and the

incisions were closed with wound clips. The diameter of the

swelling/edema was measured daily using a caliper. For compe-

tition experiments, biofilm-coated catheters were placed subcu-

taneously, and 1 � 107 cfu of ica� bacteria were added into the

catheter beds in saline. Alternatively, mixtures containing

1 � 107 cfu of wt and 1 � 107 cfu of ica� bacteria were injected

into uncoated catheters.

On day 7 after infection, mice were anesthetized by use of

isofluorane and killed by use of carbon dioxide. For each mouse,

the catheter and the surrounding tissue were aseptically removed

and separated, transferred into tubes containing 1 mL of saline,

and placed on ice. The catheters were washed 4 times with saline.

Adherent bacteria were detached and quantified as described

above. Tissue samples were homogenized and sonicated, and

colony-forming units were counted. For competition experi-

ments, 100 cfu per sample were placed onto Mueller-Hinton

broth agar plates with or without 10 �g/mL erythromycin to

calculate the percentage of wt and ica� bacteria. Erythromycin-

sensitive colonies were considered to be wt bacteria, whereas

erythromycin-resistant colonies were considered to be ica� bac-

teria. Control mice infected with either wt or ica� bacteria alone

were included in each competition experiment. In the control

mice, all recovered wt and ica� bacteria were still erythromycin

sensitive and erythromycin resistant, respectively, showing that

the strains maintained their resistance profile in vivo.

For ex vivo opsonophagocytosis assays, wt and ica� bacteria

were collected from the catheters on day 7, washed, resuspended

in HBSS-HEPES, and incubated (without any further serum

source) with human PMNs at a ratio of 1:5 for 30 min at 37°C.

Colony-forming units were counted as described above.

RESULTS

Biofilm protection of S. epidermidis from phagocytic killing.

We tested whether S. epidermidis evades PMN-mediated killing by

biofilm formation. wt S. epidermidis was grown as biofilm in micro-

titer plates, planktonically grown wt and biofilm-negative ica� bac-

teria were pelleted into the plates, and the bacteria were incubated

with human PMNs in the presence of NHS. Biofilm-encased wt

bacteria were cleared less efficiently (mean � SD reduction in

colony-forming units after 30 min, 33% � 13%) than planktoni-

cally grown wt bacteria (mean � SD killing, 86% � 9%) and

ica� bacteria (mean � SD killing, 79% � 6%) (figure 1A), demon-

strating biofilm-mediated protection from neutrophil-dependent

killing.

Scanning electron microscopy was used to visualize ultra-

structural differences between biofilm-embedded wt bacteria

and wt and ica� bacteria grown in suspension. The wt cells in

biofilms were embedded by an amorphous extracellular matrix;

planktonically grown wt and ica� bacteria lacked this material

and adhered to the surface (figure 1B). In subsequent experi-

ments, biofilm-encased wt and pelleted ica� bacteria were pre-

opsonized with NHS, removed from the microtiter plates, and

incubated with PMNs in suspension. Preopsonized wt bacteria

were killed less efficiently than ica� bacteria (figure 1C), suggest-

ing that biofilm formation may prevent opsonization by host

complement and/or antibodies.

Requirement of complement for opsonophagocytosis of S.

epidermidis. We evaluated which complement pathways are

Figure 2. Killing of wild-type Staphylococcus epidermidis by human
polymorphonuclear leukocytes in suspension at a ratio of 1:1. Pooled
normal human serum (NHS; black bars), heat-inactivated NHS (gray bars),
C2-deficient serum (dotted bars), or heat-inactivated C2-deficient serum
(hatched bars) served as the opsonin source. The mean � SD percent-
ages of killed bacteria are shown for 3 independent experiments.
***P � .0005 (analysis of variance).
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required for effective opsonophagocytosis of S. epidermidis. S.

