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ABSTRACT

The subject of this paper is an investigation of the non-linear contributions to the spectrum of
the integrated Sachs—Wolfe (iSW) effect. We derive the corrections to the iSW autospectrum
and the iSW-tracer cross-spectrum consistently to third order in perturbation theory and
analyse the cumulative signal-to-noise ratio for a cross-correlation between the Planck and
Euclid data sets as a function of multipole order. We quantify the parameter sensitivity and the
statistical error bounds on the cosmological parameters Qn,, o', /i, ny; and w from the linear
iSW effect and the systematical parameter estimation bias due to the non-linear corrections
in a Fisher formalism, analysing the error budget in its dependence on multipole order. Our
results include the following: (i) the spectrum of the non-linear iSW effect can be measured
with 0.80 statistical significance, (ii) non-linear corrections dominate the spectrum starting
from € ~ 102, (iii) an anticorrelation of the CMB temperature with tracer density on high
multipoles in the non-linear regime, (iv) a much weaker dependence of the non-linear effect
on the dark energy model compared to the linear iSW effect and (v) parameter estimation
biases amount to less than 0.10 and weaker than other systematics.

Key words: cosmic background radiation — cosmological parameters — large-scale structure

of Universe.

1 INTRODUCTION

The integrated Sachs—Wolfe (iSW) effect (Sachs & Wolfe 1967;
Hu & Sugiyama 1994; Cooray 2002), which refers to the fre-
quency change of cosmic microwave background (CMB) photons
if they cross time-evolving gravitational potentials, is a direct probe
of dark energy because it vanishes in cosmologies with ,, = 1
(Crittenden & Turok 1996). By now, it has been detected with high
significance with a number of different tracer objects (Fosalba,
Gaztanaga & Castander 2003; Boughn & Crittenden 2004; Nolta
et al. 2004; Padmanabhan et al. 2005; Cabré et al. 2006; Gaztanaga,
Manera & Multamiki 2006; Giannantonio et al. 2006; Pietrobon,
Balbi & Marinucci 2006; Vielva, Martinez-Gonzalez & Tucci 2006;
McEwen et al. 2007; Rassat et al. 2007; Giannantonio et al. 2008),
and derived parameter constraints provide support for a A cold dark
matter (ACDM) cosmology.

Contrarily, the non-linear iSW effect or Rees—Sciama (RS) effect
(Rees & Sciama 1968; Seljak 1996; Schifer & Bartelmann 2006) is
difficult to detect and shows only a weak signal amounting to <2¢ in
the spectrum (Cooray 2002) or up to 0.8¢ in the bispectrum (Schéfer
2008). The cross-correlation with weak lensing has been shown to
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be feasible, but weak with current surveys (Nishizawa et al. 2008).
In comparison to the linear iSW effect, the RS effect shows a flatter
spectral dependence and dominates the signal at higher multipoles
exceeding £ 2 100. Analytically, perturbative derivations agree
well with the results from N-body simulations (Tuluie, Laguna &
Anninos 1996; Cai et al. 2008; Smith, Hernandez-Monteagudo &
Seljak 2009; Cai et al. 2010). The non-Gaussianities introduced
into the CMB by the non-linear RS effect are very weak (Mollerach
et al. 1995; Munshi, Souradeep & Starobinsky 1995; Spergel &
Goldberg 1999; Goldberg & Spergel 1999, although the first two
papers work in the context of a standard cold dark matter (SCDM)
cosmology, their results are still applicable to ACDM). The RS
effect from the local Universe has been found to amount to ~2 uK
in the most massive structures (Maturi et al. 2007) forming in a
constraint realization.

The topic of this paper is the contamination of the iSW spec-
trum by the non-linear RS spectrum at intermediate multipoles. In
a measurement of the linear iSW effect, non-linear contributions
will alter the shape of the observed spectrum and can affect the
estimation of cosmological parameters by introducing estimation
biases. We investigate dependence of parameter accuracy as well as
the parameter estimation bias as a function of maximum multipole
order considered. Specifically, we use a Fisher-matrix approach to
quantify the statistical and systematical errors, analyse the error
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budget as a function of multipole order and derive the optimal
maximum multipole moment which minimizes the combined error
for individual parameters. The non-linear iSW effect is the most
important contaminant at intermediate multipoles, with the kinetic
Sunyaev—Zel’dovich effect starting to dominate at higher multipoles
above 1000 (da Silva et al. 2001; Springel, White & Hernquist 2001;
Cooray & Sheth 2002).

