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On the gradient set of Lipschitz maps

By Bernd Kirchheim at Oxford and László Székelyhidi Jr. at Zürich

Abstract. We prove that the essential range of the gradient of planar Lipschitz maps
has a connected rank-one convex hull. As a corollary, in combination with the results in [7]
we obtain a complete characterization of incompatible sets of gradients for planar maps in
terms of rank-one convexity.

1. Introduction

This paper is concerned with the range of gradients of Lipschitz maps. Let WHRn be
a bounded open and connected set, and let u : WHRn ! Rm be a Lipschitz map. We de-
note by ½Du� the essential range of the gradient of u, i.e. the smallest closed subset of Rm�n

such that DuðxÞ A ½Du� for almost every x A W. Our aim is to find geometric restrictions on,
or characterizations of the essential range of gradients of Lipschitz maps.

This issue plays a central role in the study of material microstructure [2], [3], [5], [9],
and is linked to the question of existence and regularity of solutions to partial di¤erential
inclusions of the type

DuðxÞ A K a:e: x A W;

where KHRm�n is a prescribed (compact) set of matrices.

The following construction is well known: let A;B A Rm�n be two matrices such that
rankðA� BÞ ¼ 1, so that A� B ¼ an n for some vectors a A Rm and n A Rn. For any Lip-
schitz ‘‘profile’’ h : R ! R with h 0ðtÞ A f0; 1g a.e., the map

uðxÞ ¼ Bxþ ahðx � nÞ

is a Lipschitz map whose gradient takes the values A or B almost everywhere. This
type of example is called a simple laminate, and whenever two matrices A, B satisfy
rankðA� BÞ ¼ 1, one speaks of a rank-one connection (or, more classically, A and B are
said to satisfy the Hadamard jump condition). On the other hand, it is also well known
that if A;B A Rm�n with rankðA� BÞ > 1, then the only Lipschitz maps with gradient
DuðxÞ A fA;Bg a.e. are a‰ne maps. Moreover, in [2] J. M. Ball and R. D. James estab-
lished the much stronger statement that whenever fujg is a sequence of maps bounded
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in W 1;1 such that distðDuj; fA;BgÞ ! 0 in L1 strongly, then—up to a subsequence—
Duj ! A or Duj ! B strongly in L1.

A general question, that has received considerable attention recently, is to understand
to what extent the above construction is universal. In other words to understand to what
extent the presence of rank-one connections is necessary in the essential range of gradients
of Lipschitz maps. To put this question into proper perspective, we need to recall the exam-
ple given by the first author together with D. Preiss of a Lipschitz map u : WHR2 ! R2,
where ½Du� consists of 5 matrices, none of which are rank-one connected to each other ([12],
Chapter 4, see also [11] for similar examples). This example shows that it may happen that
the set ½Du� itself contains no rank-one connections. On the other hand, the construction of
the mapping itself relies very much on the presence of rank-one segments in the sense that it
proceeds via a (Baire category) variant of an iteration scheme known as convex integration
(see [13] for a survey of the theory). In technical terms one key ingredient for this construc-
tion to work is that the rank-one convex hull ½Du�rc is a connected set, which contains many
rank-one segments in the sense that for any matrix A A ½Du�rcn½Du� there exists a rank-one
segment through A contained in ½Du�rc. In other words, although the iterative process of
convex integration can eliminate rank-one connections in the essential range ½Du� of the
limit, the ‘‘trail’’ it leaves behind is a large rank-one convex hull.

Our main result shows that for planar maps this is in some sense optimal:

Theorem 1. Let WHR2 be a bounded open and connected set, and u : W ! R2 a

Lipschitz map. Then the rank-one convex hull ½Du�rc
of the essential range of the gradient is

connected.

It is important to note that connectedness itself does not imply that ½Du�rc contains
rank-one segments. The standard example is simply a planar conformal map. However, in
some sense this is the only example. Indeed, if ½Du�rc is connected and contains no rank-one
connections, then in fact the di¤erential inclusion

DuðxÞ A ½Du�rc for a:e: x A W

can be viewed as a (possibly degenerate) elliptic system (see [23], [25]). In particular, we
have the following statement:

Corollary 1. If the essential range of the gradient of a Lipschitz map

u : WHR2 ! R2 contains an isolated matrix A A ½Du�, then there exists another matrix

B A ½Du�rcnfAg such that rankðA� BÞ ¼ 1.

