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Fluids in unsaturated porous media are described by the relationship between pressure (p)

and saturation (u). Darcy’s law and conservation of mass provides an evolution equation for u,

and the capillary pressure provides a relation between p and u of the form p ∈ pc(u, ∂tu). The

multi-valued function pc leads to hysteresis effects. We construct weak and strong solutions

to the hysteresis system and homogenize the system for oscillatory stochastic coefficients. The

effective equations contain a new dependent variable that encodes the history of the wetting

process and provide a better description of the physical system.

1 Introduction

Our aim is an effective description of fluid flow in porous media, where only part of the

pore space is occupied by the fluid, say water, while the rest of the pore space is occupied

by air at a constant pressure. We are not aiming at a description of the microscopic

situation, but rather use the two macroscopic scalar variables of fluid pressure p = p(x, t)

and water content u = u(x, t). Here, u(x, t) ∈ [0, 1] is a measure for the volume fraction

of liquid in the pore space, looking in the vicinity of the point x at time t. It is standard

to relate velocity and pressure with Darcy’s law, which imposes a linear relation between

velocity and pressure gradient. Conservation of mass then implies

∂tu = ∇ · (K∇p). (1.1)

We allow K to depend on the position x, but for simplicity, we assume that K is

independent of u.

We must now consider the microscopic situation in order to understand the capillary

relation between u and p. If the volume fraction of water is increased, the liquid must fill

smaller and smaller pores; in order to do so, an increasing local capillary pressure must

be overcome (we describe the case of a non-wetting fluid). Since the gas phase is under a

constant pressure, we find a monotone relation between p and u.

Capillary hysteresis

A more detailed study of the microscopic interfaces in a single pore reveals an additional

property: the bottleneck effect. If the water content increases, water–air interfaces must
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390 B. Schweizer

repeatedly pass very small pores. To overcome these ‘bottlenecks’, a high pressure is

needed. In the opposite case of a decreasing water content, the interfaces must repeatedly

be pulled out of large pores, which means that a lower pressure is needed. If, instead, the

water content is constant, the pressure has the freedom to adjust at any value in between

[8]. A rigorous derivation is performed in [17] and [18]. Choosing an affine function as a

simple monotone relation, the arguments justify

p ∈ au+ b+ γ sign(∂tu). (1.2)

The parameters a, b, γ : Ω → � satisfy a, γ > 0. We use the multi-valued sign function

defined as sign(ξ) = ±1 for ±ξ > 0 and sign(0) = [−1, 1]. Formally, (1.1)–(1.2) defines an

evolution equation for u. The system must be complemented with appropriate initial and

boundary conditions. We consider evolutions that are driven by imposed pressures on the

boundary. Given g ∈ C1([0, T ], H2(Ω)) and U0 ∈ L2(Ω), we impose

u(., t = 0) = U0 in Ω, (1.3)

p(., t) = g(., t) on ∂Ω, ∀t ∈ [0, T ]. (1.4)

On the initial conditions, we have to assume some compatibility. For simplicity, we restrict

to initial values that are compatible with a vanishing pressure. We demand

g(., t = 0) = 0, (1.5)

a(x)U0(x) + b(x) ∈ [−γ(x), γ(x)] ∀x ∈ Ω. (1.6)

Recent studies of the play-type hysteresis system (1.1)–(1.2) are due to Beliaev. In [3], he

introduces a concept of weak solutions and shows existence and uniqueness results by

means of semigroup theory of Barbu [1].

The model was developed further in [4] and [5] in order to include dynamic effects

and rate-dependent laws, essentially by replacing the sign function in (1.2) with a strictly

monotone function. In this work, we use such a modification as a regularization. We

rediscover existence and uniqueness properties of (1.1)–(1.2) and provide a Galerkin

approximation.

Homogenization

The next step in the analysis of the hysteresis system regards homogenization. A first

homogenization result was derived by Beliaev [2] for a periodic setting. He considered

a situation in which the physical parameters have a finite range of values, Ki, ai, bi and

γi, where i = 1, . . . , N. These values are repeated periodically across the medium, with a

period ε > 0. Beliaev was able to derive the homogenized system that describes the limit

ε→ 0. If the values indexed by i are chosen in a region with volume fraction ci, the limit

system for p = p(x, t) and ui = ui(x, t) reads

N∑
i=1

ci∂tui = ∇ · (K∗∇p), p ∈ aiui + bi + γi sign(∂tui) ∀i = 1, . . . , N, (1.7)

where K∗ is a homogenized diffusion matrix obtained from cell problems.
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Capillary hysteresis in stochastic porous media 391

Our aim in this contribution is to study the stochastic situation. It is interesting to

note that in the stochastic situation, the limit system is more accessible in some respects.

We study the situation where the parameters a, b, K and γ can take all values in given

intervals. In cells of size ε, the four values are chosen randomly and independent of each

other, and we consider the limit ε → 0. We expect two modifications with respect to

system (1.7).

◦ The discrete variable γi is replaced by a real variable y with values in an interval.

◦ The parameters a and b are averaged.

We further note that in the discrete case, the values γi either vanish or have a finite

distance from 0. In our study, we allow all values of γ ∈ [0, 1]; this difference leads to

smooth scanning curves for the upscaled system.

Our main result is Theorem 4.2. It is shown that the following is the upscaled hysteresis

system in the stochastic case. With expected values denoted by 〈.〉, we introduce the

averaged quantities

a∗ := 〈a−1〉−1, b∗ := 〈b〉,
and an effective permeability matrix K∗ that is defined by the standard stochastic cell

problem. We denote

Γ (x, .) ∈ M([0, 1])

as the distribution of γ in the point x.

We seek for functions p(x, t), w(x, y, t), such that the saturation

u(x, t) =

∫ 1

0

w(x, y, t)− b∗
a∗

dΓ (x, y) (1.8)

satisfies the hysteresis system

∂tu = ∇ · (K∗∇p) in Ω × (0, T ), (1.9)

p(x) ∈ w(x, y) + y sign(∂tw(x, y)) ∀x ∈ Ω, y ∈ supp(Γ (x, .)). (1.10)

We see that two new variables are introduced. The dependent variable w(x, y, t) can be

regarded as an expected pressure at points with the γ value y. The new independent

variable y substitutes the parameter γ. The parameter a is homogenized to the harmonic

mean a∗. The system is complemented by boundary and initial conditions

w(x, ., t = 0) = W0(x, .) ∈ Lip1([0, 1]) ∀x ∈ Ω, (1.11)

p(., t) = g(., t) on ∂Ω, ∀t ∈ [0, T ], (1.12)

where Lip1 denotes the space of Lipschitz continuous functions with Lipschitz constant

bounded by 1. For compatibility, we demand that the initial condition can be realized

with a vanishing pressure,

g(., t = 0) = 0, (1.13)

W0(x, y) ∈ [−y, y] ∀y ∈ supp(Γ (x, .)), x ∈ Ω. (1.14)

Equations (1.8)–(1.10) with the general measure Γ include the two equations of interest
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392 B. Schweizer

as special cases. Setting Γ (x, .) = δγ(x)(.) and W0(x, .) = a(x)U0(x) + b(x), we recover the

original system (1.1)–(1.2). On the other hand, the homogenized system will be of the

form (1.8)–(1.10) with the one-dimensional Lebesgue measure Γ (x, .) = dy. In particular,

existence and uniqueness results and a priori estimates for the homogenized system

(1.8)–(1.10) imply the same results for the original system (1.1)–(1.2).

In the language of hysteresis theory [20], we may state our main result as follows:

The evolution equation (1.1) with a play-type hysteresis relation between u and p is

homogenized with a Prandtl–Ishlinskii hysteresis relation.

Outline and further literature

This article is organized as follows. In section 2, we analyze a Galerkin scheme that

provides approximate solutions for the general equations (1.8)–(1.12). For the approximate

solutions, we prove a priori estimates and the fundamental structure property (2.18). In

section 3, we perform the limit procedure. We find weak and strong solutions of (1.8)–(1.12)

and show the uniqueness. Section 4 is devoted to the homogenization. In the limit ε→ 0,

strong solutions of (1.1)–(1.4) converge almost surely to solutions of the homogenized

system (1.8)–(1.12). In this theorem, we exploit the bounds for strong solutions of Section 3

and use the approximate solutions of Section 2 in the construction of test functions.

We restrict here to an affine underlying p–u relation; nonlinear and degenerate problems

are studied [10, 16, 19]. A construction of approximate solutions to a one-dimensional

unsaturated flow problem can be found in [14]. Homogenization of two-phase flows is

performed, for example, in [6, 7], a filtration model with hysteresis is studied in [15].

Regarding homogenization of stochastic flow problems, we mention [9, 11, 13].

Interpretation: Effective scanning curves

In imbibition/drainage experiments, one increases/decreases the water content u in a

porous material and measures the pressure p. Up to transitional behaviour, one finds

a fixed relation between p and u for both processes. In our model, the two relations

are p = au + b + γ and p = au + b − γ. The curves that are obtained when changing

from imbibition to drainage (or vice versa) are called scanning curves. In the play-type

hysteresis of (1.2) with constant parameters, these scanning curves are vertical lines—in

contrast to experimental results.

