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On the gradient set of Lipschitz maps

By Bernd Kirchheim at Oxford and Ldszlo Székelyhidi Jr. at Zirich

Abstract. We prove that the essential range of the gradient of planar Lipschitz maps
has a connected rank-one convex hull. As a corollary, in combination with the results in [7]
we obtain a complete characterization of incompatible sets of gradients for planar maps in
terms of rank-one convexity.

1. Introduction

This paper is concerned with the range of gradients of Lipschitz maps. Let Q = R” be
a bounded open and connected set, and let u : Q = R” — R” be a Lipschitz map. We de-
note by [Du] the essential range of the gradient of u, i.e. the smallest closed subset of R”*"
such that Du(x) € [Du] for almost every x € Q. Our aim is to find geometric restrictions on,
or characterizations of the essential range of gradients of Lipschitz maps.

This issue plays a central role in the study of material microstructure [2], [3], [5], [9],
and is linked to the question of existence and regularity of solutions to partial differential
inclusions of the type

Du(x)e K a.e. xeQ,
where K < R™" is a prescribed (compact) set of matrices.

The following construction is well known: let 4, B € R"*" be two matrices such that
rank(4 — B) = 1, so that A — B = a ® v for some vectors ¢ € R” and v € R". For any Lip-
schitz “profile” i : R — R with A/(¢) € {0, 1} a.e., the map

u(x) = Bx +ah(x - v)

is a Lipschitz map whose gradient takes the values 4 or B almost everywhere. This
type of example is called a simple laminate, and whenever two matrices 4, B satisfy
rank(A4 — B) = 1, one speaks of a rank-one connection (or, more classically, 4 and B are
said to satisfy the Hadamard jump condition). On the other hand, it is also well known
that if A, Be R™" with rank(4 — B) > 1, then the only Lipschitz maps with gradient
Du(x) € {4, B} a.e. are affine maps. Moreover, in [2] J. M. Ball and R. D. James estab-
lished the much stronger statement that whenever {;} is a sequence of maps bounded
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in WU such that dist(Du;, {4,B}) — 0 in L' strongly, then—up to a subsequence—
Du; — A or Du; — B strongly in L'.

A general question, that has received considerable attention recently, is to understand
to what extent the above construction is universal. In other words to understand to what
extent the presence of rank-one connections is necessary in the essential range of gradients
of Lipschitz maps. To put this question into proper perspective, we need to recall the exam-
ple given by the first author together with D. Preiss of a Lipschitz map u : Q = R*> — R?,
where [Du] consists of 5 matrices, none of which are rank-one connected to each other ([12],
Chapter 4, see also [11] for similar examples). This example shows that it may happen that
the set [Du] itself contains no rank-one connections. On the other hand, the construction of
the mapping itself relies very much on the presence of rank-one segments in the sense that it
proceeds via a (Baire category) variant of an iteration scheme known as convex integration
(see [13] for a survey of the theory). In technical terms one key ingredient for this construc-
tion to work is that the rank-one convex hull [Du]™ is a connected set, which contains many
rank-one segments in the sense that for any matrix 4 € [Du]"\[Du] there exists a rank-one
segment through A4 contained in [Du|™. In other words, although the iterative process of
convex integration can eliminate rank-one connections in the essential range [Du] of the
limit, the “trail” it leaves behind is a large rank-one convex hull.

Our main result shows that for planar maps this is in some sense optimal:

Theorem 1. Let Q < R? be a bounded open and connected set, and u: Q — R? a
Lipschitz map. Then the rank-one convex hull [Du]" of the essential range of the gradient is
connected.

It is important to note that connectedness itself does not imply that [Du]™ contains
rank-one segments. The standard example is simply a planar conformal map. However, in
some sense this is the only example. Indeed, if [Du]"™ is connected and contains no rank-one
connections, then in fact the differential inclusion

Du(x) € [Du]™ fora.e. xeQ

can be viewed as a (possibly degenerate) elliptic system (see [23], [25]). In particular, we
have the following statement:

Corollary 1. [If the essential range of the gradient of a Lipschitz map
u:Q c R? — R? contains an isolated matrix A € [Du), then there exists another matrix
B e [Du]"\{A} such that rank(4 — B) = 1.

We emphasize that Theorem 1 and Corollary 1 are very specific for planar mappings,
and the analogue statements are false in higher dimensions in general (see for example [9]).