After summarizing key formulae describing structure formation
in dark energy cosmologies in Section 2, we introduce line-of-sight
expressions of the two relevant observables in Section 3. We carry
out a perturbative expansion of the source fields to third order in
Section 4 and derive the spectrum C-, (£) between iSW temperature
perturbation 7 and the galaxy density y to third order in Section 5.
We quantify the degeneracies between the cosmological parame-
ters using a Fisher-matrix analysis in Section 6 and extend this
formalism to describe the parameter estimation bias in Section 7. A
summary of our results is compiled in Section 8.

As cosmologies, we consider spatially flat homogeneous dark
energy models with constant dark energy equation of state and with
Gaussian adiabatic initial conditions in the CDM field. Specific
parameter choices for the wCDM fiducial model in the Fisher-
matrix analysis are Hy = 100 27kms~' Mpc™! withh=0.72, Q,, =
0.25, Q, = 0.04, 05 = 0.8, w = —0.9 and n, = 1, with a constant
unit bias for the tracer galaxy population.

2 COSMOLOGY AND STRUCTURE
FORMATION

2.1 Dark energy cosmologies

In a spatially flat dark energy cosmology with a constant dark energy

equation of state parameter w, the Hubble function H(a) = dIn a/dt

is given by

H*(a) _ Qm 1 —Qn
HZ @ @ a0

€y

The conformal time follows directly from the definition of the Hub-
ble function,

1
1
1= [ G @

in units of the Hubble time #y = 1/H,. Correspondingly, the defini-
tion of the comoving distance yx is given by x = cn with the speed
of light c.

2.2 CDM power spectrum

A common parametrization for the CDM power spectrum is P (k) o
k™ T?(k) for describing the Gaussian fluctuation statistics of the
homogeneous and isotropic cosmic density field 8,
(8U3(K'Y") = (2m)*8p(k — k') P(k). 3)
According to Bardeen et al. (1986), a convenient fit to the CDM
transfer function 7T'(k) is

In(1 +2.34q)
Q)= ——F%—

2.34¢q
x [1+3.89g + (16.19)* + (5.469)* + (6.71¢)*17"/4,

where the wavevector ¢ is given in units of the shape parameter I" =~
Qnh. P(k) is normalized to the value og on the scale R = 8§ Mpc hl,

1
ol = 2 dk K>W2(kR)P(k), 4)
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with a Fourier-transformed spherical top hat W(x) = 3j;(x)/x as the
filter function. j,(x) denotes the spherical Bessel function of the first
kind of order £ (Abramowitz & Stegun 1972). Smith et al. (2009)
found that non-linear effects in the biasing model amount to ~10
per cent, but for simplicity, we assume a linear, local, non-evolving
and scale-independent biasing scheme,

on_2, )

n o

and relate fluctuations A in the spatial number density » of galaxies
directly to the dark matter overdensity § = Ap/p.

2.3 Structure growth in dark energy cosmologies

The linearized structure formation equations can be combined to the
growth equation (Turner & White 1997; Wang & Steinhardt 1998;
Linder & Jenkins 2003),

d? 1( dlnH) d 3
3+ D

—D — —_ S 7Qm D 5 6
da? " + a dlna ) da~ =~ 2a? @D(@) ©
whose solution D, (a) describes the homogeneous growth of the
density field, 6(x, a) = D, (a)é(x, 1).

3 OBSERVABLES: iSW EFFECT AND TRACERS

3.1 iSW temperature perturbation

The iSW effect is caused by gravitational interactions of CMB pho-
tons with time-evolving potentials ®. The fractional perturbation t
of the CMB temperature Tcyp is given by (Sachs & Wolfe 1967;
Rees & Sciama 1968)
AT 2 [

T = = - —%
Tems c

dy azH(a)Z—q}. (7)
a

The gravitational potential ® is a solution to the comoving Poisson
equation,
3H2Q

AP =—T—25. 8
2 ®)

Substituting into the line-of-sight expression for the linear iSW
effect T (integrating along a straight line and using the flat-sky
approximation) yields

3Q, [ d /D A7
/ dy a’H(a) — (i> —9, O]
c Jo da \ a Xi

T =

where the inverse Laplace operator A~!/x solves for the potential

A_I
9= 78. (10)

H

The square of the Hubble distance xy = ¢/H, makes the differential
operator dimensionless.

3.2 Galaxy density as a large-scale structure tracer
The projected galaxy density y can be related to the CDM density
8 via

XH dZ
Yy = / dx p(z)de+(x) 3, (11
0 X

where p(z)dz is the redshift distribution of the surveyed galaxy
sample, rewritten in terms of the comoving distance x. We use the
main galaxy sample of Euclid which will survey a fraction fg, =
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0.5 of the sky with a median redshift of z;,.q = 0.9 (Douspis et al.
2008). We use the parametrization proposed by Smail et al. (1995):

2\’ 2\’ 1 20 3

p()dz = p0(7> exp|— (—) dz with — = —F(—),
20 20 Po B B

(12)

for p(z) dz, with zop = 0.64. We assume a constant bias of b = 1,
which we absorb into the normalization og of the power spectra.