To understand better the homogenized system, we now calculate a scanning curve after

a drainage process, assuming b∗ = 0, a∗ = 1 and the homogeneous distribution Γ = dy.

For homogeneous fields p(x, t) = p(t), w(x, y, t) = w(y, t), we find w(0, t) = p(t) by (1.10)

and u(t) =
∫ 1

0 w(y, t) dy. After drainage with ∂tw < 0, we have w(y, 0) = p(0) + y, again by

(1.10).

Starting from this drainage situation, we study an evolution with ∂tp(t) = 1. For small

values of y, the value w(y, t) must increase after a short time, since equation (1.10) does

not allow larger differences between w(y, t) and p(t). The qualitative picture is that of

Figure 1(a). To be precise, the value

s(t) := sup{y0|∂tw(y, t) > 0∀y < y0} (1.15)
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u

Figure 1. (a) The function w(., t); (b) effective scanning curves.

increases, and the function w has the form

w(y, t) =

{
p(t)− y y < s(t),

p(t)− 2s(t) + y y � s(t).
(1.16)

For y > s(t), we find 0 = ∂tw(y, t) = ∂tp(t) − 2∂ts(t), and thus ∂ts(t) = 1
2

for the position

of the free boundary. We can therefore calculate for the water content u

u(t) = p(t)− 2s(t) +
1

2
+ s(t)2, ∂tu(t) = 1− 2∂ts(t) + 2s(t)∂ts(t) = s(t) =

t

2
.

This yields the qualitative scanning curves of Figure 1(b) for the upscaled equations.

In the original system of play-type hysteresis, the scanning curves are vertical, and, in

particular, independent of the history. We see that after homogenization, the function

w(x, ., t) contains the relevant information about the history of the process and determines

the shape of the scanning curves.

We conclude that the experimental observations can be described well with the effective

equations (1.8)–(1.12); the history variable w provides a rich variety of possible scanning

curves. In this work, we rigorously derive the effective equations in a homogenization

process, starting from the elementary hysteresis model (1.1)–(1.4).

2 Approximate solutions

The aim of this section is to find uniform estimates for the approximate solutions of the

homogenized system with a Galerkin scheme. These estimates, in turn, provide us with

estimates for the solutions of the limit system. Moreover, the approximate solutions are

well-suited for the construction of test functions in the homogenization procedure. We

emphasize that all the results on existence of solutions and estimates carry over to the

original problem with the special choice of the distribution function Γx = δγ(x).

For notational convenience, we choose a rectangle Ω ⊂ �n as macroscopic domain and

fix a time interval [0, T ]. On the physical parameters, we assume K∗ ∈ L∞(Ω,�n×n) to be

uniformly positive definite, a∗, b∗ ∈ L∞(Ω,�) with a∗ � α > 0 bounded from below. We

furthermore assume that for a triangulation T0 of the domain, the functions a∗, b∗ and
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394 B. Schweizer

K∗ are constant on each triangle A ∈ T0 and that the probability distributions

Γ (x, .) ∈ M([0, 1])

are independent of x in each triangle A ∈ T0. Our aim is to study (1.8)–(1.10) to find

a discrete approximation of the equations, as well as to find strong solutions. Our main

result is the existence of approximate solutions that satisfy the structure condition (2.18).

These are the approximate solutions that are used in the construction of test functions in

the homogenization procedure.

Spatial discretization

We consider a sequence of triangulations of the domain Ω with vertices Ωh := {x1, . . . , xK},
where h > 0 is the maximal distance between neighbours. We assume that each triangu-

lation Th is a refinement of the coarse triangulation T0. In this way, we achieve that the

coefficients are x independent on each triangle A ∈ Th. In addition, we discretize the in-

terval I := [0, 1] with equidistant nodes Iη := {y1, . . . , yL}, 0 = y0 < y1 = η < . . . < yL = 1,

with η > 0 the distance between neighbours. The weights for the discretization are

Γη(x, y) := Γx((y − η, y] ∩ I) ∀y ∈ Iη, (2.1)

with the closed interval for y = y1 = η.

Regularization

We replace the inequalities of (1.10) by a dynamic condition. For δ > 0, we use the

following approximation of the inverse sign-function. For y ∈ I and δ > 0, let ψyδ : �→ �
be the function

ψ
y
δ (r) :=

⎧⎨
⎩
δr for r ∈ [−y, y],
yδ + 1

δ
(r − y) for r > y,

−yδ + 1
δ
(r + y) for r < −y.

(2.2)

Given the triangulation Th of Ω, we can associate to every triangle A ∈ Th a corner

x ∈ Ωh. This provides us with an interpolation operator Q, which maps a discrete function

u : Ωh → � to piecewise linear interpolations ū. Furthermore, we have the L2-orthogonal

projection P , which maps functions v ∈ L2(Ω) to piecewise constant functions v̄ ∈ L2(Ω).

To every piecewise constant function v̄, we can associate a discrete map v̂ : Ωh → � such

that Qv̂ = v̄. In such a situation, we do not distinguish between v̂ and v̄. On the initial

values W0, we assume that they are x independent on triangles A ∈ T0 as are a∗, b∗, K∗

and Γ .

Definition 2.1 (Galerkin scheme) We consider the following system of ordinary differential

equations for pδ = p
h,η
δ : Ωh × [0, T ]→ � and wδ = w

h,η
δ : Ωh × Iη × [0, T ]→ �.

∂twδ(x, y, t) = −ψyδ (wδ(x, y, t)− pδ(x, t)) ∀x ∈ Ωh, y ∈ Iη, (2.3)

wδ(., y, t = 0) = W
η
0 (., y) :=

1

η

∫ y

y−η
W0(., ζ) dζ ∀y ∈ Iη. (2.4)
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It remains to describe how the pressure pδ is reconstructed from wδ . We identify wδ
with its piecewise constant interpolation, and solve the following elliptic problem for

p̃δ(., t) : Ω → � and pδ := P p̃δ ,

∇(K∗∇p̃δ)(x) = − 1

a∗(x)

∑
y∈Iη

Γη(x, y) ψ
y
δ (wδ(x, y)− pδ(x)) , (2.5)

p̃δ(., t) = g(., t) on ∂Ω, ∀t ∈ [0, T ]. (2.6)

We will see that these solutions can be used to find solutions of (1.8)–(1.10). But first

we have to study the solvability of the equations and a priori estimates.

Lemma 2.2 (Existence for the ODE) The solution map wδ → pδ defined by equations (2.5),

(2.6) is well-defined and is Lipschitz continuous. In particular, Definition 2.1 describes a

system of ordinary equations. There is a unique local solution (pδ, wδ) for all positive δ, h

and η.

Proof We show the argument for g = 0; the general case is analogous. We define the

operator A : H1
0 (Ω)→ H−1(Ω) by

〈Au, v〉 := 〈K∗∇u,∇v〉L2(Ω)

−
〈

1

a∗(x)

∑
y∈Iη

Γη(x, y) ψ
y
δ (wδ(x, y)− Pu(x)) , v

〉
L2(Ω)

.

We claim that A is monotone, coercive and continuous on finite dimensional subspaces.

Once this is shown, the theory of monotone operators (e.g. [12], Chapter III, Cor. 1.8)

yields the existence of a solution to the equation Au = 0. For the monotonicity, we

calculate

〈Au− Av, u− v〉 = 〈K∗∇(u− v),∇(u− v)〉L2(Ω)

−
〈∑
y∈Iη

Γη(., y)

a∗(x)

[
ψ
y
δ (wδ(., y)− Pu)− ψyδ (wδ(., y)− Pv)

]
, u− v

〉
L2(Ω)

= 〈K∗∇(u− v),∇(u− v)〉L2(Ω) −
∑
y∈Iη

∑
T∈Th

1

a∗(T )
|T |Γη(T , y) ·

〈[
ψ
y
δ (wδ(., y)− Pu(.))− ψ

y
δ (wδ(., y)− Pv(.))

]
, P u(.)− Pv(.)

〉
L2(T )

� 〈K∗∇(u− v),∇(u− v)〉L2(Ω).

In the last step, we exploited that all ψyδ are monotonically increasing. The right-hand

side of the equation is non-negative and we conclude the monotonicity of A. The Poincaré

inequality yields the coerciveness of A. The continuity on finite dimensional subspaces

follows from the continuity of ψyδ and P .

For a sequence w → w0 ∈ L∞(Ωh × Iη,�), we consider the corresponding operators

Aw and Aw0
and find solutions uw and uw0

of Awuw = 0 and Aw0
uw0

= 0. By uniform
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396 B. Schweizer

coerciveness of Aw , the solution uw is bounded. From the Poincaré inequality, we calculate

c‖uw − uw0
‖2 �

〈
Awuw − Awuw0

, uw − uw0

〉
=

〈
Aw0

uw0
− Awuw0

, uw − uw0

〉
� C

1

δ
‖w − w0‖ ‖uw − uw0

‖.