Our Theorem 1 has interesting implications concerning the study of incompatible sets
of gradients. In combination with the results in [6] and [7] we obtain the following theorem.

Theorem 2. Let K|, K, = R¥? be disjoint compact sets which are rank-one in-
compatible in the sense that

KKy =0 and KUK);"= (K uKy)™.



Kirchheim and Székelyhidi Jr., Gradient set of Lipschitz maps 217

Then for any bounded open and connected set Q = R?> with Lipschitz boundary, and any
p € [1, 00) there exists a constant C = C(p, Q) such that

min{ | dist”(Du, Ky), [ dist”(Du, Kz)} < C [dist”(Du,K; U K)
o) Q O

for all ue Whr(Q,R?).

2. Outline of the proofs and some preliminaries

In the proof of Theorem 1 we follow the approach of [7], which is based on the
geometric characterization of incompatibility for laminates via a separating curve, intro-
duced by the second author in [24]. We recall from [24] that a continuous, closed curve
I': ' — R>*? without self-intersetions is said to be a separating curve for a compact set
K < R>?if

KcUr:={4eR”? :det(4-T(r)) >0forallte '},

and K is contained in more than one connected component of Ur (the definition implicitly
assumes that Ur consists of more than one connected component). In [24], Theorem 4, it is
proved that if K contains no rank-one connections and no 7, configurations, then such a
separating curve exists (upto a change of sign). In turn, the arguments in [24] are used to
show in [7], Section 4, that if K™ is disconnected, then—upto a change of sign—K admits
such a separating curve. A further argument can then be used to refine the choice of curve,
so as to obtain an elliptic separating curve. That is, such that for some %" = 1

(1) IC(1) = T(s)||> < # det(C(r) — T(s)) forallz,s € 9",
2) Kcér={A4eR¥?:|4-T(1)|* < A det(4—T(r)) forallre #'},

and K is contained in more than one connected component of &r. In particular one obtains
the following

Theorem 3 ([7], Theorem 5). Suppose K = R**? is a compact set such that K™ is not

connected. Then, possibly after changing sign, there exists an elliptic separating curve for K.

Concerning the geometry of &1 we recall also (cf. [7], Lemma 2) that in fact condition
(1) implies that & has precisely two connected components, that are characterized by their
projections onto rank-one planes. More precisely, given a unit vector e € R?, the curve
I'(-)e = R? is a Jordan curve, so that R*\I'(-)e consists of precisely two connected compo-
nents w”, o', and we have

Lemma 1 ([7], Lemma 2).
Er = EL U EL,
where

6 ={Ae€ér:Adecw"} forv=0,1.
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In the current paper we take these as our starting point. Thus, if [Du]™ is discon-
nected, we apply Theorem 3 with K = [Du] to find the existence of an elliptic separating
curve T': ! — R?*2. As in [7] we interpret the inclusion [Du| c & as saying that the
maps

u'(x) = u(x) — T(t)x

are J -quasiregular. However, in our case we have no control over the boundary values of
u', hence we cannot conclude that these maps are homeomorphisms. In general they may
have branch points. Our strategy is to prove that the set of branch points is in fact indepen-
dent of € &', and therefore cannot disconnect Q. In this way we will be able to conclude
the incompatibility just as in [7], Theorem 4.

Our paper is organized as follows. In Section 3 we prove a general result about stabil-
ity of the branch set of quasiregular mappings in R”, and show in Proposition 2 how it can
be used to prove separation results for gradients of Lipschitz maps in R”. Then in Section 4
we utilize the stability result together with the existence of a separating curve in case [Du]"™
is disconnected to prove Theorem 1 and Corollary 1.

Finally, in Section 5 we discuss the implications of Theorem 1 to the study of incom-
patible sets of gradients and in particular the proof of Theorem 2. As the explanation of
these implications requires introducing the language of gradient Young measures which
does not otherwise play a central role in our paper, we defer the statements and proofs until
that section.

3. Stability of the branch set

In the following, we will call a connected open subset Q — R" a domain. Given a
domain Q = R” and an open and discrete mapping u : Q — R”, we shall write u(y,u, G)
for the local degree of the mapping at y € R” with respect to G (provided y ¢ u(0G)),
N(y,u,G) =cardu~'(y) n G, N(u,G) = sup N(y,u,G) and i(x,u) for the local index
of u at xe Q. We recall that a domain D < Q is called a normal domain for the
mapping u if u(0D) = ou(D) (note that ou(D) < u(dD) follows automatically from
openness of the map). A normal neighbourhood D of x € Q is a normal domain such that
Du !t (u(x)) = {x}.