We emphasize that Theorem 1 and Corollary 1 are very specific for planar mappings,
and the analogue statements are false in higher dimensions in general (see for example [9]).

Our Theorem 1 has interesting implications concerning the study of incompatible sets

of gradients. In combination with the results in [6] and [7] we obtain the following theorem.

Theorem 2. Let K1;K2 HR2�2 be disjoint compact sets which are rank-one in -

compat ib l e in the sense that

K rc
1 XK rc

2 ¼ j and K rc
1 WK rc

2 ¼ ðK1 WK2Þrc:
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Then for any bounded open and connected set WHR2 with Lipschitz boundary, and any

p A ½1;yÞ there exists a constant C ¼ Cðp;WÞ such that

min

�Ð
W

distpðDu;K1Þ;
Ð
W

distpðDu;K2Þ
�
eC

Ð
W

distpðDu;K1 WK2Þ

for all u A W 1;pðW;R2Þ.

2. Outline of the proofs and some preliminaries

In the proof of Theorem 1 we follow the approach of [7], which is based on the
geometric characterization of incompatibility for laminates via a separating curve, intro-
duced by the second author in [24]. We recall from [24] that a continuous, closed curve
G : S1 ! R2�2 without self-intersetions is said to be a separating curve for a compact set
KHR2�2 if

KHUG :¼
�
A A R2�2 : det

�
A� GðtÞ

�
> 0 for all t A S1

�
;

and K is contained in more than one connected component of UG (the definition implicitly
assumes that UG consists of more than one connected component). In [24], Theorem 4, it is
proved that if K contains no rank-one connections and no T4 configurations, then such a
separating curve exists (upto a change of sign). In turn, the arguments in [24] are used to
show in [7], Section 4, that if K rc is disconnected, then—upto a change of sign—K admits
such a separating curve. A further argument can then be used to refine the choice of curve,
so as to obtain an elliptic separating curve. That is, such that for some Kf 1

kGðtÞ � GðsÞk2
eKdet

�
GðtÞ � GðsÞ

�
for all t; s A S1;ð1Þ

KHEG :¼
�
A A R2�2 : kA� GðtÞk2 < K det

�
A� GðtÞ

�
for all t A S1

�
;ð2Þ

and K is contained in more than one connected component of EG. In particular one obtains
the following

Theorem 3 ([7], Theorem 5). Suppose KHR2�2 is a compact set such that K rc is not

connected. Then, possibly after changing sign, there exists an elliptic separating curve for K.

Concerning the geometry of EG we recall also (cf. [7], Lemma 2) that in fact condition
(1) implies that EG has precisely two connected components, that are characterized by their
projections onto rank-one planes. More precisely, given a unit vector e A R2, the curve
Gð�ÞeHR2 is a Jordan curve, so that R2nGð�Þe consists of precisely two connected compo-
nents o0, o1, and we have

Lemma 1 ([7], Lemma 2).

EG ¼ E0
G WE1

G;

where

En
G ¼ fA A EG : Ae A ong for n ¼ 0; 1:
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In the current paper we take these as our starting point. Thus, if ½Du�rc is discon-
nected, we apply Theorem 3 with K ¼ ½Du� to find the existence of an elliptic separating
curve G : S1 ! R2�2. As in [7] we interpret the inclusion ½Du�HEG as saying that the
maps

utðxÞ ¼ uðxÞ � GðtÞx

are K-quasiregular. However, in our case we have no control over the boundary values of
ut, hence we cannot conclude that these maps are homeomorphisms. In general they may
have branch points. Our strategy is to prove that the set of branch points is in fact indepen-
dent of t A S1, and therefore cannot disconnect W. In this way we will be able to conclude
the incompatibility just as in [7], Theorem 4.

Our paper is organized as follows. In Section 3 we prove a general result about stabil-
ity of the branch set of quasiregular mappings in Rn, and show in Proposition 2 how it can
be used to prove separation results for gradients of Lipschitz maps in Rn. Then in Section 4
we utilize the stability result together with the existence of a separating curve in case ½Du�rc

is disconnected to prove Theorem 1 and Corollary 1.