Dividing by ‖uw − uw0
‖, we conclude the local Lipschitz continuity of the map w → u.

�

Lemma 2.3 (Estimates and global solutions) Every solution wδ, pδ to the scheme of Defini-

tion 2.1 satisfies for every t ∈ [0, T ] the estimate

∫
Ω

∑
y∈Iη

Γη(x, y) |∂twδ(x, y, t)|2 dx+

∫ t

0

∫
Ω

|∇∂tp̃δ(x, t
′)|2 dx dt′

� C1(g) + C2(δ, h, η). (2.7)

The constants depend on the bounds for a∗ and K∗. We can choose C2 with

lim
δ→0

C2(δ, h, η) = 0 ∀h, η > 0. (2.8)

The function wδ is Lipschitz in y with constant 1, for all x ∈ Ωh and all t ∈ [0, T ],

wδ(x, ., t) ∈ Lip1(Iη). (2.9)

A consequence of the lemma is that we can extend the local solutions to the ODE to

the whole interval [0, T ].

Proof We insert (2.3) into (2.5). Omitting the dependence on t, we can write

∇(K∗∇p̃δ(x)) =
∑
y∈Iη

Γη(x, y)

a∗(x)
∂twδ(x, y) ∀x ∈ Ω,

where the right-hand side of the equation is the piecewise constant in x. We differentiate

with respect to t and find

∇(K∗∇∂tp̃δ(x)) =
∑
y∈Iη

Γη(x, y)

a∗(x)
∂2
t wδ(x, y).

Multiplication with ∂t(p̃δ − g) and an integration over Ω yields

−
∫
Ω

K∗∇∂tp̃δ · ∇∂tp̃δ +

∫
Ω

K∗∇∂tg · ∇∂tp̃δ

=
∑
y∈Iη

∫
Ω

Γη(x, y)

a∗(x)
∂2
t wδ(x, y)∂tpδ(x) dx. (2.10)
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The function ψ
y
δ is invertible and we denote the inverse by Φ

y
δ . Note that Φyδ is a

regularized and scaled sign-function. Relation (2.3) can be written as

−Φyδ(∂twδ(x, y)) = wδ(x, y)− pδ(x).

We can differentiate with respect to t and find

∂tpδ(x) = ∂twδ(x, y) + DΦ
y
δ(∂twδ(x, y)) · ∂

2
t wδ(x, y).

We can now insert this expression into (2.10),

−
∫
Ω

K∗∇∂tp̃δ · ∇∂tp̃δ +

∫
Ω

K∗∇∂tg · ∇∂tp̃δ

=
∑
y∈Iη

∫
Ω

Γη(x, y)

a∗(x)
∂2
t wδ(., y)

[
∂twδ(., y) + DΦ

y
δ(∂twδ(., y)) · ∂

2
t wδ(., y)

]

=
∑
y∈Iη

∫
Ω

Γη(x, y)

a∗(x)
∂t

1

2
|∂twδ(., y)|2 + DΦ

y
δ(∂twδ(., y)) · |∂

2
t wδ(., y)|2

�
∑
y∈Iη

∫
Ω

Γη(x, y)

a∗(x)
∂t

1

2
|∂twδ(., y)|2,

where in the last step we used that DΦyδ is positive. An integration over (0, t) yields the a

priori estimate (2.7) with

C2(δ, h, η) := C
∑
y∈Iη

∫
Ω

Γη(x, y)

a∗(x)
|∂twδ(., y)|2

∣∣∣∣
t=0

.

δ-dependence of C2. To show (2.8), it remains to verify for the initial values ∂twδ(., y,

t= 0)→ 0 for δ → 0, for all y ∈ Iη with Γη(., y) > 0. Since the spatial variables are

discrete, p̃δ(t = 0) is contained in a finite dimensional subspace of H2(Ω). It therefore

suffices to show p̃δ(t = 0)→ 0. At this point, we exploit the compatibility condition (1.14)

on the initial values. We must study the monotone operator Aδ
W

η
0

and the solution p̃δ of

Aδ
W

η
0
p̃δ = 0. We use this for the trivial pressure distribution by compatibility, Aδ

W
η
0
0 → 0,

where we exploit the direction of the discretization Iη of I . The uniform coerciveness of

Aδ
W

η
0

yields

c‖p̃δ − 0‖2 � C
〈
AδWη

0
0− AδWη

0
p̃δ , 0− p̃δ

〉
� C

∥∥AδWη
0
0
∥∥ ‖p̃δ‖.

Dividing by ‖p̃δ‖, we verify the claim.

Lipschitz property. The initial values satisfy the Lipschitz estimate. We claim that the

Lipschitz constant can never exceed the value 1. To this end, let t is a time instance, x a

point in Ωh, and 0 � y1 < y2 � 1 such that

wδ(x, y2, t)− wδ(x, y1, t) = y2 − y1. (2.11)

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792507007000
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:48:52, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792507007000
https:/www.cambridge.org/core


398 B. Schweizer

Our claim is proven once we find that the time derivative on the left-hand side is negative.

We restrict here to the case wδ(x, y2, t) > wδ(x, y1, t), the other sign is treated in the same

way.

First case If wδ(x, y1, t) � pδ(x) + y1, then wδ(x, y2, t) � pδ(x) + y2. We find

∂t[wδ(x, y2, t)− wδ(x, y1, t)] = −δ[wδ(x, y2, t)− wδ(x, y1, t)] < 0.

Second case If wδ(x, y1, t) > pδ(x) + y1, then also wδ(x, y2, t) > pδ(x) + y2. We find

∂t [wδ(x, y2, t)− wδ(x, y1, t)]

= −δy2 −
1

δ
(wδ(x, y2, t)− pδ(x)− y2) + δy1 +

1

δ
(wδ(x, y1, t)− pδ(x)− y1)

= −δ(y2 − y1) < 0.

This shows the Lipschitz estimate for all δ > 0. �

We can now study the limit δ → 0 in order to find spatially discrete approximate

solutions.

Theorem 2.4 (Approximate solutions) For x and y discrete, there exists a solution

(uh,η, ph,η, wh,η) of the following discretization of (1.8)–(1.10).

uh,η =
∑
y∈Iη

Γη(., y)
wh,η(., y)− b∗

a∗
(2.12)

∇(K∗∇p̃h,η) = ∂tu
h,η (2.13)

ph,η ∈ wh,η(., y) + y sign(∂tw
h,η(., y)) ∀y ∈ Iη with Γη(., y) > 0, (2.14)

for almost all t ∈ (0, T ), together with the initial values wh,η = W
η
0 and the boundary values

p̃h,η = g on ∂Ω.

The solutions satisfy uniform a priori bounds in the norms of

∂tw
h,η ∈ L∞L2(Ω × I, dx⊗ dΓη(x, y)), (2.15)

∂tp̃
h,η ∈ L2H1(Ω), (2.16)

p̃h,η ∈ L∞H2(Ω). (2.17)

For some zh,η ∈ L∞(Ω × (0, T )) the solution satisfies the structure condition

∂tw
h,η(x, y, t) =

{
∂tp

h,η(x, t) for y � zh,η(x, t),

0 else,
(2.18)

for almost every t and all y with Γη(x, y) > 0.

Proof We use the approximations wh,ηδ and p
h,η
δ of Definition 2.1. For a subsequence, we

find a weak-∗ limit in W 1,∞((0, T ), L∞) and a weak limit in the space H1((0, T ), L∞) (we
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Capillary hysteresis in stochastic porous media 399

use that x and y are discrete),

(
w
h,η
δ , p

h,η
δ

)
⇀ (wh,η, ph,η) for δ → 0.

A priori estimates (2.15) and (2.16) are guaranteed by Lemma 2.3. The estimate (2.17) is

a consequence of equation (2.13) and the bound of (2.15). All bounds depend only on

C1(g), and are therefore independent of h and η.

To derive the equations, we once more insert (2.3) into (2.5),

∇
(
K∗∇p̃h,ηδ

)
=

1

a∗

∑
y∈Iη

Γη(., y) ∂tw
h,η
δ (., y).

We can take weak limits for δ → 0 and find equation (2.13).

Relation (2.14) We study (2.3),

∂tw
h,η
δ (x, y, t) = −ψyδ

(
w
h,η
δ (x, y)− ph,ηδ (x)

)
.

The left-hand side of the above equation is bounded in L∞((0, T ), L∞), with a bound that

is independent of δ, since x and y are discrete. By the estimates for their time derivatives,

w
h,η
δ → wh,η and p

h,η
δ → ph,η are weak convergences in H1((0, T )), and can therefore be

assumed to be pointwise convergences. We use |ψyδ (ξ)| � δ−1(ξ − y)+ to find for fixed

x, y, t, Γη(x, y) > 0,

0← δ
∣∣ψyδ(wh,ηδ (x, y, t)− ph,ηδ (x, t)

)∣∣
�

(
w
h,η
δ (x, y, t)− ph,ηδ (x, t)− y

)
+
→ (wh,η(x, y, t)− ph,η(x, t)− y)+.