4 PERTURBATIVE CORRECTIONS

For a consistent derivation of the iSW spectrum including correc-
tions due to the non-linearly evolved source fields one needs to carry
out a perturbative expansion to third order,

3
S(x.a) > D (a)s"(x) + 0. (13)

n=1
The linearity of the Poisson equation conserves the perturbative
series,

3
d Dy ) 4

»(x,a) —_— + 0O R 14
¢(x, a) ; TR ) (14)
and suggests that the time derivative of the potential is ocd(D’, /a)/da.
In perturbation theory, the second- and third-order corrections to the
density field are given by

d3
8P (k) = / # My(k — p, p)s(p)s(lk — pl), 15)

3
8(3>(k) — /((217_[1;3

3
x / B9y p. gk~ p— DO P@SE— p - g,
(2m)’

(16)
where the mode-coupling functions M,(p, q) and Ms(p, q, r) (see
Sahni & Coles 1995; Bernardeau et al. 2002) are a consequence of
the inhomogeneous growth and introduce non-Gaussianities in the

evolved density field. The power spectrum Pf;g”(k) = P(k) of the
density field thus acquires the corrections

d3
PP =2 / G Mk = p PPk = pDEApD.  (17)
(13) d&p
P =3 [ S5 Mk, . ~p POOP (D). (18)

In the computation of these corrections, the cylindrical symmetry
of the kernels M, and M; can be taken advantage of, reducing to a
two-fold integration 27t p>d pd with p being the cosine of the angle
between k and p. In perturbation theory, the contribution P}2(k) is
reduced to the third-order moment of the initial Gaussian density
field and drops out, likewise, the contribution ng) (k).

Fig. 1 shows the time evolution of the source fields, i.e. the
growth function D} (a) for the density field and the time derivative
of D’ (a)/a for the iSW source field, both up to perturbative order
n = 3. While the growth functions show a similar behaviour in
higher order, the derivatives are qualitatively very different. The
evaluations of the integrals are done in a coordinate system whose
p.-axis is parallel to k,. The non-linear corrections to the CDM
spectrum P(k) are shown in Fig. Al.

An interesting peculiarity of the non-linear RS effect in compari-
son to the linear iSW effect is worth mentioning: whereas in SCDM

1.8

I o o = = =
ES ) ) - ) kS )

time evolution D} (a), d(D’ /a)/da

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
scale factor a

02 I I I
0

Figure 1. Time evolution of the source term D'} (a) for the density field
(thick line) and the modulus of d(D’} /a)/da for the iSW effect (thin line),
for the linear order n = 1 (solid line) and the non-linear corrections n = 2
(dashed line) and n = 3 (dash—dotted line), with ACDM as the cosmological
model.

cosmologies the iSW effect vanishes due to D (a) = a and is non-
zero in dark energy cosmologies, the RS effect is the strongest in
SCDM and weaker in dark energy cosmologies, at least at the low
redshifts we observe, where D (a) >~ a* with « < 1. Applying
a simple scaling argument by only looking at the pre-factors, the
cross-spectra of the RS effect are proportional to 2,03 (up to third
order in perturbation theory), in contrast to the iSW spectrum, which
scales as ©,,03. As will be shown in Figs 2 and 3, the dependence
on the dark energy equation of state parameter w is weaker in the
non-linear effect and the shape of the spectrum (determined by &
and n,) becomes less important because of the integrations over d*p
carried out in perturbation theory. These arguments motivate the
quantification of the RS contamination of the iSW spectrum, and
their interference with the estimation of cosmological parameters.
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Figure 2. Angular iSW-spectrum C..(¢) of the iSW-effect (solid line),
split up into the linear effect C(rlrl)(ﬂ) (dashed line) and the non-linear RS
corrections C,zrz)(ﬂ) + C(rlf)(ﬂ) (dashed—dotted line). The plot compares
spectra for wCDM with w = —0.9 (thick lines) with ACDM with w = —1

(thin lines).
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Figure 3. Angular iSW cross-spectrum Cq, (¢) of the iSW effect (solid
line), split up into the linear effect C(,]},1 )(i) (dashed line) and the non-linear

RS corrections C22(€) + C1P(€) (dashed—dotted line), both for wCDM
(w = —0.9, thick lines) and ACDM (w = —1, thin lines).