Finally, in Section 5 we discuss the implications of Theorem 1 to the study of incom-
patible sets of gradients and in particular the proof of Theorem 2. As the explanation of
these implications requires introducing the language of gradient Young measures which
does not otherwise play a central role in our paper, we defer the statements and proofs until
that section.

3. Stability of the branch set

In the following, we will call a connected open subset WHRn a domain. Given a
domain WHRn and an open and discrete mapping u : W ! Rn, we shall write mðy; u;GÞ
for the local degree of the mapping at y A Rn with respect to G (provided y B uðqGÞ),
Nðy; u;GÞ ¼ card u�1ðyÞXG, Nðu;GÞ ¼ sup

y
Nðy; u;GÞ and iðx; uÞ for the local index

of u at x A W. We recall that a domain DHW is called a normal domain for the
mapping u if uðqDÞ ¼ quðDÞ (note that quðDÞH uðqDÞ follows automatically from
openness of the map). A normal neighbourhood D of x A W is a normal domain such that
DX u�1

�
uðxÞ

�
¼ fxg.

A map u : W ! Rn is said to be quasiregular, if for some constant Kf 1

kDuðxÞkn
eK detDuðxÞ for a:e: x A W;

where kDuðxÞk denotes the operator norm of the matrix DuðxÞ. It is well known since the
pioneering work of Y. G. Reshetnyak that non-constant quasiregular mappings are open
and discrete. The branch set BðuÞ is defined as the set of points x A W where u is not locally
homeomorphic, that is,

BðuÞ :¼ fx A W : iðx; uÞ > 1g:
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In particular for quasiregular maps BðuÞ is a closed set of topological dimension ðn� 2Þ
and Lebesgue measure zero [20]. For the basic theory of quasiregular mappings, and their
topological properties, we refer the reader to [21].

Proposition 1. Let u : W ! Rn be a K-quasiregular mapping such that kDuðxÞkf e

for a.e. x A W, let GHW be a subdomain with GHW, and assume that M :¼ Nðu;GÞ < y.

Then there exists a constant d ¼ dðe;K;M; nÞ > 0 and for each x0 A G a radius

rðx0Þ > 0 so that for any Lipschitz mapping f : W ! Rn with kDfky < d,

min
jx�x0j¼r

jutðxÞ � utðx0Þjf dr for all r < rðx0Þ; t A ½0; 1�;ð3Þ

where ut ¼ uþ tf. In particular

iðx0; uÞ ¼ iðx0; uþ fÞ for all x0 A G;

and BðuÞXG ¼ Bðuþ fÞXG.

Proof. From [19] for every x0 A G there exists a radius rðx0Þ > 0 so that
Brðx0Þðx0ÞHW, and for r < rðx0Þ

max
jx�x0j¼r

juðxÞ � uðx0ÞjeL min
jx�x0j¼r

juðxÞ � uðx0Þj;

where L ¼ LðK;M; nÞ. Moreover,

Ð
Brðx0Þ

detDuðxÞ dx ¼
Ð
Rn

N
�
y; u;Brðx0Þ

�
dyeM

��u�Brðx0Þ
���;

and on the other hand jdetDuðxÞjfK�1en. Hence

1

MK
en e

��u�Brðx0Þ
���

jBrðx0Þj
:

In particular we deduce that for all r < rðx0Þ

1

LðMKÞ1=n
ere min

jx�x0j¼r
juðxÞ � uðx0Þj:

For t A ½0; 1� define ut ¼ uþ tf. Then

utðxÞ � utðx0Þ ¼ uðxÞ � uðx0Þ þ t
�
fðxÞ � fðx0Þ

�
;

so that

min
jx�x0j¼r

jutðxÞ � utðx0Þjf
1

LðMKÞ1=n
e� td

 !
r:

Choosing d ¼ 1

2

1

LðMKÞ1=n
e we find

min
jx�x0j¼r

jutðxÞ � utðx0Þjf dr for all r < rðx0Þ; t A ½0; 1�;
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and in particular utðxÞ3 utðx0Þ for all x A qBrðx0Þ. Hence

m
�
u0ðx0Þ; u0;Brðx0Þ

�
¼ m

�
u1ðx0Þ; u1;Brðx0Þ

�
for all 0 < r < rðx0Þ:ð4Þ

For x0 A W the local topological index of the mapping u at x0 is defined to be

iðx0; uÞ ¼ m
�
uðx0Þ; u;Brðx0Þ

�
;

where r > 0 is chosen su‰ciently small so that Brðx0ÞX u�1fuðx0Þg ¼ fx0g. Therefore (4)
implies that

iðx0; uÞ ¼ iðx0; uþ fÞ:

Since the branch set is defined as BðuÞ ¼ fx A W : iðx; uÞ > 1g, we deduce that
BðuÞXG ¼ Bðuþ fÞXG. Q.E.D.