A map u: Q — R” is said to be quasiregular, if for some constant 2#" = 1
| Du(x)||" < # det Du(x) fora.e. x€Q,

where || Du(x)|| denotes the operator norm of the matrix Du(x). It is well known since the
pioneering work of Y. G. Reshetnyak that non-constant quasiregular mappings are open
and discrete. The branch set B(u) is defined as the set of points x € Q where u is not locally
homeomorphic, that is,

B(u) :={xeQ:i(x,u) > 1}.
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In particular for quasiregular maps B(u) is a closed set of topological dimension (n — 2)
and Lebesgue measure zero [20]. For the basic theory of quasiregular mappings, and their
topological properties, we refer the reader to [21].

Proposition 1. Let u: Q — R”" be a A -quasiregular mapping such that || Du(x)|| =z &
for a.e. x € Q, let G = Q be a subdomain with G < Q, and assume that M := N (u, G) < 0.

Then there exists a constant 6 = (e, #, M,n) >0 and for each xo€ G a radius
r(xo) > 0 so that for any Lipschitz mapping ¢ : Q — R" with ||Dg|| ., <,

(3) min |u'(x) —u'(xo)| = r forall r < r(xp), t €|0,1],

x—xol=r

where u' = u + t¢. In particular
i(xp,u) =1i(xo,u + ¢) forall xo € G,
and B(u) nG = Bu+ ¢)n G.

Proof. From [19] for every xoe G there exists a radius r(xp) >0 so that
By (1) (x0) = Q, and for r < r(xo)

max |u(x) —u(xo)| =L min |u(x) — u(xo)],
[x—xo|=r [x—xo|=r

where L = L(A', M, n). Moreover,

(f ) det Du(x) dx = an N(y,u,B:(x0)) dy < M|u(B,(x0))],

and on the other hand |det Du(x)| = # ~'¢". Hence

L n ’u(Br(X()))‘
MA B, (x0)|

lIA

In particular we deduce that for all » < r(xo)

——¢a < min |u(x) — u(xp)|.
L(Mf%/')l/n IX—XO\:r| ) C)l

For ¢ € [0, 1] define u’ = u + t¢. Then

u'(x) — u'(x0) = u(x) — u(xo) + t(4(x) — h(x0)),

so that
min |u'(x) —u'(x0)| = %8— 0 |r.
fx—sal=r L(MA )"
) 1
Choosing 6 =5 ——— ¢ we find
2 LMy

min |u’(x) —u'(x)| = or forall r < r(xy), te|0,1],

|x—xo|=r =
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and in particular u’(x) % u'(xo) for all x € 0B,(xp). Hence

(4) (1t (x0),u’, By(x0)) = pu(u' (x0),u', By(x9)) forall 0 < r < r(xp).
For xy € Q the local topological index of the mapping u at xy is defined to be

i(xov u) = ,u(u(xo), u, Br<x0)),

where r > 0 is chosen sufficiently small so that B,(xo) nu~'{u(x¢)} = {x0}. Therefore (4)
implies that

1(x0,u) = i(xp,u + ).

Since the branch set is defined as B(u) = {xeQ:i(x,u) > 1}, we deduce that
BuymG=B(u+¢)nG. QE.D.

Proposition 2. Let T' < R™" be a compact set of n x n matrices and Q < R" a
domain. Let ue Wh"(Q,R"), and suppose that there exists # =1 and & > 0 such that for
allAeTl

¢ < ||Du(x) — A||" £ A det(Du(x) — A) a.e. xeQ.

Then there exists an open and connected subset Qy = Q with |Q\Qo| = 0 such that for all
X0 € Qq there exists a radius ¥(xo) > 0 such that

u(x) —u(y) £ A(x —y) forall x,y € By, (xo) and all AeT.

Proof. For simplicity of notation let us treat I’ = R"*" as the image of a continuous
map I' : & — R™" where ¥ is a compact metric space which we think of as an index set.
Consider for any ¢ € % the mapping

u'(x) :== u(x) — T(2)x.
By assumption u’ € W!"(Q, R") and
e < ||Du'(x)||" £ A det Du'(x) ae. xeQ,
in particular {u'},_, is an equicontinuous family of quasiregular mappings.