5 ANGULAR POWER SPECTRA

In summary, the line-of-sight integrals for the iSW temperature
perturbation 7 and the galaxy density ™ in order n read

3Q, [ d /D
=== / dx a*H(a)— ( *) o™, (19)
c Jo da \ a

* XH dZ
y" = / dx p(Z)de’i(x)S“”, (20)
Jo X

where we have defined the dimensionless potential @™ =
A™'8™/x?% from the inversion of the Poisson equation, rescaled
with the square of the Hubble distance xy = ¢/H for convenience.
Due to the linearity of the Newtonian Poisson relation, the pertur-
bative corrections in § map directly on to the corrections in ¢. The
weighting functions,
n
WG = 2 ) O @
c da a

n dZ n
W (0 = PR DL, (22)

can be identified, which allow the expressions for the angular cross-
spectra to be written in a compact notation, applying a Limber
projection (Limber 1954) in the flat-sky approximation:

XH dX
il = / o WOOOWL P @/ ), (23)
0

e = [ wooowo
v o x* T ’ (24)

+ WEOWG0) P/ 0.

XH d
cee) = / L WEOW 0P/ ). (25)
0

with the cross-spectrum Pf{?(k) = P2 (k)/(xuk)>. The expression
for the spectrum C{\V(¢) has been symmetrized. The angular au-

tospectra of the temperature perturbation t are given by
" XH dX

Civee) = / w0 i, 26)
o X
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XHd
Cclw =2 / L wOGowS 0P /), 27)
o X

XH d
CP) = / LW PRt/ ). (28)
o X

f;ig(k), the spectrum of the potential ¢ is defined as

P(k) = P2 (k)/(x uk)*. Finally, the spectra of the galaxy density
y can be evaluated to be

In analogy to P,

D\ x dl (1 2 p(1)
C,) 0= e W, (X)™ Pss (€] ), (29)
0
iy =2 [ 0w )P
c,,) ) = 7 WV00OWE (X)) Pss™ (8] X), (30
0
@ [ e pe
C0 = e W2 (X)™ Pss ™ (€] x)- (31)
0

Collecting all terms, the full spectra consist of one first-order and
two second-order contributions:

Cey () = CLV() + CEP(0) + CLP(0), (32)

Cer(0) = CHV(0) + CEP(0) + CY (), (33)
— 1D (22) (13)

Cyy(0) = COP(@0) + CT2(0) + COV(0). (34)

Because of the linearity of equations (19) and (20) all correlation
functions of the source field map on to their corresponding angular
correlation functions and the vanishing ngz)(k) contribution is not
able to generate an angular spectrum.

Figs 2 and 3 give the iSW autospectra and cross-spectra, respec-
tively, split up into linear contributions and the two perturbative
corrections. The iSW autospectrum is dominated on multipoles
larger than 100 and the cross-spectrum is suppressed by the neg-
ative correlation between iSW effect and tracer density on simi-
lar scales, leading to a sign change of the cross-spectrum at £ ~
500, which confirms earlier perturbative and N-body results (Seljak
1996; Cooray 2002; Cai et al. 2008; Nishizawa et al. 2008; Smith
et al. 2009), but using a different perturbation theory approach. ar-
sinh(x) is equal to x for |x| < 1 and In x for |x| > 1, which allows
us to show the logarithmic behaviour of C,,(£) despite the sign
change. Another interesting feature is the fact that the non-linear
effect is much less sensitive on the properties of dark energy, in
particular the dark energy equation of state parameter w, for which
the RS spectra depicted differ by about 5 per cent. The sign change
and its sensitivity on w is mostly driven by changes in C{'V(¢).
Fig. A2 gives the cross-spectrum in a logarithmic representation
and shows that the anticorrelation between 7 and y is a generic fea-
ture of non-linearly evolving structures from angular scales of £ ~
70 on, but the linear effect shifts the anticorrelation scales to much
higher multipole moments. The sign change can be easily explained
by the fact that in linear structure formation potentials are constant
or decay slowly, depending on cosmology, whereas in non-linear
structure formation the potentials grow fast, which manifest itself
in the iSW effect by causing temperature perturbations of opposite
sign.
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6 STATISTICAL ERRORS

In this chapter, we recapitulate the estimation of statistical precision
on parameters derived from angular iSW spectra with Fisher ma-
trices (Tegmark, Taylor & Heavens 1997), and the accuracy of the
parameter estimation with an extended Fisher formalism (Amara &
Refregier 2007; Cabré et al. 2007; Taburet et al. 2009).