Proposition 2. Let GHRn�n be a compact set of n� n matrices and WHRn a

domain. Let u A W 1;nðW;RnÞ, and suppose that there exists Kf 1 and e > 0 such that for

all A A G

ee kDuðxÞ � Akn
eKdet

�
DuðxÞ � A

�
a:e: x A W:

Then there exists an open and connected subset W0 HW with jWnW0j ¼ 0 such that for all

x0 A W0 there exists a radius ~rrðx0Þ > 0 such that

uðxÞ � uðyÞ3Aðx� yÞ for all x; y A B~rrðx0Þðx0Þ and all A A G:

Proof. For simplicity of notation let us treat GHRn�n as the image of a continuous
map G : S ! Rn�n, where S is a compact metric space which we think of as an index set.
Consider for any t A S the mapping

utðxÞ :¼ uðxÞ � GðtÞx:

By assumption ut A W 1;nðW;RnÞ and

ee kDutðxÞkn
eK detDutðxÞ a:e: x A W;

in particular futgt AS is an equicontinuous family of quasiregular mappings.

Let GHW be a subdomain with compact closure and such that GHW and jqGj ¼ 0.
From [18] we know that Nðut;GÞ < y for each t A S. We aim to show that in fact
sup
t AS

Nðut;GÞ < y. To this end note that since each ut is a discrete mapping, for each x A G

and each t A S there exists r ¼ rðx; tÞ > 0 so that

BrðxÞX ðutÞ�1futðxÞg ¼ fxg:

More precisely from Proposition 1 we deduce that there exists r ¼ rðx; tÞ > 0 and
d ¼ dðtÞ > 0 so that

BrðxÞX ðusÞ�1fusðxÞg ¼ fxg for all js� tj < d;
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and

dist
�
usðxÞ; us

�
qBrðxÞ

��
f dr for all js� tj < d

holds for all t A S. Hence by compactness of S there exists r ¼ rðxÞ > 0 and d > 0 (now
independent of t) so that

BrðxÞX ðutÞ�1futðxÞg ¼ fxg for all t A S;ð5Þ

and

dist
�
utðxÞ; ut

�
qBrðxÞ

��
f dr for all t A S:ð6Þ

Indeed, the sets VðtÞ :¼ fs A S : jt� sj < dðtÞg form an open cover for S, so it su‰ces to
take a finite subcover Vðt1Þ; . . . ;VðtNÞ and then define

rðxÞ ¼ min
i¼1;...;N

rðx; tiÞ and d ¼ min
i¼1;...;N

dðtiÞ

in (5) and (6). Let

sðx; tÞ :¼ dist
�
utðxÞ; ut

�
qBrðxÞ

��
;

and let Uðx; tÞ be the connected component of

ðutÞ�1�
Bsðx;tÞ

�
utðxÞ

��
containing x. Then Uðx; tÞHBrðxÞðxÞ is a normal neighbourhood of x for the mapping ut.
Since the family futg is equicontinuous, from (6) we deduce that there exists ~rr ¼ ~rrðxÞ > 0 so
that B~rrðxÞHUðx; tÞ. Since ~rrðxÞ is independent of t, there exists a number J A N so that for
each fixed t A S the compact set G can be covered by at most J normal neighbourhoods
Uðx1; tÞ; . . . ;UðxJ ; tÞ. Then

Nðut;GÞe
PJ
j¼1

N
�
ut;Uðxj; tÞ

�
¼
PJ
j¼1

iðxj; utÞ:

On the other hand Proposition 1 implies that for each fixed x0 A G the function t 7! iðx0; u
tÞ

is continuous, hence bounded on S. Therefore we deduce that Nðut;GÞ is bounded inde-
pendently of t.