epidermidis was efficiently cleared by human PMNs in the pres-

ence of NHS (mean � SD killing within 60 min, 93% � 6%). In

contrast, no decrease in colony-forming units was observed in

the absence of serum, suggesting an absolute requirement of

opsonins for the killing of free-floating S. epidermidis. The bac-

teria were killed more slowly if heat-inactivated, and therefore

complement-depleted, NHS was used. Still, 22% � 2% bacteria

were inactivated after 60 min, pointing to specific antibodies in

NHS (figure 2). C2 deficiency leads to the disruption of the clas-

sic and the lectin pathways of complement activation, whereas

the alternative complement pathway is intact. Slower killing was

observed with C2-deficient serum than with NHS. Heat inacti-

vation of this C2-deficient serum abolished killing, pointing to

an absence of specific antibodies. However, the considerable de-

crease in colony-forming units in C2-deficient serum (mean �

SD killing after 60 min, 63% � 9%) demonstrated the signifi-

cance of the alternative complement pathway for inactivation of

the bacteria by human PMNs.

Effect of biofilm on activation of complement and deposi-

tion of C3b and IgG. We investigated whether biofilm forma-

tion leads to reduced activation of the complement cascade

and/or to resistance to opsonization with antibodies. wt S. epi-

dermidis was grown as biofilm in microtiter plates, planktoni-

cally grown wt and ica� bacteria were pelleted onto the plates,

and the bacteria were opsonized with NHS. Subsequently, the

generation of C3a and the deposition of IgG antibodies and C3b

on the bacteria were evaluated. Biofilms induced significantly

more C3a than planktonically grown wt and ica� bacteria (figure

3A), indicating that the observed biofilm-mediated evasion of

PMN killing was not linked to decreased complement activation.

C3b and IgG binding was detected by flow cytometry. The fluo-

rescence intensity of preopsonized wt cells labeled with a pri-

mary anti– human C3b antibody and a secondary fluorescein-

Figure 3. Induction of C3a and deposition of C3b and IgG on the surface of biofilm-encased Staphylococcus epidermidis wild-type (wt) and ica�

bacteria. The bacterial strains were opsonized for 30 min with 10% pooled normal human serum (NHS). A, C3a level in supernatants, measured by ELISA.
Mean � SD values for C3a are shown for 3 independent experiments; samples were run in triplicate for biofilm-encased wt bacteria (black bar),
planktonically grown wt bacteria (gray bar), ica� bacteria (white bar), and controls without bacteria (dotted bar). **P � .005 (analysis of variance); NS,
not significant). B, C3b deposition on opsonized biofilm-encased wt and ica� bacteria, as detected by anti– human C3b primary antibody and secondary
fluorescein-labeled antibody. Heat-inactivated, and therefore complement-depleted, NHS served as the control. One representative experiment of 5
performed is shown for preopsonization in complete NHS (bold solid line), isotype control (dotted line), and preopsonization in heat-inactivated NHS
(light solid line). MFI, mean fluorescence intensity. C, Deposition of human IgG (left) and human C3b (right) on biofilm-encased wt (top) and ica� (bottom)
bacteria, as detected by immunogold electron microscopy. One representative experiment of 2 performed is shown; n indicates the no. of immunogold
particles per square micrometer on the bacterial surface. Arrowheads indicate immunogold particles on bacteria.
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labeled antibody was lower than for ica� bacteria (figure 3B),

indicating more C3b on the surface of the latter strain. The per-

centages of C3b–positive cells were similar and binding was neg-

ligible when heat-inactivated serum was used for opsonization

(figure 3B). The percentage of IgG-positive cells was higher for

ica� bacteria than for the wt strain (mean � SD, 91% � 10% vs.

73% � 10%; P � .05, analysis of variance [ANOVA]); the

mean fluorescence intensities were not significantly different.

Immunogold electron microscopy was applied to verify these

findings. When surface-bound IgG was visualized, we found a

markedly decreased number of immungold particles per square

micrometer on preopsonized wt vs. ica� bacteria (mean � SD,

13 � 6 vs. 34 � 11 particles/�m2; P � .05, ANOVA) (figure

3C). Similar results were obtained with surface-bound C3b. The

control mouse IgG did not significantly bind to the bacteria, and

preopsonization in heat-inactivated NHS did not allow C3b

deposition on either strain (data not shown). Taken together,

these findings indicate that biofilm-mediated protection from

PMN killing correlates with diminished C3b and IgG deposition

on the bacterial surface.