6.1 Fisher matrix for the iSW spectrum C., (£)

The Fisher matrix, which quantifies the decrease in likelihood if a
model parameter x, moves away from the fiducial value, can be
computed for a local Gaussian approximation to likelihood £ o
exp(—x?/2). The Fisher matrix for the measurement of C oy (£) is
given by

0C., (£)

¢
) 2 0C,, (D) _
iSW 2 : 14 1
F;w - TCOV (C”’(g)’ Cry((i)) 0x,

£=tmin s
We construct the Fisher matrix F,, for ACDM as the fiducial
cosmological model, with fiducial values for the parameters be-
ing @, =0.25,03 =0.8, h =0.72, ny, = 1 and w = —1. Implicitly,
we assume priors on spatial flatness, 2, + 24 = 1 and neglect
the weak dependence of the shape parameter on the baryon density

Q. CMB priors on the cosmological parameters are incorporated
by adding the CMB Fisher matrix F<MB:

Y

(35)

Fu = FY + FO, (36)
which is valid if CU,(I)2 KL C(0)Cy,, (£), adapting the results of Ho
etal. (2008). For the iSW spectrum in a ACDM cosmology, it can be
shown that the ratio C;, //C:.C,, for the iSW effect alone would
be close to 1, dropping to values of 0.1 at larger multipoles, but
the inclusion of instrumental noise and primary CMB fluctuations
shifts the ratio to values close to zero, such that the assumption of
approximately independent likelihoods is justified.

6.2 Noise modelling

In an actual observation, the iSW power spectrum is modified by the
intrinsic CMB fluctuations, the instrumental noise and the beam as
noise sources, assuming mutual uncorrelatedness of the individual
contributions. The galaxy correlation function assumes a Poissonian
noise term,

Cre(£) = Co(0) + Comp(€) + wi' B2(0), 37

~ 1
c,)=¢C,, )+ e (38)

For Planck’s noise levels the value w;l = (0.02 pK)? has been used,
and the beam was assumed to be Gaussian, B~2(£) = exp (A6 £(£ +
1)), with a full width at half-maximum (FWHM) of A6 = 7.1
arcmin, corresponding to channels of Planck closest to the CMB
maximum at ~160 GHz (Knox 1995; Douspis et al. 2008).

Euclid is designed to survey the entire extragalactic sky and
to cover the solid angle AQ = 27, corresponding to fgyy, = 0.5,
yielding a total of n = 4.7 x 10® galaxies per steradian at a density
of 40 galaxies arcmin—2 (Amara & Réfrégier 2007; Refregier et al.
2009). The observed cross-power spectra are unbiased estimates of
the actual spectra,

éry(z) = ny(z), (39)

in the case of uncorrelated noise terms. We determine the spec-
trum Cepp(€) of the primary CMB anisotropies with the cams code

(Lewis, Challinor & Lasenby 2000). The covariance of the spectrum
C., (£) is given in terms of the observed spectra Cee(0), C’W(E) and
C yy(£) which follow directly from applying the Wick theorem,

1
20+ 1 fay
In all applications considered in this paper, Planck causes the dom-

inating noise contribution in comparison to the Poisson noise in the
galaxy number density given by Euclid.

CoV(Cyy, Cry) = [C2(O)+Cee(OCy, (O] . (40)

6.3 Detectability of the RS effect

The signal-to-noise ratio ¥ of the cross-spectrum C., (£) reads

Lmax 2
2 ()

¥ = —
- Cov(Cry(0))

(41

€=Lm|

for mutually uncorrelated modes as in the case of a full-sky obser-
vation. Fig. 4 shows the signal-to-noise ratio ¥ of a measurement
of C,, () including the non-linear contribution at high £. The figure
suggests that ideal cosmic variance limited experiments can in fact
detect the RS effect with a significance of 3.22¢0° (corresponding
to a confidence of 0.998) integrating over all multipoles up to £ =
3 x 103, and that this significance is reduced by the finite resolution
and the noise of Planck to a mere 0.770 (0.558 confidence). Thus,
the signal-to-noise ratio of the non-linear effect is roughly smaller
by an order of magnitude compared to that of the linear iSW ef-
fect. Apart from the increasing correlation noise at high ¢, it is the
smallness of the spectrum around the cross-over scale which does
not provide enough signal for a detection. Between £ = 30 and 100
the cumulative signal-to-noise ratio stagnates, which is not included
in the computation by Cooray (2002) as his perturbative approach
is not able to reproduce the small values of d¥/d/ due to the sign
change of C,, (¢£) at £ > 70. Despite the sensitivity of the cross-over
scale on e.g. the dark energy equation of state parameter w it would
be very difficult to measure this scale as the signal-to-noise ratio of
each multipole is about 10~* and as the same knowledge on w can
be already derived from much smaller multipoles with sufficient