The same calculation for −y yields for all t and all the (discrete) values of x and y in the

relation

wh,η(x, y, t)− ph,η(x, t) ∈ [−y, y]. (2.19)

Let now (x, y, t) be a point as above, with wh,η(x, y, t) − ph,η(x, t) > −y. Then, for all

small δ, by the pointwise convergence, also

w
h,η
δ (x, y, t)− ph,ηδ (x, t) > −y,

whence the positive part (∂tw
h,η
δ (x, y, t))+ = (−ψyδ )+ � δy. We find for all x, y, t

(
∂tw

h,η
δ (x, y, t)

)
+

1{wh,η(x,y,t)−ph,η(x,t)>−y} → 0 for δ → 0.

Since ∂tw
h,η
δ are bounded, independent of δ, we can apply the Lebesgue convergence

theorem to conclude

(
∂tw

h,η
δ (x, y, t)

)
+

1{wh,η(x,y,t)−ph,η(x,t)>−y} → 0 in L2((0, T )),

for δ → 0. But by the definition of the limit function wh,η and the L2-weak lower

semicontinuity of the positive part, we find in the limit for the left hand side

(∂tw
h,η(x, y, t))+ 1{wh,η(x,y,t)−ph,η(x,t)>−y} � 0 (2.20)
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400 B. Schweizer

in the sense of L2-functions. We have verified the implication

∂tw
h,η(x, y, t) > 0⇒ wh,η(x, y, t)− ph,η(x, t) = −y (2.21)

for almost every t and all x, y with Γη(x, y) > 0. The conclusion for the other sign is

calculated in the same way by replacing the positive part with the negative part. Relation

(2.14) is shown.

The structure property (2.18). We next verify the equality

(∂tw
h,η(x, y, t)− ∂tp

h,η(x, t))1{|wh,η(x,y,t)−ph,η(x,t)|=y} = 0 (2.22)

for all x ∈ Ωh, y ∈ Iη , and almost every t. For fixed x and y, the set {t ∈ [0, T ] :

|wh,η(x, y, t)− ph,η(x, t)| = y} is a countable union of closed intervals by the continuity of

ph,η and wh,η , and the two functions differ by one constant on these intervals. In particular,

the weak derivatives coincide almost everywhere on the intervals.

For every t and x, the sets {y ∈ Iη : wh,η(x, y, t) − ph,η(x, t) = ±y} are of the form

{y ∈ Iη : y � zh,η} for some zh,η by the Lip1 estimate for wh,η . This defines zh,η . Property

(2.18) is a consequence of (2.22) and (2.20) (together with the equality with opposite

signs). �

3 Weak and strong solutions

In this section, we show that the approximate solutions of the last section can be used to

find continuous solutions of the upscaled system. We proceed in two steps and show that

(i) limits of approximate solutions for (h, η)→ 0 are weak solutions,

(ii) under regularity assumptions on Γ , weak solutions are strong solutions.

In particular, we find strong solutions to the original system, with uniform bounds that

allow the homogenization. For the original system, we essentially recover a result of

Beliaev that was obtained with the help of semigroup theory.

To prepare for the limit procedure (h, η) → 0, we show a compactness result. For a

function u : Ω → � that is piecewise constant on the h grid, we denote by |∇hu| the upper

bound for the discrete difference quotient: in every node we take the supremum over the

norms of the finite difference quotients along outgoing edges. This function on the nodes

is identified with its piecewise constant interpolation |∇hu| : Ω → �.

We recall that, by our assumptions, data a∗, b∗, K∗, Γ and W0 are constant on triangles

A ∈ T0 covering Ω.

Lemma 3.5 (Compactness) The approximate solutions ph,η, wh,η of Theorem 2.4 satisfy the

following pointwise estimate for discrete spatial derivatives. For all triangles A ∈ T0, x ∈ Ωh
an inner point of A, and all y ∈ Iη with Γη(A, y) > 0 there holds

|∇hwh,η(x, y, t)| �
∫ t

0

|∂t∇hph,η(x, t′)| dt′. (3.1)
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We define functions Fh,ηj : Ω × [0, T ]→ �, j = 1, 2, 3, by

F
h,η
0 (x, t) :=

∑
y

Γη(x, y) w
h,η(x, y, t),

F
h,η
1 (x, t) :=

∑
y

Γη(x, y) y w
h,η(x, y, t),

F
h,η
2 (x, t) :=

∑
y

Γη(x, y) |wh,η(x, y, t)|2.

Then F
h,η
j are compact in L1(Ω × (0, T )), and F

h,η
j (., t) are compact in L1(Ω) for all t,

j = 1, 2, 3.

Proof We omit the superscript (h, η) and write shortly (w, p) for (wh,η, ph,η). We fix A ∈ T0

and want to show for all x1, x2 in A, all y ∈ Iη with Γη(y) > 0, all t ∈ [0, T ], for δ = 0,

the inequality

|w(x1, y, t)− w(x2, y, t)| �
∫ t

0

|∂tp(x1, t
′)− ∂tp(x2, t

′)| dt′ + δ(1 + t). (3.2)

Estimate (3.1) follows if we show (3.2) for all δ > 0. Note that W0 was assumed to be

piecewise constant on A such that the estimate holds initially. We claim that the estimate

can never cease to hold. For a contradiction argument, let t < T be the last time instance

such that the estimate holds up to time t. Interchanging x1 with x2 if necessary, we can

assume w(x1, y, t) > w(x2, y, t). We have to consider two cases.

Case 1 (∂tw(x1, y, t) > 0) In this case, we have sign(∂tw(x1, y, t)) = 1, and therefore

w(x1, y, t) = p(x1, t)− y. We can calculate

w(x1, y, t)− w(x2, y, t) � p(x1, t)− y − p(x2, t) + y = p(x1, t)− p(x2, t)

�

∫ t

0

|∂tp(x1, t
′)− ∂tp(x2, t

′)| dt′.

Thus, inequality (3.2) holds strictly and case 1 cannot occur.

Case 2 (∂tw(x1, y, t) � 0) In this case, we have either (a) ∂tw(x2, y, t) � 0 or

(b) ∂tw(x2, y, t) < 0. In case (a), we find

∂t[w(x1, y, t)− w(x2, y, t)] � 0.

But the time derivative on the right-hand side in (3.2) is positive and the inequality does

not cease to hold.

In case (b), we have sign(∂tw(x2, y, t)) = −1, and therefore w(x2, y, t) = p(x2, t) + y. We

then find

w(x1, y, t)− w(x2, y, t) � p(x1, t) + y − p(x2, t)− y = p(x1, t)− p(x2, t)

�

∫ t

0

|∂tp(x1, t
′)− ∂tp(x2, t

′)| dt′.

The inequality holds again strictly and case 2 cannot occur either.
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402 B. Schweizer

Compactness. For the compactness, it suffices to consider a single triangle A ⊂ Ω out

of the finite number of triangles A ∈ T0. The right-hand side of (3.1) is bounded in

L2(A× (0, T )), hence the inequality can be regarded as a replacement for spatial regularity

of wh,η(., y, .). To be precise, we claim that Fh,ηj has temporal and discrete spatial derivatives

bounded in L1(A× (0, T )). Indeed, for F0,∫ T

0

∫
A

∣∣∇hFh,η0 (x, t)
∣∣ dx dt =

∫ T

0

∫
A

∑
y

Γη(x, y)|∇hwh,η(x, y, t)| dx dt

�

∫ T

0

∫
A

∑
y

Γη(x, y)

{ ∫ t

0

|∂t∇hph,η(x, t′)| dt′
}
dx dt

�

∫ T

0

∫
A

{ ∫ t

0

|∂t∇hph,η(x, t′)| dt′
}
dx dt � C,

where, in the last step, we used (2.16). For temporal derivatives, we calculate

∫ T

0

∫
A

∣∣∂tFh,η0 (x, t)
∣∣ dx dt =

∫ T

0

∫
A

∑
y

Γη(x, y) |∂twh,η(x, y, t)| dx dt � C,

using (2.15). The other integrals Fj are treated similarly and we find the L1(Ω × (0, T ))

compactness. For fixed t ∈ [0, T ], the L1(Ω) compactness follows along the same lines

from (3.1). �

Our next result is on the existence of a weak solution. The solution concept is analogous

to that in [2], but we use a stronger formulation in the third term.

Theorem 3.2 (Weak solutions) There exists a pair (p, w)

w ∈ L∞(0, T ;L2(Ω,Lip1(I))), (3.3)

p ∈ H1(0, T ;H1(Ω, dx)), (3.4)

which is a weak solution of equations (1.8)–(1.10) in the following sense. The relation

w(x, y, t) − p(x, t) ∈ [−y, y] holds for Ln+1—almost every (x, t) and all y ∈ supp(Γ (x, .)).