Proposition 1 now implies that there exists d > 0 (not depending on t) so that

BðutÞXG ¼ BðusÞXG for all s; t A S with js� tj < d:

In particular the set

B ¼
S
t AS

BðutÞXG

is a finite union of closed sets of topological dimension ðn� 2Þ and Lebesgue measure zero
[20], hence B is a closed set of dimension ðn� 2Þ and Lebesgue measure zero. This implies
that the set G0 :¼ GnB is open and connected (see [8], Theorem IV.4), and jGnG0j ¼ 0.
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In G0 each mapping ut is a local homeomorphism. More precisely, let x0 A G0. Since
Uðx0; tÞ is a normal neighbourhood of x0 for the mapping ut, we have

N
�
ut;Uðx0; tÞ

�
¼ iðx0; u

tÞ ¼ 1 for all t A S:

Since B~rrðx0Þðx0ÞHUðx0; tÞ for all t A S, we deduce that each mapping ut is injective on
B~rrðx0Þðx0Þ. Therefore

utðxÞ3 utðyÞ for all t A S; x; y A B~rrðx0Þðx0Þ;

in other words

uðxÞ � uðyÞ � Aðx� yÞ3 0 for all x; y A B~rrðx0Þðx0Þ and all A A G:

The proposition now follows by exhausting W with a nested sequence of bounded sub-
domains GHW with jqGj ¼ 0 and GHW. Q.E.D.

4. Proof of the main result

Proof of Theorem 1. Let K ¼ ½Du�. Recall, that by definition ½Du� is the smallest
closed subset of R2�2 such that DuðxÞ A ½Du� for almost every x A W.

We argue by contradiction, assuming that K rc is not connected. According to Theo-
rem 3 we may assume that there exists an elliptic separating curve for K, i.e. a continuous
closed curve G : S1 ! R2�2 without self-intersections such that (1) and (2) hold, and K is
contained in more than one component of EG. Since K and G are compact, there exists
e > 0 such that for all t A S1

ee kDuðxÞ � GðtÞk2
eKdet

�
DuðxÞ � GðtÞ

�
a:e: x A W:ð7Þ

But then Proposition 2 implies that there exists a connected and open subset W0 HW with
jWnW0j ¼ 0 and for each x0 A W0 there exists a radius ~rrðx0Þ > 0 such that

uðxÞ � uðyÞ3GðtÞðx� yÞ for all x; y A B~rrðx0Þðx0Þ and t A S1:

Setting y ¼ xþ de1 for 0 < d < ~rrðxÞ we obtain

uðxþ de1Þ � uðxÞ
d

3GðtÞe1 for all t A S1; ðx; dÞ A D;

where D ¼ fðx; dÞ : x A W0; 0 < d < ~rrðxÞg. Since G satisfies (1),

Gð�Þe1 : S1 ! R2

is a continuous imbedding, hence by the Jordan separation theorem the image
fGðtÞe1 : t A S1g separates R2 into two disjoint regions o and R2no. Since D is a connected
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set, we deduce that

uðxþ de1Þ � uðxÞ
d

A o for all ðx; dÞ A D;

or

uðxþ de1Þ � uðxÞ
d

A R2no for all ðx; dÞ A D:

Since u is quasiregular, it is di¤erentiable almost everywhere in W. Therefore, recalling (7)
and that jWnW0j ¼ 0, we obtain

qx1
uðxÞ A o for a:e: x A W;

or

qx1
uðxÞ A R2no for a:e: x A W:

ð8Þ

In light of Lemma 1 this implies that K has to be contained in a single component of EG,
giving us the required contradiction. Q.E.D.

Proof of Corollary 1. Suppose that A A ½Du� is an isolated point, and assume for a
contradiction that for all B A ½Du�rcnfAg we have rankðA� BÞ > 1.

If detðA� BÞ > 0 for all B A ½Du�nfAg, then—since A is isolated and hence ½Du�nfAg
is compact—there exists a constant gf 1 so that

kDuðxÞ � Ak2
e g det

�
DuðxÞ � A

�
a:e: x A W:

This means that the map x 7! uðxÞ � Ax is quasiregular. By the unique continuation prop-
erty of quasiregular mappings we deduce that DuðxÞ ¼ Ax a.e., a contradiction. Similarly,
we obtain the same contradiction if detðA� BÞ < 0 for all B A ½Du�nfAg (by just consider-
ing a linear change of variables).