10'
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, = = —iSW-effect
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multipole order ¢

Figure 4. Signal-to-noise ratio of a measurement of the cross-spectrum
Czy(£), cumulative ¥ (thick lines) and differential dX/d¢ (thin lines), for
the linear iSW effect (dashed line) and the non-linear RS effect (solid line).
The plot compares the signal-to-noise ratio attainable with hypothetical
cosmic variance limited experiments (upper set of lines) with that reachable
by combining Planck with Euclid (lower set of lines).
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accuracy. The non-zero instrumental noise (the shot noise in the
galaxy density and the Planck noise) causes the graphs for X and
dX/d¢ to branch in the vicinity of £ = 1000, where the cumulative
signal-to-noise ratio X levels off and the contribution per multipole
dX/d¢ drops rapidly for a noisy experiment in comparison to ideal,
noise-free experiments only limited by cosmic variance. The wig-
gles in the graphs for d¥/d¢ are acoustic features in the CMB which
enter through the covariance.

6.4 Parameter bounds and degeneracies

The x? function for a pair of parameters (x,,, x,) can be computed
from the inverse (F~!),, of the Fisher matrix

_ _ -1

o Ax, \" ((F D (F Y, Ax, @)
Ax, ) \(F ™D (F7h, Ax, )’

— x,PM. The correlation coefficient r,,,, is defined

where Ax, =x,
as

_ (F
M FD(F,,

and describes the degree of dependence between the parameters x,,
and x, by assuming numerical values close to 0 for independent
parameters and close to unity for strongly dependent parameters.
The degeneracies between the cosmological parameters 2, o's, h,
ny and w estimated from the linear iSW effect is shown in Fig. 5,

(43)

0.3
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along with the correlation coefficient from a measurement combin-
ing Planck and Euclid data up to very high multipoles of £ = 3000,
including a prior from CMB data.

7 SYSTEMATICAL ERRORS

In this section, we quantify how the interpretation of the data with
the pure iSW spectrum affects the estimation of cosmological pa-
rameters, if in reality there are non-linear RS contributions at higher
multipoles. Using this formalism, we seek to minimize the com-
bined statistical error by finding an optimal angular scale £, down
to which the iISW measurement should be carried out. The non-linear
iSW effect is the dominant contamination of the iSW spectrum at
intermediate multipoles, with the kinetic Sunyaev—Zel’dovich effect
becoming important at multipoles above £ ~ 10°. The parameter
estimation bias formalism has been validated with Monte Carlo
Markov chains and was found to be an excellent approximation for
weak systematics (Taburet, Douspis & Aghanim 2010).

7.1 Estimation bias formalism

The angular iSW spectrum C.,(£) = Cisw(£) + Crs({) can be
separated into the linear part Cisw(¢) and an additive systematic
Crs(£) due to the non-linear corrections,

Cisw(£) = CLL)(0), 44

Crs(€) = CEP(0) + CP(0). 45)

0.95

-1 -0.8
w

Figure 5. Constraints on the parameters 2, 0'g, 15, h and w from the cross-correlation of Planck with Euclid. The ellipses correspond to 1o0-5¢ confidence
regions. Additionally, the vectors (8, §,,) indicate the bias in the estimation of the cosmological parameters due to the non-linear contributions and have been
enlarged by a factor of 10. The estimation bias was derived for a multipole range extending up to £max = 3 x 103. The number in the upper right-hand corner
of each panel gives the correlation coefficient r,. The constraints include a prior from the statistics Ccmp(¢) of primary CMB temperature anisotropies on

both the statistical and systematical error.
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Using these relations, we define the power spectrum of the true
model C,(¢) including non-linear corrections,

Ci(8) = Cisw(&) + Crs() = CLP() + CEP(0) 4+ CD(0),  (46)

as well as the spectrum of the false model C;(£), which neglects
these RS contributions,

Cr(8) = Cisw(t) = CL)(0), “47)

where the observed spectra C;(£) are unbiased estimators of the
theoretical spectra C;(£) in each case because of uncorrelated errors
in each observational channel in the cross-correlation measurement
method. The estimation of cosmological parameters is carried out
from maximization of the x2 functionals of the two competing
models,

s ‘Z (C,(0) — C,(0)?

T 2 CoviC0), G0 @
and
o
 xr (GO =y
Xr = e; CovIC(0), Cr (O’ )

i.e. the data are in reality described by C,(¢) and, in the second
case, fitted wrongly with Cy(¢) instead of C,(£). The best-fitting
parameters x for each model can be derived by solving the equations
(0x%/0x,) = 0 following from the respective x? functional.