Virulence studies and ex vivo opsonophagocytosis. We

tested in vivo our hypothesis that inhibition of antibody and

complement deposition protects S. epidermidis biofilms from

clearance. Polyurethane catheters were either precoated with

1 � 107 cfu of wt bacteria or infected with equal numbers of ica�

bacteria in suspension and implanted subcutaneously into

C57BL/6 mice. Both strains led to a local infection with swelling

and abscess formation. Mice infected with wt bacteria developed

significantly larger-diameter edema than those infected with

ica� bacteria (figure 4A). This may reflect an in vivo correlate of

the increased complement activation by biofilm-encased wt bac-

teria observed in vitro. On day 7, there were significantly more

colony-forming units on the catheters and in the surrounding

tissue in mice infected with wt bacteria (figure 4B).

Two competition assays with different settings were per-

formed to determine further the significance of the ability of

biofilm formation on S. epidermidis virulence. In the first setting,

catheters precoated with wt biofilms were placed subcutane-

ously before equal numbers of ica� bacteria were injected into

the catheter beds. Alternatively, mixtures containing equal

amounts of wt and ica� bacteria were injected into the uncoated

catheters. On day 7, the ratio of wt to ica� bacteria recovered

from the infection site was 3.0 � 1.9 to 1 for setting 1

(P � .0001, ANOVA) (figure 4C) and 2.89 � 1.32 to 1 for set-

ting 2 (figure 4D), demonstrating a competitive disadvantage of

ica� bacteria.

Finally, we compared the susceptibility of wt and ica� bacteria

in ex vivo assays of opsonophagocytosis. To that aim, catheters

from mice infected with wt or ica� bacteria were removed 7 days

after infection, and bacteria were detached, washed, and sub-

jected to human PMNs without the addition of any opsonin

source. Similar to our in vitro findings with preopsonized bio-

Figure 4. Virulence of wild-type (wt) and ica� bacteria in a catheter-
related infection model and ex vivo opsonophagocytosis assays. Catheter
segments that were precoated with wt bacteria (black circles) or infected
with equal numbers of ica� bacteria in suspension (white circles) were
implanted into C57BL/6 mice (A and B ). A, Mean � SD edema/swelling
sizes in �6 mice per bacterial strain. **P � .005 and ***P � .0005
(Wilcoxon rank-sum test). B, Mean total numbers of recovered colony-
forming units from the infection sites. **P � .005, analysis of variance
(ANOVA). C and D, In vivo competition between wt and ica� bacteria.
Catheter segments that were precoated with wt bacteria were placed
subcutaneously into C57BL/6 mice, and equal numbers of ica� bacteria
were injected into the catheter beds (C). Alternatively, mixtures contain-
ing equal amounts of wt and ica� bacteria were injected into the catheter
beds (D). On day 7, colony-forming units of wt and ica� bacteria on
catheters and in the surrounding tissues were quantified. The colony-
forming unit ratios of wt to mutant bacteria at the infection sites are
indicated (gray circles). Ratios �1 indicate that more wt than mutant
bacteria were found; ratios �1 indicate that more ica� than wt bacteria
were found. Solid bars represent the median values among 18 mice for
panel C and among 5 mice for panel D. E, Opsonophagocytosis of
Staphylococcus epidermidis wt and ica� bacteria by human polymorpho-
nuclear neutrophils (PMNs) ex vivo. S. epidermidis wt and ica� harvested
7 days after experimental infection were incubated with human PMNs at
a ratio of 1:5, without any additional serum source. Percentages of surviving
colony-forming units compared with the initial counts are shown for 5
independent experiments. White and black symbols of the same shape
represent data obtained in the same experiment. *P � .05 (ANOVA).
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film– encased wt and ica� bacteria, the ica� bacteria were inacti-

vated faster (P � .01, ANOVA) (figure 4E), indicating that bio-

films may impair effective opsonization in vivo.

DISCUSSION

In the present study, we have demonstrated that S. epidermidis

biofilm formation impairs the deposition of IgG and C3b on the

bacterium and increases the resistance to phagocyte-mediated

killing in vitro and ex vivo. In opsonophagocytosis assays,

biofilm-encased wt bacteria were killed more slowly by human

PMNs than wt and ica� bacteria grown in suspension. This find-

ing substantiates the earlier observation that S. epidermidis cells

in disrupted biofilms were protected from PMN killing com-

pared with planktonically grown cells when rabbit polyclonal

PNAG-specific antiserum was used as the opsonin source [19].