Therefore, we may assume that there exists at least two matrices

A1;A2 A ½Du�nfAg

such that detðA� A1Þ < 0 and detðA� A2Þ > 0. If ½Du�rcnfAg is connected, we obtain by
continuity the existence of B A ½Du�rcnfAg with detðA� BÞ ¼ 0.

Otherwise let K1, K2 be disjoint connected components of ½Du�rcnfAg containing A1

and A2, respectively. We claim first of all that

A A K1 XK2:ð9Þ

Indeed, assume the contrary, so that, without loss of generality, A B K1. Then there exists
h > 0 with

B2hðAÞXK1 ¼ j:ð10Þ
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As ½Du�rc and hence ~KK :¼ ½Du�rcnBhðAÞ is compact, and since K1 is clearly the connected
component of ~KK containing A1, we see from [14], S44.II.2, that K1 is equal to the inter-
section of the family F of all open and closed subsets of ~KK which contain A1. In par-
ticular, since F is closed under finite intersections, we conclude that there is some V A F
with

V HBhðK1Þ and A2 B V :

Here BhðK1Þ denotes the open h-neighbourhood of K1. But then V XBhðAÞ ¼ j because of
(10), and hence V is closed and open in ½Du�rc. We conclude that ½Du�rc would be discon-
nected, in contradiction with Theorem 1. This proves the claim (9).

Now suppose without loss of generality that detðA1 � A2Þ > 0, and consider the func-
tion f ðXÞ ¼ detðX � A1Þ restricted to K2. Since detðA� A1Þ < 0 and A A K2, there exists
A0 A K2 such that f ðA0Þ < 0, by continuity. On the other hand f ðA2Þ > 0, therefore there
exists, again by continuity, A3 A K2 with f ðA3Þ ¼ 0. In particular ½A1;A3� is a rank-one seg-
ment, which therefore is contained in ½Du�rc. If A B ½A1;A3� then we obtain a contradiction
with the assumption that A1 A K1 and A3 A K2 are contained in di¤erent connected compo-
nents of ½Du�rcnfAg. On the other hand, if A A ½A1;A3�, then in particular detðA� A1Þ ¼ 0,
contradicting the assumption that detðA� A1Þ < 0. This finishes the proof. Q.E.D.

5. Incompatible sets of gradients

Following [1] two disjoint compact sets of matrices K1;K2 HRm�n are said to be
incompatible if whenever W is a bounded open and connected set and fujg is a sequence
of maps bounded in W 1;1ðWÞ such that

distðDuj;K1 WK2Þ ! 0 in L1ðWÞ strongly;

then—up to a subsequence—

distðDuj;K1Þ ! 0 or distðDuj;K2Þ ! 0 strongly in L1ðWÞ:

In the language of Young measures this is equivalent to saying that whenever fnxgx AW is a
gradient Young measure supported in K1 WK2, that is,

supp nx HK1 WK2 a:e: x A W;

then

either supp nxHK1 a:e: or supp nxHK2 a:e:

In short, the sets K1 and K2 are incompatible for gradient Young measures. From the point
of view of material microstructure it is of interest to be able to characterize such incompat-
ible sets. Indeed, in this situation the inclusion problem DuðxÞ A K1 WK2 would correspond
to energy-minimizing deformations of an elastic material, and roughly speaking incompat-
ibility prevents large scale oscillations (oscillations between K1 and K2), whilst still allowing
for local oscillations within each individual energy-well K1 or K2.
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Pairs of incompatible sets have several nice features. First of all, if K1 and K2 are in-
compatible for gradient Young measures, then su‰ciently small e-neighbourhoods ðK1Þe
and ðK2Þe are still incompatible. This was established by Ball and James in the early 90s
in their study of metastability [1]. Moreover, one gets precise control of the gradient for
approximating sequences in the form of a rigidity estimate:

min

�Ð
W

distpðDu;K1Þ;
Ð
W

distpðDu;K2Þ
�
eCp;W

Ð
W

distpðDu;K1 WK2Þ;

valid for all u A W 1;pðW;RmÞ and all p A ½1;yÞ. This was proved in [6] using the method of
Ball and James [1].