For deriving the distance x ; — x, between the best-fitting values
of the true and the false models, we expand the X_% function at the
best-fitting position x, in a Taylor series (see Taburet et al. 2009)

0
X = xj00+ D 5= X0 8y
m 1

1 ?
= 8,8y, (50)
+ 2 ; 0x,0x, Xy (xe) 8y

where the parameter estimation bias vector § = x y —x, was defined.
The best-fitting position x ; of X/% can be recovered by extremization
of the ensemble-averaged ( X_%), yielding

2, .,
=— — v, 51
< 0xy Xf>x, 2 < 0x,0x, Xf>x, eb

which is a linear system of equations of the form

> Gub=a,— 8, = (G Hua, (52)

where the two quantities G, and a,, follow from the derivatives of
the x]% function, evaluated at x,,

Eina 2
i _1 [ 0Cisw(©) 0Cisw(©) 0" Cisw(f)
GSY = Cov!' | =2 — 2 Crs(l)—22 1,
w e; o [ 0x, ox, Rs(£) 0x,,0x,
L
max B acl g)
a, =Y Cov! [CRS(E)%} : (3

{=Lmin
The CMB priors can be incorporated by adding the Fisher matrix
FO (0 G,
Gy = GV + FOUB, (54)

for independent iSW and CMB likelihoods. In this formalism, it is
quite natural that one observes large parameter shifts in weakly con-
strained parameters, which is a consequence of the relation between
F,, and G,,: if the systematic vanishes, the two are identical. A

nice example is the sensitivity of the iSW effect on the parameters
w and o, which both change the amplitude of the spectrum, with
og having a stronger effect. If the amplitude of the iSW spectrum is
increased due to a present RS systematic, the data can be explained
by larger parameter values where the parameter to which the iSW
spectrum is less sensitive needs to be detuned more. Therefore, one
can expect larger systematics in the more weakly constrained pa-
rameter, i.e. there will be more estimation bias in w compared to
0. Of course this argument is only valid for parameter pairs that
are degenerate in explaining features of the measured spectrum.

The biases in parameter estimation from the iSW effect are de-
picted alongside the degeneracies in Fig. 5, for a maximum multi-
pole order of £,,,, = 3000. The parameter estimation biases in the
combined set of cosmological parameters are very small due to the
weakness of the RS signal in comparison to that of the iSW effect
and due to the strong prior from primary CMB fluctuations. Typical
values for misestimates in cosmological parameters are of the order
of <0.10, and are negligible in comparison to statistical errors.

7.2 Contamination of the iSW spectrum

In this section, we consider the application of the iSW effect for pro-
viding independent constraints on individual cosmological param-
eters. If the iSW likelihood is combined with the CMB likelihood
according to equation (54), the latter is by far dominating due to
larger signal-to-noise ratio. Although the signal strength of the iSW
effect is not enough for fully constraining a standard dark energy
cosmology with five or more parameters, it is sufficient to place
competitive bounds on single cosmological parameters. Therefore,
we define the conditional systematical error o, = 1/4/ F,,,, and the
systematical error b, on a single parameter x,, while all other pa-
rameters are assumed to coincide exactly with their fiducial values.

At low multipoles, the error budget will be dominated by statis-
tics, while the systematics due to the non-linear contributions are
negligible . Conversely, the extension of the computation to higher
multipoles €,,,x will reduce the statistical error, but the RS con-
tributions will start to deteriorate the parameter accuracy. Fig. 6
depicts the individual conditional statistical and systematical errors
as a function of maximum multipole order £,,,c. In comparison to
the statistical errors on parameters derived with the iSW spectrum,
which are monotonically decreasing, the parameter estimation bi-
ases due to RS contributions have a more complicated behaviour
with multipole order ¢, but remain always small in comparison
to the statistical error by more than one order of magnitude, for
both cosmic variance dominated experiments and the combination
of Planck with Euclid. The worst case is the constraint on w in
a cosmic variance limited experiment, where the systematic error
amounts to 20 per cent of that of the statistical error. There are cer-
tain scales at which the systematical errors are very small, namely
as they change their signs, in agreement with changing parameter
degeneracies on different angular scales.

8§ SUMMARY

The topic of this paper is an investigation of the contamination due
to non-linearly evolving structures on the linear iSW effect, and the
consequent parameter estimation biases.