Let G = Q be a subdomain with compact closure and such that G = Q and |0G| = 0.
From [18] we know that N(u’,G) < co for each re€.¥. We aim to show that in fact

sup N(u', G) < oo. To this end note that since each u' is a discrete mapping, for each x € G
tes
and each ¢ € & there exists r = r(x, 1) > 0 so that

B,(x) n (u) " u' ()} = {x}.

More precisely from Proposition 1 we deduce that there exists r =r(x,¢) >0 and
0 =0(t) > 0 so that

B(x) A () i’ (x)} = {x} forall|s— 1| <0,
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and

dist (v’ (x),u*(0B,(x))) 2 or forall |s— 1] <o

holds for all € . Hence by compactness of . there exists r = r(x) > 0 and J > 0 (now
independent of ¢) so that

(5) B.(x) n (") H{u'(x)} = {x} forallres,
and
(6) dist(u'(x),u’(0B,(x))) = or forallte &.

Indeed, the sets V'(¢) := {se ¥ : |t — 5| <(¢)} form an open cover for &, so it suffices to
take a finite subcover V(t1),..., V(zy) and then define

()= min, r(x.) and 9= min, o)

in (5) and (6). Let
s(x, 1) := dist (u'(x), u’ (0B,(x))),

and let U(x, ) be the connected component of

(ut)_l (Bs(x,t) (ut(x)) )

containing x. Then U(x, )  B,)(x) is a normal neighbourhood of x for the mapping u'.
Since the family {u'} is equicontinuous, from (6) we deduce that there exists 7 = 7(x) > 0 so
that B;(x) = U(x, ). Since 7(x) is independent of #, there exists a number J € N so that for
each fixed ¢ € ¥ the compact set G can be covered by at most J normal neighbourhoods
U(xi,t),...,U(xy,t). Then

M-

i(x;,u’).

N®u',G) < éN(u’, U(x;, 1)) =

j=1

On the other hand Proposition 1 implies that for each fixed x( € G the function ¢ — i(xg, u")
is continuous, hence bounded on .. Therefore we deduce that N(u’, G) is bounded inde-
pendently of ¢.

Proposition 1 now implies that there exists & > 0 (not depending on ¢) so that
B(u')nG=Bu')nG foralls,te.¥ with|s— 1| <d.

In particular the set

B= Bu")nG
te
is a finite union of closed sets of topological dimension (n — 2) and Lebesgue measure zero
[20], hence B is a closed set of dimension (n — 2) and Lebesgue measure zero. This implies
that the set Gy := G\ B is open and connected (see [8], Theorem 1V.4), and |G\ Gy| = 0.



222 Kirchheim and Székelyhidi Jr., Gradient set of Lipschitz maps

In Gy each mapping u’ is a local homeomorphism. More precisely, let xy € Gy. Since
U(xo, t) is a normal neighbourhood of xj for the mapping u’, we have

N(u', U(xo, 1)) =i(xo,u’) =1 forallte &.

Since Bj(y,)(x0) = U(xo, ) for all € %, we deduce that each mapping u' is injective on
Bi(x,)(x0). Therefore

u'(x) +u'(y) forallte s, x,y € By, (xo),
in other words
u(x) —u(y) — A(x—y) =0 forall x,y e Byy,)(xo) and all 4 e T
The proposition now follows by exhausting Q with a nested sequence of bounded sub-
domains G < Q with |[0G| =0 and G < Q. Q.E.D.
4. Proof of the main result

Proof of Theorem 1. Let K = [Du]. Recall, that by definition [Du] is the smallest
closed subset of R>*? such that Du(x) e [Du] for almost every x € Q.

We argue by contradiction, assuming that K™ is not connected. According to Theo-
rem 3 we may assume that there exists an elliptic separating curve for K, i.e. a continuous
closed curve I' : ! — R**? without self-intersections such that (1) and (2) hold, and K is

contained in more than one component of &r. Since K and I' are compact, there exists
¢ > 0 such that for all r € !

(7) ¢ < ||Du(x) = T()||* £ A det(Du(x) — '(t)) ae. xeQ.