Moreover, with u defined by (1.8), for all q ∈ H1(Ω) and all 0 � t1<t2 �T , we have

0 �

∫
Ω

{ ∫
I

1

2a∗
|w(x, y, t)|2dΓ (y)− u(x, t) · q(x)

}
dx

∣∣∣∣
t2

t=t1

+

∫
Ω

1

a∗

∫
I

y |w(x, y, t2)− w(x, y, t1)| dΓ (y) dx

+

∫ t2

t1

∫
Ω

K∗∇p(x, t)∇(p(x, t)− q(x)) dx dt

−
∫ t2

t1

∫
∂Ω

n · (K∗∇p(t))(g(t)− q) dHn−1 dt. (3.5)

The solution (w, p) is bounded in the above norms by a constant that depends only on Ω, g,

and the bounds for the parameters.
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Proof We assume a∗ = 1 and b∗ = 0 for brevity of the calculations. It suffices to restrict

to smooth functions q. We consider the approximate solutions (ph,η, wh,η) of Theorem

2.4. We can choose a sequence (h, η) → 0 and limit functions such that the following

convergences hold: ph,η → p weakly and weakly-∗ in the norms of (2.16) and (2.17), and,

for all j = 1, 2, 3, Fh,ηj → Fj strongly in L1(Ω × (0, T )), weakly in H1((0, T ), L1(Ω)) and

F
h,η
j (., t)→ Fj(., t) in L1(Ω) for rational t ∈ (0, T ).

The next step is to define the limit object w : Ω × I × (0, T )→ �. For a fixed triangle

A ∈ T0 and t ∈ (0, T ), we consider y ∈ supp(Γ (A, .)). By (3.1) and the Lip1 continuity

in y, we have the compactness of the sequence wh,η(., y, t) in the space L2(A). We can

therefore assume on our sequence (h, η) → 0 additionally that wh,η(., y, t) → w(., y, t) in

L2(A) for all y in a dense subset of supp(Γ (A, .)) and all t ∈ (0, T )∩�. This defines a limit

function w(x, y, t) for almost all x ∈ Ω for all t in a dense subset, and, by the uniform

Lipschitz estimate in y for all y ∈ supp(Γ (A, .)). We claim that for all such y, the function

t → w(., y, t) ∈ L2(A) is uniformly continuous. Indeed, the approximations satisfy with a

Dirac family Φε(ζ) := Φ0(y + ζ/ε), for ε→ 0,

‖wh,η(., y, t2)− wh,η(., y, t1)‖L2(A)

�O(ε) +

∥∥∥∥ 1

Γ (Φε)

∫
I

[wh,η(., ζ, t2)− wh,η(., ζ, t1)]Φε(ζ) dΓ (ζ)

∥∥∥∥
L2(A)

�O(ε) +
1

Γ (Φε)

∥∥∥∥
∫ t2

t1

∑
ζ∈Iη

∂tw
h,η(., ζ, t)Φε(ζ)Γη(ζ) dt

∥∥∥∥
L2(A)

�O(ε) +
1

Γ (Φε)
C |t2 − t1|

by (2.15). In particular, w extends uniquely to all of [0, T ] to a function w as in (3.3).

We claim that for w the strong L1 limits of Fh,ηj coincide almost everywhere with the

expressions

F0(x, t) =

∫
I

w(x, y, t) dΓ (x, y), F1(x, t) =

∫
I

y w(x, y, t) dΓ (x, y),

F2(x, t) =

∫
I

|w(x, y, t)|2 dΓ (x, y).

For rational t ∈ (0, T ), this follows by the strong convergence of wh,η(., y, t)→ w(., y, t) for

y in a dense set of supp(Γ ) and the uniform Lipschitz continuity in y. The equality for

general t follows by the continuity of both sides in t.

After these preparations, we can now derive inequality (3.5). We multiply (2.13) with

p̃h,η − q and integrate over Ω to find at an arbitrary time instance t ∈ (0, T )

∫
∂Ω

n · (K∗∇p̃h,η)(g − q)−
∫
Ω

K∗∇p̃h,η∇(p̃h,η − q) +

∫
Ω

∂tu
h,η(x) · q dx

=

∫
Ω

∂tu
h,η · p̃h,η =

∫
Ω

∑
y

Γη(., y)∂tw
h,η(., y) · ph,η
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404 B. Schweizer

(2.14)
∈

∫
Ω

∑
y

Γη(., y)∂tw
h,η(., y) · [wh,η(., y) + y sign(∂tw

h,η(., y))]

= ∂t

∫
Ω

∑
y

Γη(., y)
1

2
|wh,η(., y)|2 +

∫
Ω

∑
y

Γη(., y)y |∂twh,η(t, y)|.

We integrate over (t1, t2) and find

∫ t2

t1

∫
∂Ω

n · (K∗∇p̃h,η(t))(g(t)− q) dt−
∫ t2

t1

∫
Ω

K∗∇p̃h,η(t)∇(p̃h,η(t)− q) dt+
∫
Ω

uh,η(., t) · q
∣∣∣∣
t2

t=t1

=

∫
Ω

∑
y

Γη(., y)
1

2
|wh,η(., y)|2

∣∣∣∣
t2

t=t1

+

∫ t2

t1

∫
Ω

∑
y

Γη(., y)y|∂twh,η(., y)|

�

∫
Ω

∑
y

Γη(., y)
1

2
|wh,η(., y)|2

∣∣∣∣
t2

t=t1

+

∫
Ω

∑
y

Γη(., y)y |wh,η(., y, t2)− wh,η(., y, t2)|. (3.6)

By the strong L1-convergence of the Fh,ηj , we can take the limit (h, η) → 0 and find (3.5)

for t1, t2 in a dense subset of (0, T ). As all terms in (3.5) are continuous in t1 and t2, the

inequality holds for all t1, t2 ∈ [0, T ].

The equality (wh,η(x, y, t)− ph,η(x, t)− y)+ = 0 carries over to the limit (also for reversed

sign). Therefore, w(x, y, t) − p(x, t) ∈ [−y, y] is valid almost everywhere. The Lipschitz

continuity of w in y implies the inclusion for all y ∈ I . �

We are particularly interested in two special cases of the equations. The first is the

original problem that we recover by setting Γ (x, .) = δγε(x)(.). The second is the homo-

genized problem in which the measure Γ (x, .) = L1�I appears. In both cases, the above

constructed weak solutions are indeed strong solutions. As a corollary to the above proof,

we find the following.

Corollary 3.3 (Strong solutions) Let Γ be one of the following.

(i) dΓ (x, y) = ϕ(x, y) dy, with a positive function ϕ : Ω × [0, 1] → �+, piecewise constant

in x and continuous in y.

(ii) Γ (x, .) = δγ(x)(.) with γ ∈ L∞(Ω, [0, 1]) piecewise constant.

Then the weak solution (p, w) found in Theorem 3.2 is a strong solution, that it,

∂tw ∈ L∞((0, T ), L2(Ω × I, dx⊗ dΓ )), (3.7)

in particular ∂tu ∈ L∞((0, T ), L2(Ω)), and relations (1.8)–(1.10) hold almost everywhere.

Proof We consider once more the approximate solutions (uh,η, ph,η, wh,η) of (2.12)–(2.14)

and identify them with their piecewise constant interpolations. By estimate (2.15), we

find u ∈ W 1,∞(0, T ;L2(Ω)) such that ∂tu
h,η

∗
⇀ ∂tu in L∞(0, T ;L2(Ω)). Furthermore, the

compactness of Fh,η0 implies the strong convergence uh,η → u in L1(Ω × (0, T )).

In case (i), we find, starting again from estimate (2.15), the convergence wh,η
∗
⇀ w

in W 1,∞(0, T ;L2(Ω × I)), and, in particular, the regularity (3.7). In case (ii), by the
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characterization of F0 = L1 − limh,η F
h,η
0 , we find that w essentially coincides with u,

w(x, γ(x), t) = u(x, t). This implies the regularity (3.7) in case (ii).

We now verify the equations. By the characterization of F0, relation (1.8) is a con-

sequence of (2.12) and relation (1.9) is the limit of (2.13). It remains to check (1.10). We

recall that w(x, y, t)−p(x, t) ∈ [−y, y] was already verified in Theorem 3.2. The main point

is therefore to show for Lebesgue almost every point (x, t) ∈ Ω × (0, T ) and for every

y ∈ I , that

|(w − p)(x, y, t)| < y ⇒ ∂tw(x, y, t) = 0. (3.8)

An improved characterizing inequality. The principal idea is to improve the calculation

of (3.6). We do not have to take the norm out of the integral in the term∫ t2

t1

∫
Ω

Fh,η with Fh,η(x, t) :=
∑
y

Γη(x, y) y |∂twh,η(x, y, t)|.

Case (i) By continuity of ϕ(x, .), we may rewrite Fh,η up to a uniformly small error as

Fh,η(x, t) =

∫
I

y |∂twh,η(x, y, t)|ϕ(y) dy + o(1)

for η → 0. We use the lower semicontinuity of convex functionals to find

lim inf
(h,η)→0

∫ t2

t1

∫
I

y |∂twh,η(., y, t)|ϕ(y) dy dt �

∫ t2

t1

∫
I

y |∂tw(., y, t)|ϕ(y) dy dt.