(i) The angular spectrum of the RS effect was computed in third-
order perturbation theory. The spectrum C..(f) of the RS effect
starts dominating that of the linear iSW effect from multipoles of
£ 2~ 100 onwards. In particular the cross-spectrum C,, (£) shows a
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function of maximum multipole order £yax. No prior information is used in
the computation of the errors. The plot compares a cosmic variance limited
measurement (upper lines) with the cross-correlation of Planck with Euclid
(lower lines).

sign change suggesting that the CMB temperature is anticorrelated
with the galaxy density on non-linear scales. This scale bears some
sensitivity on w and is shifted from ¢ >~ 70, where the sign change
occurs in the spectrum of the non-linear effect, to £ >~ 500 for the
combination of the linear and non-linear effects. The sensitivity of
the RS effect on the dark energy model itself is rather weak.

(ii) By combining the Planck and Euclid data sets one can mea-
sure the non-linear RS effect with a significance of 0.77¢ out to
multipoles of £ = 3000, where the most important limitations are
cosmic variance and Planck’s instrumental noise. An ideal exper-
iment only subjected to cosmic variance would be able to detect
the effect with 3.22¢, but at higher multipoles, confusion with the
kinetic Sunyaev—Zel’dovich effect would occur. Measurements of
the angular scale on which the sign change occurs are almost im-
possible as the signal-to-noise ratio on these scales is ~1073. In
summary, the significance of the RS effect is smaller than that of
the iSW effect by a factor of ~10 for the combination of Planck
with Euclid, which reaches ~7o.

(iii) If constraints on cosmological parameters are derived from
the linear iSW effect and if contributions from the RS effect are
neglected, the induced parameter estimation biases are smaller than
the statistical errors by one order of magnitude because of the
smallness of the RS effect in comparison to cosmic variance induced
into the measurement by primary CMB fluctuations and because
of the strong prior used. If the iSW effect is used to constrain
individual cosmological parameters without using a CMB prior, a
similar result still applies. Therefore, the RS effect is negligible
as a systematic in comparison to other systematics that have been
discussed in the literature and which have a more pronounced effect
on cosmological parameters, e.g. redshift errors due to peculiar
motion of the tracer galaxies (Rassat 2009), weak lensing on the
tracer population and galaxy magnification bias (Loverde, Hui &
Gaztafaga 2007), bias evolution of the tracer population (Raccanelli
et al. 2008; Schifer, Douspis & Aghanim 2009) and contributions
due to the kinetic Sunyaev—Zel’dovich effect from re-ionization
(Giannantonio & Crittenden 2007).
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Given the estimates that both the spectrum and the bispectrum
of the RS effect are only detectable with significance of ~0.8¢
casts doubt on the detectability of this effect in a statistical way,
and emphasizes the importance of alternative approaches such as
stacking methods (Granett, Neyrinck & Szapudi 2008).
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APPENDIX A: NON-LINEAR CORRECTIONS
IN PERTURBATION THEORY

Fig. Al illustrates the validity of the perturbative corrections to
P(k) due to non-linear growth, by comparison to the result from
N-body data (Smith et al. 2003). Third-order perturbation theory is
able to describe the increase in fluctuation amplitude due to non-
linear structure formation down to very small scales. One notices
a deviation between the N-body result and the perturbation theory
amounting to about 20 per cent in the transition region at a few
inverse Mpc, corresponding to angular scales of ¢ ~ 300, if most
of the iSW signal in the cross-correlation function arises at a co-
moving redshift of x =2 Gpc h~!, i.e. the maximum of the redshift
distribution p(z)dz used in this work. The higher orders beyond 3
in perturbation theory would correct the difference to the N-body
result, and it should be kept in mind that the simulation on which
the description by Smith et al. (2003) is based uses slightly different
cosmological parameters, most notably higher 2, and o.

The remarkable behaviour of the non-linear effect to cause an
anticorrelation between the CMB and the tracer density is shown
again in Fig. A2, in a logarithmic representation.

10°
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w

CDM spectrum P(k) [(Mpc/h)*]
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10 107
wave vector k [((Mpc/h)™']

Figure A1l. Non-linear corrections to the linear CDM spectrum ngl) (k)
(thin solid line) of the density field in perturbation theory, at the current
cosmic epoch: Pﬁz) (k) (thin dash—dotted line), the modulus of Pg?)(k) (thin
dotted line) and their sum Pss(k) = P35 (k) + P57 (k) + 2P§s (k) (thick
dashed line). The fit to the non-linearly evolved spectrum Pgs(k) from N-
body data proposed by Smith et al. (2003) is given in comparison (thick
solid line).
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Figure A2. Angular iSW cross-spectrum Cy,, (£) of the iSW effect (solid
line), split up into the linear effect C(,lyl )(6) (dashed line) and the non-
linear RS corrections C(szz )(Z) + C(rlf )(Z) (dash—dotted line) in logarithmic
representation. Open symbols indicate a negative sign and filled symbols a

positive sign of the respective branch of the cross-spectrum.
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