But then Proposition 2 implies that there exists a connected and open subset Qy < Q with
|Q\Qy| = 0 and for each x( € Q there exists a radius #(xp) > 0 such that

u(x) —u(y) = T(t)(x — y) forallx,ye Bjy,)(x) and te &
Setting y = x + de; for 0 < J < 7(x) we obtain

u(x +oey) — u(x)
0

+(f)e; forallte s!, (x,0) €A,

where A = {(x,0) : x € Qy,0 < < #(x)}. Since I satisfies (1),
(e : 7' — R?

is a continuous imbedding, hence by the Jordan separation theorem the image
{T(t)e; : te 7'} separates R? into two disjoint regions w and R*\@. Since A is a connected
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set, we deduce that

u(x +oey) — u(x)
0

ew forall (x,0) €A,

or

u(x +dey) — u(x)

5 e R*\@ for all (x,0) € A.

Since u is quasiregular, it is differentiable almost everywhere in Q. Therefore, recalling (7)
and that |Q\Qy| = 0, we obtain

Oy u(x) e fora.e xeQ,
(8) or
Oy u(x) e R*\w fora.e. xeQ.

In light of Lemma 1 this implies that K has to be contained in a single component of &,
giving us the required contradiction. Q.E.D.

Proof of Corollary 1. Suppose that 4 € [Du] is an isolated point, and assume for a
contradiction that for all B € [Du]"\{4} we have rank(4 — B) > 1.

If det(4 — B) > 0 for all B € [Du]\{A}, then—since 4 is isolated and hence [Du]\{A}
is compact—there exists a constant y = 1 so that

| Du(x) — A||* < ydet(Du(x) — 4) ae xeQ.
This means that the map x — u(x) — Ax is quasiregular. By the unique continuation prop-
erty of quasiregular mappings we deduce that Du(x) = Ax a.e., a contradiction. Similarly,
we obtain the same contradiction if det(4 — B) < 0 for all B € [Du]\{A4} (by just consider-
ing a linear change of variables).
Therefore, we may assume that there exists at least two matrices

Al,A2 S [DM]\{A}

such that det(4 — A1) < 0 and det(4 — 4,) > 0. If [Du]"\{A4} is connected, we obtain by
continuity the existence of B € [Du]"“\{A} with det(4 — B) = 0.

Otherwise let K, K, be disjoint connected components of [Du]™\{4} containing 4,
and A,, respectively. We claim first of all that

(9) Ael?lﬁl?z.

Indeed, assume the contrary, so that, without loss of generality, 4 ¢ K. Then there exists
n > 0 with

(10) 32,7(/1) M K1 = Q)
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As [Du]™ and hence K := [Du]"\B,(A4) is compact, and since K is clearly the connected
component of K containing 4, we see from [14], S44.11.2, that K, is equal to the inter-
section of the family % of all open and closed subsets of K which contain A;. In par-
ticular, since 7 is closed under finite intersections, we conclude that there is some V € &
with

VcByKi) and A, ¢ V.

Here B,(K;) denotes the open 7-neighbourhood of K. But then V' n B,(A4) = 0 because of
(10), and hence V is closed and open in [Du]™. We conclude that [Du]™ would be discon-
nected, in contradiction with Theorem 1. This proves the claim (9).

Now suppose without loss of generality that det(4; — 4,) > 0, and consider the func-
tion f(X) = det(X — 4,) restricted to K. Since det(4 — A1) < 0 and A4 € K,, there exists
A" € K; such that f(A4’) < 0, by continuity. On the other hand f(A4,) > 0, therefore there
exists, again by continuity, 43 € K, with f(A43) = 0. In particular [4,, 43] is a rank-one seg-
ment, which therefore is contained in [Du]™. If 4 ¢ [4,, A3] then we obtain a contradiction
with the assumption that 4; € K; and A3 € K, are contained in different connected compo-
nents of [Du]"\{A4}. On the other hand, if 4 € [4;, 43], then in particular det(4 — 4;) = 0,
contradicting the assumption that det(4 — 4;) < 0. This finishes the proof. Q.E.D.

5. Incompatible sets of gradients
Following [1] two disjoint compact sets of matrices K, K, = R™*" are said to be
incompatible if whenever Q is a bounded open and connected set and {u;} is a sequence
of maps bounded in W' 1(Q) such that
dist(Duj, K1 U K3) — 0 in L'(Q) strongly,
then—up to a subsequence—
dist(Duj, K1) — 0 or dist(Du;, Ky) — 0 strongly in L' (Q).