Thus, (3.6) yields the following stronger version of the characterizing inequality.

0 �

∫
Ω

{∫
I

1

2a∗
|w(x, y)|2 dΓ (x, y)− u(x) · q

}
dx

∣∣∣∣
t2

t1

+

∫ t2

t1

∫
Ω

1

a∗

∫
I

y|∂tw(x, y, t)| dΓ (x, y) dx dt

+

∫ t2

t1

∫
Ω

K∗∇p(t)∇(p(t)− q) dt−
∫ t2

t1

∫
∂Ω

n · (K∗∇p(t))(g(t)− q) dt. (3.9)

Case (ii) We write

Fh,η(x, t) = γ(x) |∂twh,η(x, γ(x), t)|+ o(1)

for η → 0. The lower semicontinuity of convex functionals yields

lim inf
(h,η)→0

∫ t2

t1

Fh,η �
∫ t2
t1

∫
I
γ(.) |∂tw(., γ(.), t)| dt,

and therefore again inequality (3.9).

Verification of (3.8) We give all arguments for case (i) and Γ (x, .) =L1, the other cases

are similar. We assume again a∗ = 1 and b∗ = 0 for notational convenience. We can write

for the first two integrals of (3.9)∫
Ω

∫
I

|w(., y, t2)|2 − |w(., y, t1)|2 dy =

∫ t2

t1

∫
Ω

∫
I

2w(., y, s)∂tw(., y, s) dy ds,

∫
Ω

{u(t2)− u(t1)} q =

∫ t2

t1

∫
Ω

∂tu(s) q ds.
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We now choose a countable family of test functions q ∈ H1(Ω). To be specific, we choose

the family {p(t) : t ∈ (0, T ) ∩ Q}. Almost every t ∈ (0, T ) is a Lebesgue point for the

(countable family of) L1 functions
∫
Ω

∫
I
w∂tw,

∫
Ω

∫
I
y |∂tw|,

∫
Ω

∂tu q and
∫
Ω
K∗∇p ·∇(p−q).

We can now consider t1 = t− τ, t2 = t+ τ and the limit 0 < τ→ 0. We divide the weak

equation (3.9) by t2 − t1. In the limit τ→ 0, we find in all Lebesgue points t

0 �

∫
Ω

∫
I

w ∂tw − ∂tw q +

∫
Ω

∫
I

y |∂tw|+
∫
Ω

K∗∇p · ∇(p− q)−
∫

∂Ω

n · (K∗∇p)(g − q).

By continuity of p in t, we can choose the test function q ∈ H1(Ω) arbitrarily close to p(t).

We conclude

0 �

∫
Ω

∫
I

(w − p)∂tw + y|∂tw|.

By |w − p| � y, the integrand is nonnegative. We conclude that the integrand vanishes

almost everywhere. This yields (3.8) almost everywhere and sign(∂tw) = sign(p− w). �

We have seen for strong solutions that either ∂tw vanishes or w−p is constant. Formally,

this is equivalent to the structure property (2.18). But we need the strong formulation of

(2.18) for the homogenization limit. This is the main reason why we work with the space

discrete solutions as test functions.

We conclude the analysis of the original problem (related to Γ = δγ(x)) and of the limit

problem (related to Γ = ϕdy) with a uniqueness result.

Remark 3.4 (Uniqueness) Let Γ be as in (i) or (ii) of Corollary 3.3. Then there exists only

one strong solution (p, w) of (1.8)–(1.12).

Proof Let (p1, w1) and (p2, w2) be two strong solutions of (1.8)–(1.12) as characterized in

Corollary 3.3. We consider here case (i) with ϕ ≡ 1 and a∗ = 1, b∗ = 0 and K∗ = 1 for

notational convenience. The equations imply

∆(p1 − p2) = ∂t(u1 − u2) =

∫
I

∂t(w1 − w2) dy.

We multiply with (p1 − p2) and integrate over Ω to find

−
∫
Ω

|∇(p1 − p2)|2 =

∫
Ω

∫
I

(p1 − p2)∂t(w1 − w2)

∈
∫
Ω

∫
I

(w1 + y sign(∂tw1)− w2 − y sign(∂tw2))∂t(w1 − w2)

=

∫
Ω

∫
I

1

2
∂t|w1 − w2|2 + y (sign(∂tw1)− sign(∂tw2))∂t(w1 − w2).

This yields ∫ T

0

∫
Ω

|∇(p1 − p2)|2 +

∫
Ω

∫
I

1

2
|(w1 − w2)(T )|2

∈ −
∫
Ω

∫
I

y (sign(∂tw1)− sign(∂tw2))∂t(w1 − w2) � 0,

which provides p1 = p2 and w1 = w2. �
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Our uniqueness result is for strong solutions. We emphasize that, by Corollary 3.3, this

also implies a uniqueness result for weak solutions as soon as we incorporate the initial val-

ues in the solution concept. Regarding Corollary 3.3 and Remark 3.4, we note that we res-

tricted to the two cases (i) and (ii) in order to keep the proofs accessible. With the help

of some additional tools of measure theory, the case of a general measure Γ can also be

treated.

4 Homogenization

In this section, we consider flow in unsaturated porous media described by the hysteresis

system (1.1)–(1.2). The material parameters a, b, γ and K are assumed to vary across

the medium and are chosen randomly. Our aim is to derive upscaled equations that

describe the averaged behaviour almost surely. We assume for simplicity that the material

parameters are piecewise constant in the medium, and that the different values are chosen

independently according to a stochastic law.

We consider again a rectangle Ω ⊂ �n. For every ε > 0, we subdivide Ω into cells

Qεk := ε[k + (0, 1)N] ∩ Ω, k ∈ �N.

For given bounds 0 < al < au, bl < bu and Kl < Ku, in each cell Qεk ⊂ Ω, we choose

randomly ak ∈ Ja := [al , au], bk ∈ Jb := [bl , bu], Kk ∈ JK := [Kl,Ku] and γk ∈ I := [0, 1],

all independently and, for simplicity, uniformly distributed. We define

γε ∈ L∞(Ω,�), by γ(x) = γk ∀x ∈ Qεk,

and similarly for aε, bε and Kε. We consider (1.1)–(1.2) in the stochastic geometry, that is,

∂tu
ε = ∇ · (Kε∇pε), (4.1)

pε ∈ aεuε + bε + γεsign(∂tu
ε), (4.2)

with the initial and boundary values of (1.3) and (1.4). Corollary 3.3 (ii) provides the

existence of a solution to this problem, with bounds independent of ε. The characterization

of weak solutions in Theorem 3.2 implies |pε − aεuε − bε| � γε almost everywhere and, by

evaluating 1
2aε
|aεuε + bε|2,∫
Ω

(
aε

2
|uε|2 + bεuε − uεq

)∣∣∣∣
t2

t1

+

∫ t2

t1

∫
Ω

Kε(∇pε − ∇q) · (∇pε − ∇q)

+

∫
Ω

γε|uε(., t2)− uε(., t1)|+
∫ t2

t1

∫
Ω

Kε∇q · (∇pε − ∇q)

�

∫ t2

t1

∫
∂Ω

n · (Kε∇pε(t))(g(t)− q) dt, (4.3)

for all q ∈ H1(Ω) and all [t1, t2] ⊂ [0, T ].

The above described model of a stochastic medium can be realized as in [11]. The

independent distributions of the coefficients (a, b,K, γ) can be realized with a probability

space (Σ,A, P ) such that

Σ = {ω ∈ L∞(�n, [al , au]× [bl , bu]× [Kl,Ku]× [0, 1]) :

ω constant in all cells x+ k + (0, 1)N, k ∈ �n for some x ∈ [0, 1]n
}
.
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408 B. Schweizer

We use the shift operator T (x) : ω(.) → ω(. + x). The coefficients of the equations are

determined for an element ω ∈ Σ as aε(x) := ω1(x/ε) = [T (x/ε)ω]1(0), and similarly for

bε, Kε and γε.

To homogenize the diffusion operator, we use the following cell solutions on unbounded

domains. With K(ω) := ω3(0), our aim is to study for ω ∈ Σ a solution Qωj , j = 1, . . . , n,

of the cell problem

∇ ·
[
K(T (x)ω) ·

(
ej + ∇Qωj (x)

)]
= 0. (4.4)

Following the approach of [11], we use the spaces L2
pot(Σ) and L2

sol(Σ) of vector fields

v ∈ L2(Σ)n, such that for almost all ω ∈ Σ, the realizations v(T (x)ω) are potential and

solenoidal, respectively. Instead of searching for ∇xQ for fixed ω, we then search for

vj = vj(ω), such that almost all realizations are potential. We can write the family of

problems (4.4) as

vj ∈ L2
pot(Σ) ∩ {f|�f = 0}, K · (ej + vj) ∈ L2

sol(Σ), (4.5)

and this can be solved with the Lax–Milgram theorem. The homogenized diffusion matrix

K∗ is defined by

�(K · (ej + vj)) = K∗ · ej . (4.6)

As a preparation for the homogenization, we collect some consequences of the ergodicity

of the system.