Using scanning electron microscopy, we demonstrated that

bacteria in biofilms were embedded in a fibrous matrix. This

phenotype was reminiscent of the extracellular material visual-

ized with scanning electron microscopy in wt S. epidermidis by

Vuong et al. [10], who also demonstrated that PIA is an integral

component of this matrix. The matrix was absent in PIA-

negative ica� bacteria and in wt bacteria grown in suspension,

which are known to produce PIA in low amounts [32, 33]. How-

ever, the presence of the material was correlated with evasion of

PMN killing. Along this line, earlier studies demonstrated that

slime and PIA protect S. epidermidis from uptake by PMNs

[8, 10].

Biofilms could contribute in multiple ways to the evasion

from phagocyte clearance. Preopsonized ica� bacteria were

more susceptible to PMN-mediated killing than the wt strain,

indicating that biofilm formation and/or PIA may interfere with

complement activation and deposition.

We found that complement is absolutely necessary to mediate

PMN-killing of S. epidermidis in suspension and that the C2-

dependent complement pathways (mannose-binding lectin and

classic pathways) are indispensable for rapid phagocytic killing

of the bacteria. Vuong et al. [10] showed that unopsonized S.

epidermidis was readily killed by human PMNs when the bacteria

and phagocytes were brought into close contact. This may be

explained by extracellular killing mechanisms, such as the for-

mation of neutrophil extracellular traps [34, 35].

S. epidermidis biofilms activated more complement than

planktonically grown wt and ica� bacteria, as measured by C3a

formation. Nevertheless, IgG and C3b deposition was dimin-

ished in biofilm-embedded bacteria, which might contribute to

the evasion of PMN killing. To our knowledge, this is the first

study to show that biofilm formation interferes with comple-

ment deposition on the surface of S. epidermidis. The discrep-

ancy between C3a induction and C3b deposition may be ex-

plained by the earlier observation that extracellular material in S.

epidermidis biofilm acts as a sink for specific antibodies [19].

Similarly, complement may be activated by immunoglobulins

bound to extracellular material in biofilms, leading to comple-

ment activation and C3a generation but to insufficient opsoni-

zation of the bacterial surface. In addition, the GlcNAc polymer

PIA is strongly produced in S. epidermidis biofilms [19] and may

promote the lectin pathway of complement activation, because

mannose-binding lectin and serum ficolins have lectin activity

for GlcNAc. Studies of isolated PIA could clarify whether the

exopolymer activates complement.

Confirming the results of earlier studies, we found that bio-

film formation contributes to the pathogenicity of S. epidermidis

[18, 20 –23]. Importantly, the inhibitory effect of biofilm forma-

tion on complement deposition provides new perspective and

context for observations from earlier literature, including the

finding that complement significantly contributes to the host

defense in S. epidermidis infections [36]. In addition, edema for-

mation was more severe in mice infected with wt bacteria than in

those infected with ica� bacteria. This may be a consequence of

enhanced complement activation and C3a and C5a formation,

which are the main mediators of neutrophil infiltration, edema,

and inflammation. Biofilm-embedded wt bacteria had a survival

advantage over ica� bacteria in competition experiments, sug-

gesting that biofilm-positive cell populations have an advantage

over biofilm-negative cells in foreign body–related infections.

Along this line, the prevalence of icaABCD in isolates from

catheter-related bacteremia is �90%, whereas isolates coloniz-

ing the skin rarely contain the ica operon [37, 38]. Finally, wt

bacteria isolated from infected catheters were killed by human

PMNs significantly more slowly than ica� bacteria, indicating

that biofilm formation may diminish effective opsonization of S.

epidermidis in vivo.

In summary, biofilm formation impairs IgG and C3b deposi-

tion on the bacterial surface and PMN-mediated killing. There-

fore, factors involved in biofilm formation may represent prom-

ising targets for preventing S. epidermidis infections, because

inhibition of biofilm formation renders the organism more sus-

ceptible to host phagocyte function.
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