In the language of Young measures this is equivalent to saying that whenever {v,} .o isa
gradient Young measure supported in K; U K5, that is,

suppvy <« KU K, a.e. xeQ,
then
either suppv, < Kja.e. or suppv,c K> a.e.

In short, the sets K; and K, are incompatible for gradient Young measures. From the point
of view of material microstructure it is of interest to be able to characterize such incompat-
ible sets. Indeed, in this situation the inclusion problem Du(x) € K; U K, would correspond
to energy-minimizing deformations of an elastic material, and roughly speaking incompat-
ibility prevents large scale oscillations (oscillations between K; and K5), whilst still allowing
for local oscillations within each individual energy-well K| or K>.
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Pairs of incompatible sets have several nice features. First of all, if K; and K, are in-
compatible for gradient Young measures, then sufficiently small e-neighbourhoods (Kj),
and (K), are still incompatible. This was established by Ball and James in the early 90s
in their study of metastability [1]. Moreover, one gets precise control of the gradient for
approximating sequences in the form of a rigidity estimate:

min{fdist”(Du, Kl), JdiStP(Du, Kz)} =< Cplg IdiStP(Du,Kl U[(z)7
Q Q Q

valid for all u € W'?(Q,R™) and all p € [1, o). This was proved in [6] using the method of
Ball and James [1].

The simplest example of incompatible sets, as already pointed out in the introduction,
is given by the singleton sets {4}, { B} whenever 4, B € R™*" with rank(4 — B) > 1. In [27]
K. Zhang showed that in this case there exists ¢ > 0, so that the sets

Ki={XeR™":|X—-A4|<¢ and K, ={XeR™":|X—-B|<Z¢}

are still incompatible (in fact Zhang’s result applies to the neighbourhood of any finite col-
lection of matrices contained in a subspace without rank-one connections). More precisely,
Zhang obtains explicit estimates for ¢ > 0 in terms of Schauder L* — BMO estimates (see
also [26] for a similar technique applied to incompatible wells in 2D). In contrast, in the
aforementioned stability result of Ball and James ¢ > 0 is obtained in a contradiction argu-
ment. Other types of explicit examples of incompatible sets were obtained by V. Sverak [22]
in connection with the Monge-Ampére equation and by J. P. Matos in [15] concerning the
two-well problem in 3D.

Our Theorem 1, combined with results in [7] allows us to completely characterize in-
compatible sets in R>*? in terms of the underlying rank-one geometry.

Corollary 2. Two disjoint compact sets K, K> = R*>*? are incompatible for gradient
Young measures if and only if K° N K3 = 0 and K[° U K} = (K; U K>)"™.

In order to explain the meaning of this result, we briefly recall a few more no-
tions from the nonconvex calculus of variations. First of all, a gradient Young measure
{Vx},eq 1s said to be homogeneous if v, is independent of x € Q. Homogeneous gradient
Young measures appear in the study of compactness of sequences of gradients {Du;}. A
further subclass of homogeneous gradient Young measures is formed by laminates.
Roughly speaking laminates are probability measures that can be characterized by rank-
one connections. More precisely, laminates are the smallest class of probability measures
on the space of matrices that are

(i) closed under splitting,
(i1) closed under weak* convergence,

(iif) and contain all measures of the form 404 + (1 — 1)0p whenever rank(4 — B) < 1
and 4 € [0, 1].
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Being closed under splitting means that if v is a laminate of the form
v=20y4+ (1 =2)¥

for some probability measure v, and u is a laminate with barycenter i = A, then the
measure

p—+ (1 =2

is also a laminate. For basic properties of these classes of measures we refer the reader to
[16], [17].

We recall in particular that the rank-one convex hull K™ of a compact set of matrices
can be defined as the set of barycenters of laminates supported in K:

K™ = {f: pis alaminate with suppu < K}.
To each class of measures one can associate a notion of incompatibility for pairs of compact
sets. Thus for example K, K, are said to be incompatible for laminates if whenever u is a
laminate with support
suppu < K; U Ky,
then
suppu < K; or suppuc K.
Similarly, K, K, are said to be homogeneously incompatible if they are incompatible
for homogeneous gradient Young measures. Equivalently, K;, K, are homogeneously
incompatible if whenever {u;} is a sequence of maps bounded in WOI" ! () such that
dist(4 + Du;, Ky U K>) — 0 in L'(Q) strongly
for some matrix 4, then—up to a subsequence—

dist(4 + Du;, K;) — 0 or dist(4 + Du;, Ky) — 0 strongly in L'(Q).