Lemma 4.1 For every α � 1 and almost all ω ∈ Σ we have

bε ⇀ b∗ in Lα(Ω), (4.7)

1

aε
1{γε�z} ⇀

1

a∗
z in Lα(Ω), (4.8)

Kε ·
(
ej + ∇Qωj

)
⇀ K∗ · ej in L2(Ω). (4.9)

Furthermore, for almost every ω ∈ Σ, there exists a continuous potential Qωj with

ε‖Qωj (./ε)‖L∞(Ω) → 0, (4.10)

and for all εn < ε0 along a sequence εn → 0 we have

|{x ∈ Ω|γεn(x) < y}| < 2|Ω|y. (4.11)

Proof The probability measure P is ergodic with respect to the translations T . Therefore,

by the Birkhoff ergodic theorem (cp. e.g. [11], Theorem 7.2) the oscillating function bε

converges weakly to its expected value b∗ = 〈bε〉, hence (4.7). The same argument shows

(4.9). To show (4.8), we first notice that for a fixed z ∈ I , for almost all ω ∈ Σ, the limit

follows from the fact that aε and γε are independently distributed. Since � is countable,

we conclude that for almost all ω, convergence (4.8) is valid for all z ∈ I ∩�. Using the

fact that the left-hand side is monotone in z and the right-hand side is continuous in z,

we conclude the result for all z ∈ I .
For almost every ω, the realization vj is indeed a gradient. We can choose Qωj (./ε)

with vanishing average on Ω such that ∇(εQωj (./ε)) = vj(./ε). The Birkhoff theorem yields
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vj ⇀ �vj = 0 in L2 by definition (4.5). This implies the strong L2 convergence of εQωj (./ε).

The functions εQωj (./ε) are solutions of uniform elliptic equation, and we can estimate the

L∞ norm on a compact set by the L2 norm on a larger set. This argument provides (4.10).

The argument is taken from [13], Lemma 2, and we refer to this article for more details.

For all y ∈ I ∩ � and almost all ω ∈ Σ, the characteristic function 1{x∈Ω|γεn (x)�y}
converges weakly to its expected value y. Therefore, its average converges to y|Ω|. We

find (4.11) first for all rational y, but this implies the estimate for all y ∈ [0, 1]. �

The next theorem is the main result of this article. We find the averaged equations for

the hysteresis problem in unsaturated porous media. The principal idea is to construct

test functions on the basis of the limit problem. To be precise, we use the solution

(uh,η, ph,η, wh,η) of the discretized limit problem to construct the test function wε in step 2

of the proof. The use of the discretized equation is essential since we want to exploit the

structure property (2.18) in step 3.

Theorem 4.2 (Homogenization) Let a sequence of stochastic geometries be given as above,

let the pressure boundary values g satisfy (1.5), and let, for compatibility, the initial values

for the saturation U(ε)
0 result from a drainage process at the point of vanishing pressure, i.e.

aε(x)U(ε)
0 (x) + bε(x) = γε(x). (4.12)

We study a strong solution (pε, uε) of the original ε equations (1.1)–(1.4), and a strong solution

(u, p, w) of the limit system (1.8)–(1.12) with initial values W0(x, y) := y, both as constructed

in Corollary 3.3.

Then, for any sequence ε→ 0, almost surely we find

pε ⇀ p in H1((0, T ), H1(Ω)), (4.13)

uε
∗
⇀ u in L∞((0, T ), L2(Ω)). (4.14)

Let us note that the drainage assumption (4.12) can be replaced by an imbibition

assumption without changes in the result. Much more general initial values U0 can be

considered; necessary is that W0 can be defined consistently satisfying (1.14).

Proof We note that the compatibilities (1.6) and (1.14) are satisfied; thus Theorem 2.4

and Corollary 3.3 are applicable.

Let ε = εn → 0 be a fixed sequence. Corollary 3.3 provides solutions with uniform

estimates for pε ∈ H1((0, T ), H1(Ω)) and uε ∈ W 1,∞((0, T ), L2(Ω)). We can assume for a

subsequence corresponding weak and weak-∗ convergences pε ⇀ p0 and uε → u0 and we

have to show u0 = u and p0 = p. We fix ω ∈ Σ such that the convergences of Lemma 4.1

hold. We use the function p̃h,η from Theorem 2.4 to construct an oscillating test function

for the homogenization procedure. The bounds (2.16)–(2.17) provide uniform estimates

for p̃h,η ∈ L∞((0, T ), H2(Ω)) ∩H1((0, T ), H1(Ω)) and uh,η ∈W 1,∞((0, T ), L2(Ω)).

Step 1 (Appropriate choice of a test function in the weak equation). For arbitrary s ∈
(0, T ), we set

q(x) := p̃h,η(x, s) + ε
∑
j

Qj

(x
ε

)
∂xj p̃

h,η(x, s).
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410 B. Schweizer

In the subsequent calculations, we decompose one integral as∫ t2

t1

∫
Ω

Kε∇q · (∇pε − ∇q) =

∫ t2

t1

∫
Ω

Kε
∑
j

(ej + ∇Qj) ∂xj p̃
h,η(s) (∇pε − ∇q)

+

∫ t2

t1

∫
Ω

Kεε
∑
j

Qj ∇∂xj p̃
h,η (∇pε − ∇q),

and exploit that the last integral is small. We insert q in the weak equation (4.3) to find

∫
Ω

(
aε

2
|uε|2 + bεuε − uεp̃h,η(s)

)∣∣∣∣
t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1 +

∫
Ω

γε|uε(., t2)− uε(., t1)|

� −
∫ t2

t1

∫
Ω

∑
j

Kε (ej + ∇Qj) ∂xj p̃
h,η(s) (∇pε − ∇p̃h,η(s))

+

∫ t2

t1

∑
j,k

∫
Ω

[Kε (ej + ∇Qj)∂xj p̃h,η(s)]∇(εQk(./ε) ∂xk p̃
h,η(s)) + q1(t1, t2, ε), (4.15)

with

q1(t1, t2, ε) := Cε‖Q(./ε)‖L∞(Ω)‖uε(t2)− uε(t1)‖L2 + Cε‖Q(./ε)‖L∞(Ω) (t2 − t1) + o(t2 − t1).

To treat the second integral on the right-hand side, we have to make use of the theorem

of compensated compactness. The divergence of the squared bracket converges weakly in

L2(Ω), and therefore strongly in H−1(Ω), since the divergence of Kε(ej + ∇Qj) vanishes.

The gradient of the other bracket is obviously curl free. We can apply the theorem on

compensated compactness (compare, e.g. [11]). On a dense set of time instances s, the Ω

integral converges to zero. By the estimates for p̃h,η , the Ω integral is continuous in s, with

modulus of continuity independent of ε. We therefore have convergence of the Ω integral

to zero, uniformly in s.

In the first integral, we replace Kε (ej + ∇Qj) by K∗, leading to the error term

∫ t2

t1

∣∣∣∣
∫
Ω

∑
j

[K∗.j −Kε (ej + ∇Qj)]∂xj p̃h,η(s) · ∇(pε − p̃h,η(s))
∣∣∣∣

=: q′2(t1, t2, ε) = oε(1) (t2 − t1). (4.16)

For this last estimate, we use the same argument as above based on the theorem on

compensated compactness, and exploit estimate (3.4) for ph,η and for pε.

On the right-hand side of (4.15), we have now after an integration by parts and (2.13)

−
∫ t2

t1

∫
Ω

∑
j

Kε (ej + ∇Qj) ∂xj p̃
h,η(s) (∇pε − ∇p̃h,η(s))

�−
∫ t2

t1

∫
Ω

K∗∇p̃h,η(s) (∇pε − ∇p̃h,η(s)) + q′2(t1, t2, ε)

=

∫ t2

t1

∫
Ω

∂tu
h,η · (pε − p̃h,η(s)) + q′2(t1, t2, ε) + o(t2 − t1),
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where the last error term is introduced by the boundary integral. We have thus transformed

(4.15) into

∫
Ω

(
aε

2
|uε|2 + bεuε − uεp̃h,η(s)

)∣∣∣∣
t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

+

∫
Ω

γε|uε(., t2)− uε(., t1)| −
∫ t2

t1

∫
Ω

∂tu
h,η · (pε − p̃h,η(s))

� q1(t1, t2, ε) + q2(t1, t2, ε), (4.17)

where q2(t1, t2, ε) = oε(1) (t2−t1) contains both error terms that were treated by the method

of compensated compactness.

We next replace in (4.17) the function p̃h,η by its piecewise averages ph,η . This introduces

an error

q3(t1, t2, ε) := Coh(1)

(
‖uε(., t2)− uε(., t1)‖L2 +

∫ t2

t1

‖∂tuh,η‖L2

)
, (4.18)

with oh(1)→ 0 for h→ 0 independent of ε.