The simplest example of incompatible sets, as already pointed out in the introduction,
is given by the singleton sets fAg, fBg whenever A;B A Rm�n with rankðA� BÞ > 1. In [27]
K. Zhang showed that in this case there exists e > 0, so that the sets

K1 ¼ fX A Rm�n : jX � Aje eg and K2 ¼ fX A Rm�n : jX � Bje eg

are still incompatible (in fact Zhang’s result applies to the neighbourhood of any finite col-
lection of matrices contained in a subspace without rank-one connections). More precisely,
Zhang obtains explicit estimates for e > 0 in terms of Schauder Ly � BMO estimates (see
also [26] for a similar technique applied to incompatible wells in 2D). In contrast, in the
aforementioned stability result of Ball and James e > 0 is obtained in a contradiction argu-
ment. Other types of explicit examples of incompatible sets were obtained by V. Šverák [22]
in connection with the Monge-Ampère equation and by J. P. Matos in [15] concerning the
two-well problem in 3D.

Our Theorem 1, combined with results in [7] allows us to completely characterize in-
compatible sets in R2�2 in terms of the underlying rank-one geometry.

Corollary 2. Two disjoint compact sets K1;K2 HR2�2 are incompatible for gradient

Young measures if and only if K rc
1 XK rc

2 ¼ j and K rc
1 WK rc

2 ¼ ðK1 WK2Þrc
.

In order to explain the meaning of this result, we briefly recall a few more no-
tions from the nonconvex calculus of variations. First of all, a gradient Young measure
fnxgx AW is said to be homogeneous if nx is independent of x A W. Homogeneous gradient
Young measures appear in the study of compactness of sequences of gradients fDujg. A
further subclass of homogeneous gradient Young measures is formed by laminates.
Roughly speaking laminates are probability measures that can be characterized by rank-
one connections. More precisely, laminates are the smallest class of probability measures
on the space of matrices that are

(i) closed under splitting,

(ii) closed under weak* convergence,

(iii) and contain all measures of the form ldA þ ð1 � lÞdB whenever rankðA� BÞe 1
and l A ½0; 1�.
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Being closed under splitting means that if n is a laminate of the form

n ¼ ldA þ ð1 � lÞ~nn

for some probability measure ~nn, and m is a laminate with barycenter m ¼ A, then the
measure

lmþ ð1 � lÞ~nn

is also a laminate. For basic properties of these classes of measures we refer the reader to
[16], [17].

We recall in particular that the rank-one convex hull K rc of a compact set of matrices
can be defined as the set of barycenters of laminates supported in K:

K rc ¼ fm : m is a laminate with supp mHKg:

To each class of measures one can associate a notion of incompatibility for pairs of compact
sets. Thus for example K1, K2 are said to be incompatible for laminates if whenever m is a
laminate with support

supp mHK1 WK2;

then

supp mHK1 or supp mHK2:

Similarly, K1, K2 are said to be homogeneously incompatible if they are incompatible
for homogeneous gradient Young measures. Equivalently, K1, K2 are homogeneously
incompatible if whenever fujg is a sequence of maps bounded in W 1;1

0 ðWÞ such that

distðAþDuj;K1 WK2Þ ! 0 in L1ðWÞ strongly

for some matrix A, then—up to a subsequence—

distðAþDuj;K1Þ ! 0 or distðAþDuj;K2Þ ! 0 strongly in L1ðWÞ:

The meaning of Corollary 2 is that in the space of 2 � 2 matrices the three notions of
incompatibility are equivalent:

Corollary 3. Let K1;K2 HR2�2 be disjoint compact sets. The following are

equivalent:

(i) K1, K2 are incompatible for gradient Young measures.

(ii) K1, K2 are incompatible for homogeneous gradient Young measures.

(iii) K1, K2 are incompatible for laminates.
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The equivalence between (ii) and (iii) was already proved in [7], Corollary 1. Here
we establish the equivalence of (i) and (ii), assuming that (ii) and (iii) are equivalent. Prov-
ing this equivalence amounts to a passage from approximating sequences of the form
fAþDujg with Duj A W

1;1
0 ðWÞ to general sequences fDujgHW 1;1ðWÞ. Indeed, a crucial

aspect of Theorem 1 is that there is no assumption made on the boundary values of the
map u : W ! R2, and this is the main new aspect of our paper.