The meaning of Corollary 2 is that in the space of 2 x 2 matrices the three notions of
incompatibility are equivalent:

Corollary 3. Let K, K, c R¥? be disjoint compact sets. The following are
equivalent:

(i) K1, Ky are incompatible for gradient Young measures.
(i) K, Ky are incompatible for homogeneous gradient Young measures.

(iii) K, K> are incompatible for laminates.
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The equivalence between (ii) and (iii) was already proved in [7], Corollary 1. Here
we establish the equivalence of (i) and (ii), assuming that (ii) and (iii) are equivalent. Prov-
ing this equivalence amounts to a passage from approximating sequences of the form
{A + Du;} with Du; € WOI’I(Q) to general sequences {Du;} = W1(Q). Indeed, a crucial
aspect of Theorem 1 is that there is no assumption made on the boundary values of the
map u : Q — R?, and this is the main new aspect of our paper.

Proof of Corollary 2. One direction is easy: if K, K, are incompatible for gradient
Young measures, then in particular they are incompatible for laminates. Thus any laminate
i with support supp i < K; U K, has to be supported in K; or K,. Therefore the definition
of rank-one convex hull implies that (K; U K;)™ = K[© U K;°. It remains to show that
K[ N Kj}® = 0. Assume for a contradiction that K[ n KJ¢ = (), so that there exist lami-
nates u, 1, with support supp u; = K; with common barycenter z1; = it; € K{° n Kj°. But

. 1 1
then the laminate defined as u:= FH —&—5 U, has support suppu = K; U K,, but doesn’t
satisfy suppu < K; or suppu < K>. This gives a contradiction, and therefore necessarily

KA KF = 0.

For the other direction suppose now that K{° n K3 = ) and (K; U K»)™ = K[* U KJ©.
We claim that in this case K; and K, are incompatible for laminates. Indeed, suppose u is a
laminate with support supp 4 = K; U K. Then

suppu C (K1 U K>)™ = K€ U K;)°,

and on the other hand it is well known that (supp x)™ is a connected set (see [12], Theorem
4.9). Therefore necessarily

(suppu)™ = K{® or (suppu)” = Ky°.

To conclude that suppu = K or suppu = K, just note that suppu C (suppu)™ and that
Kin K/ =0 fori=+ .

Having just shown that K| and K, are incompatible for laminates, we can now invoke
[7], Corollary 1, which implies that K| and K, are incompatible for homogeneous gradient
Young measures. Using standard machinery on homogeneous gradient Young measures
[10], [16], [17], it follows that K\ n K} = 0 and (K; U K3)* = K U K5, just as above
for the rank-one convex hull (see also [7], Corollary 3).

Now suppose that {v,} .q is a gradient Young measure such that
suppvy < K1 U K; fora.e. xeQ.

Since v, coincides with a homogeneous gradient Young measure for a.e. x and Kj, K, are
incompatible for homogeneous gradient Young measures, we deduce that for almost every
x € Q there exists i = iy € {1,2} such that

supp vy < K.
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It remains to show that iy = 1 a.e. or iy = 2 a.e. To this end recall (see [10]) that because
{v,}..q is a gradient Young measure, there exists a Lipschitz mapping u : Q — R? such
that Du(x) = v, a.e. x € Q. In particular

[Du] = (K U Kp)®.
By Theorem 1 we know that [Du]™ is connected, and on the other hand
[Du)™ = [Du]™ = (K, u K>)% = K U K)¥.
Since K N K5 = 0, we deduce that
[Du] = K{** or [Du] = Kj*.

Finally, note that v, € K if and only if suppv, = K; (for i = 1,2) since K n K} = 0.
Hence we conclude that suppv, < Kj a.e. xe Q or suppv, < K a.e. x€ Q. Q.E.D.

Proof of Corollary 3. Since the implications (i) = (ii) = (iii) follow from the
definitions, it suffices to prove that (iii) = (i). Suppose that K;, K, are incompatible
for laminates. Then, precisely as in the proof of Corollary 2 above, we have that
(K1 U K>)"™ = K{€UKj®and K{° n K} = 0. But then Corollary 2 implies that K;, K, are
incompatible for gradient Young measures. Q.E.D.

Proof of Theorem 2. The statement of the theorem is a direct consequence of Corol-
lary 2 together with [6], Theorem 1.2. Q.E.D.
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