Step 2 (An energy decay result) We next calculate for an appropriate energy function

a decay result on the basis of the ph,η version of (4.17). To shorten the calculations, we

write p(s) for ph,η(s) and perform the computations in the case bε ≡ 0.

We can evaluate wh,η only in points y ∈ Iη . To an arbitrary point y ∈ I , we therefore

define yη(y) := η[y/η + 1] ∈ Iη , which is the node in Iη corresponding to y. We can now

introduce wε(x, t) := wh,η(x, yη(γ
ε(x)), t) to find

∫
Ω

1

2aε
|aεuε + bε − wε|2

∣∣∣∣
t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

=

∫
Ω

aε

2
|uε|2 − uεwε +

1

2aε
|wε|2

∣∣∣∣
t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

(4.17)

�

∫
Ω

uεp(s)

∣∣∣∣
t2

t1

−
∫
Ω

γε|uε(., t2)− uε(., t1)|+
∫ t2

t1

∫
Ω

∂tu
h,η (pε − p(s))

−
∫
Ω

uεwε
∣∣∣∣
t2

t1

+

∫
Ω

1

2aε
|wε|2

∣∣∣∣
t2

t1

+

3∑
j=1

qj(t1, t2, ε)

=

∫
Ω

uε[p(s)− wε(s)]
∣∣∣∣
t2

t1

−
∫
Ω

γε|uε(., t2)− uε(., t1)|

+

∫ t2

t1

∫
Ω

[
∂tu

h,η − 1

aε
∂tw

ε

]
pε −

∫ t2

t1

∫
Ω

[
∂tu

h,η − 1

aε
∂tw

ε

]
p(s)

−
∫
Ω

uε[wε − wε(s)]
∣∣∣∣
t2

t1

+

∫ t2

t1

∫
Ω

1

aε
[wε − p(s)] ∂tw

ε

+

∫ t2

t1

∫
Ω

1

aε
∂tw

ε pε +

3∑
j=1

qj(t1, t2, ε).
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We start by studying the first two integrals together. Exploiting (2.14), we find

∫
Ω

uε[p(s)− wε(s)]
∣∣∣∣
t2

t1

−
∫
Ω

γε|uε(., t2)− uε(., t1)|

∈
∫
Ω

uε yη(γ
ε)sign(∂tw

ε(s))

∣∣∣∣
t2

t1

−
∫
Ω

γε|uε(., t2)− uε(., t1)|

� η

∫
Ω

|uε(., t2)− uε(., t1)|.

The last two integrals of the above calculation can be written as

∫ t2

t1

∫
Ω

1

aε
[wε − p(s)] ∂tw

ε +

∫ t2

t1

∫
Ω

1

aε
∂tw

ε pε

=

∫ t2

t1

∫
Ω

uε∂t[w
ε − wε(s)] +

∫ t2

t1

∫
Ω

(pε − aεuε)∂tw
ε

aε
+

∫ t2

t1

∫
Ω

[wε − p(s)] ∂tw
ε

aε

�

∫ t2

t1

∫
Ω

uε∂t[w
ε − wε(s)] + q4(t1, t2, ε).

Here we estimated the last two integrals by the error term q4. We use that (pε − aεuε) ∈
γεsign(∂tu

ε) by (4.2) and wε − ph,η ∈ −yη(γε)sign(∂tw
ε) by (2.14). This makes the error

negative up to ph,η(t)� p(s) = ph,η(s). We can set

q4(t1, t2, ε) := C

∫ t2

t1

∫ s

t1

∫
Ω

‖∂tph,η(ξ)‖L2(Ω) dξ ds.

The last error term already shows that we must deal with the whole time interval (0, T )

in one estimate. We consider discretizations F of (0, T ) given by families 0 = t0 < ... <

tN = T , and apply the above estimate with ti, ti+1 ∈ F and s = ti. We fix ∆t > 0 and

use only discretizations F such that |ti+1 − ti| � ∆t for all i. In the above inequality, we

take the positive part and sum over i. Taking the supremum over all F as above, we find

essentially a BV norm on the left-hand side—the factor 2 stems from the fact that we sum

only the positive increments. We exploit here that the integral vanishes initially. With ti(t)

denoting the point s = ti � t closest to t, we can write

1

2

∥∥∥∥
∫
Ω

1

2aε
|aεuε + bε − wε|2

∥∥∥∥
BV ([0,T ],�)

+ c0‖pε − q‖2L2H1

� Cη + sup
F

∫ T

0

∣∣∣∣
∫
Ω

[
∂tu

h,η − 1

aε
∂tw

ε

]
(pε − p(ti(.)))

∣∣∣∣
+ sup
F

∑
i

∣∣∣∣∣−
∫
Ω

uε[wε − wε(ti)]
∣∣∣∣
ti+1

ti

+

∫ ti+1

ti

∫
Ω

uε∂t[w
ε − wε(ti)]

∣∣∣∣∣
+ sup
F

∑
i

4∑
j=1

qj(ti, ti+1, ε). (4.19)

It remains to analyze this inequality (4.19).
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Step 3 (Conclusion) We consider one after another the limits ∆t→ 0, then ε→ 0, then

h→ 0, then η → 0.

The second supremum on the right-hand side of (4.19) vanishes for ∆t→ 0, as can be

seen with one integration by parts and using the uniform estimates for derivatives of uε

and of wh,η .

Concerning the first supremum on the right-hand side of (4.19), it suffices to show that

for every sequence ϕε bounded in L2H1, we have

Fε :=

∫ T

0

∫
Ω

(
∂tu

h,η − 1

aε
∂tw

ε

)
· ϕε → 0. (4.20)

We calculate for the first factor with (2.12) and the structure property (2.18)

∂tu
h,η − 1

aε
∂tw

ε =
1

a∗

∑
y∈Iη ,y�zh,η

Γη(y) ∂tw
h,η(., y)− 1

aε
∂tw

h,η(., yη(γ
ε(x)))

= ∂tp
h,η

[
1

a∗
zh,η − 1

aε
1{γε�zh,η}

]
.

The ergodicity result (4.8) implies, since zh,η takes only finitely many values, that

Zε :=
1

a∗
zh,η − 1

aε
1{γε�zh,η} ⇀ 0,

for ε → 0, weakly in every Lα(Ω) and uniformly in t ∈ [0, T ]. For every q > 1, there is

α < ∞ such that the embedding W 1,q(Ω) ⊂ (Lα(Ω))′ = Lα
∗
(Ω) is compact. Choosing a

subsequence, we may therefore assume Zε → 0 in C0((0, T ),W 1,q(Ω)′).

On the other hand, for q > 1 depending on the dimension n, the product of two

bounded H1(Ω) functions is an W 1,q(Ω) function with corresponding bound. Therefore,

∂tp
h,η ϕε ∈ L1((0, T ),W 1,q(Ω))

is a bounded sequence. Integrals of their product with Zε vanish in the limit. This verifies

(4.20).

In the limit ε→ 0, we find from (4.19)

lim sup
ε→0

{∥∥∥∥
∫
Ω

1

2aε
|aεuε + bε − wε|2

∥∥∥∥
BV (0,T )

+ c0‖pε − ph,η‖2L2H1

}

� oh(1) + oη(1), (4.21)

that is, the right-hand side of equation (4.21) is arbitrary small for h and η. In particular,

since pε ⇀ p0 for ε→ 0 and ph,η ⇀ p for (h, η)→ 0,

‖p0 − p‖2L2H1 = 0.

This shows the claim for (4.13).

For the convergence of uε, we once more study (4.19). Almost surely, functions wε =

wh,η(., yη(γ
ε), .) converge weakly to the expected value for γ ranging in (0, 1) and, by
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independency,

1

aε
(wε − bε) ⇀ 1

a∗

⎛
⎝∑
y∈Iη

Γη(., y)w
h,η(y)− b∗

⎞
⎠ (4.22)

=
1

a∗
(a∗uh,η + b∗ − b∗) = uh,η

in L2(Ω × (0, T )). Let now u0 be a weak limit of uε in the same space. Then (4.19) yields

‖u0 − uh,η‖2L2(Ω×(0,T )) � lim inf
ε→0

‖uε − 1

aε
(wε − bε) ‖2L2(Ω×(0,T ))

� C lim inf
ε→0

‖aεuε − wε + bε‖2BV ([0,T ],L2(Ω))

� oh(1) + oη(1).

This implies u0 = u, and thus (4.14). �

5 Conclusion

Starting from simple play-type hysteresis equations for unsaturated porous media, we

derived an effective hysteresis model. The model contains a new variable w that can be

regarded as an expected pressure. It encodes the wetting history of the process.

The mathematical derivation was based on Galerkin approximations. The approxim-

ations were used first to construct weak solutions, then to construct test functions. The

crucial point is that the approximate solutions satisfy the structure property (2.18), that

we could not verify for strong solutions due to missing regularity properties. Our analysis

is restricted to independent stochastic coefficients because of the argument in (4.22).
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