Proof of Corollary 2. One direction is easy: if K1, K2 are incompatible for gradient
Young measures, then in particular they are incompatible for laminates. Thus any laminate
m with support supp mHK1 WK2 has to be supported in K1 or K2. Therefore the definition
of rank-one convex hull implies that ðK1 WK2Þrc ¼ K rc

1 WK rc
2 . It remains to show that

K rc
1 XK rc

2 ¼ j. Assume for a contradiction that K rc
1 XK rc

2 3j, so that there exist lami-
nates m1, m2 with support supp mi HKi with common barycenter m1 ¼ m2 A K rc

1 XK rc
2 . But

then the laminate defined as m :¼ 1

2
m1 þ

1

2
m2 has support suppmHK1 WK2, but doesn’t

satisfy supp mHK1 or supp mHK2. This gives a contradiction, and therefore necessarily
K rc

1 XK rc
2 ¼ j.

For the other direction suppose now that K rc
1 XK rc

2 ¼ j and ðK1 WK2Þrc ¼ K rc
1 WK rc

2 .
We claim that in this case K1 and K2 are incompatible for laminates. Indeed, suppose m is a
laminate with support supp mHK1 WK2. Then

supp m � ðK1 WK2Þrc ¼ K rc
1 WK rc

2 ;

and on the other hand it is well known that ðsupp mÞrc is a connected set (see [12], Theorem
4.9). Therefore necessarily

ðsupp mÞrc HK rc
1 or ðsupp mÞrc HK rc

2 :

To conclude that suppmHK1 or supp mHK2 just note that supp m � ðsupp mÞrc and that
Ki XK rc

j ¼ j for i3 j.

Having just shown that K1 and K2 are incompatible for laminates, we can now invoke
[7], Corollary 1, which implies that K1 and K2 are incompatible for homogeneous gradient
Young measures. Using standard machinery on homogeneous gradient Young measures
[10], [16], [17], it follows that K

qc
1 XK

qc
2 ¼ j and ðK1 WK2Þqc ¼ K

qc
1 WK

qc
2 , just as above

for the rank-one convex hull (see also [7], Corollary 3).

Now suppose that fnxgx AW is a gradient Young measure such that

supp nxHK1 WK2 for a:e: x A W:

Since nx coincides with a homogeneous gradient Young measure for a.e. x and K1, K2 are
incompatible for homogeneous gradient Young measures, we deduce that for almost every
x A W there exists i ¼ ix A f1; 2g such that

supp nxHKix :
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It remains to show that ix ¼ 1 a.e. or ix ¼ 2 a.e. To this end recall (see [10]) that because
fnxgx AW is a gradient Young measure, there exists a Lipschitz mapping u : W ! R2 such
that DuðxÞ ¼ nx a.e. x A W. In particular

½Du�H ðK1 WK2Þqc:

By Theorem 1 we know that ½Du�rc is connected, and on the other hand

½Du�rc H ½Du�qc H ðK1 WK2Þqc ¼ K
qc
1 WK

qc
2 :

Since K
qc
1 XK

qc
2 ¼ j, we deduce that

½Du�HK
qc
1 or ½Du�HK

qc
2 :

Finally, note that nx A K
qc
i if and only if supp nx HKi (for i ¼ 1; 2) since K

qc
1 XK

qc
2 ¼ j.

Hence we conclude that supp nx HK1 a.e. x A W or supp nxHK2 a.e. x A W. Q.E.D.

Proof of Corollary 3. Since the implications (i) ) (ii) ) (iii) follow from the
definitions, it su‰ces to prove that (iii) ) (i). Suppose that K1, K2 are incompatible
for laminates. Then, precisely as in the proof of Corollary 2 above, we have that
ðK1 WK2Þrc ¼ K rc

1 WK rc
2 and K rc

1 XK rc
2 ¼ j. But then Corollary 2 implies that K1, K2 are

incompatible for gradient Young measures. Q.E.D.

Proof of Theorem 2. The statement of the theorem is a direct consequence of Corol-
lary 2 together with [6], Theorem 1.2. Q.E.D.
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