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We consider the question: is every compact set in a Banach space X contained in the closed
unit range of a compact {or even approximable) operator on X'}. We give large classes of
spaces where the question has an affirmative answer, but observe that it has a negative
answer, in general, for approximable operators. We further construct a Banach space failing
the bounded compact approximation property, though all of its duals have the metric
compact approximation property.

1. Introduction

We shall also provide the first examples of Banach spaces having the approximation
property but failing the bounded compact approximation property, though all of
their duals do have even the metric compact approximation property.

2. Approximate identities

A left approximate identity (LAI) in a Banch algebra A is a net (e{)ieI in A such that
lim; e, || eLx — x || =0 for each x e A. If there is a A > 0 such that in addition || eK || ^ A,
then (t?,)Ig/ is called a /.-bounded LAI (A-BLAI); note that necessarily /. ̂  1. We say
that (ej)iE] is a BLAI if it is a A-BLAI for some ).. Right approximate identities (RAI)
and (A-)bounded RAI ((/.-)BRAI) are defined analogously.

•Supported by NSF grant DMS-9201357.
t Supported by the Swiss National Science Foundation.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500022770
30 May 2017 at 21:18:28, subject to the Cambridge Core terms of use, available at 
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500022770
https:/www.cambridge.org/core


356 P. G. Casazza and H. Jarchow

A result which, when seen in the context of operator algebras, is of particular
interest for Banach space theory, is P. J. Cohen's [4] factorisation theorem:

If the Banach algebra A has a BLAI, then every z e A can be written as a product
z = xy with x, y e A; in addition, y exists in the closed left ideal generated by z and
can be chosen so that \\z ~ y\\ ^S, where d was given previously.

See F. F. Bonsall and J. Duncan [2] for details.
An interesting case occurs when A is of the form s/(X) where stf is any Banach

operator ideal in the sense of A. Pietsch [13] and X is a Banach space. However,
in such generality approximate identities have hardly been discussed; attention has
been focused on the cases where .a/ is either jf, the ideal of all compact operators,
or .'F, the ideal of all approximable operators, i.e. uniform limits of operators of finite
rank. Of course, J^ will be used to denote the ideal of all finite rank operators
between Banach spaces. We warn the reader that our notation is the same as that
of P. G. Dixon [6], but it is incompatible with that of N. Gronba?k and G. A. Willis
[7], where F denotes the finite rank operators and ^ the approximable operators.
Dixon's paper [6] deals with precisely these ideals, and one of his main results is
the following theorem:

THEOREM 2.1. A Banach space X has the A-BAP {respectively the A-BCAP] if and
only if^(X) [respectively Jf(X)~] has a A-BLAI.

Recall that a Banach space X has AP (approximation property) (respectively CAP
(compact approximation property)) if, for any compact subset K of X and any £ > 0,
there is an operator u e ^(X) (respectively u e Jf(X)) such that || ux — x || < e. for all
xeK.If there is a A(^ 1) such that we always can arrange for || u || ^ A, then we say
that X has A-BAP (respectively A-BCAP), with 'B' being shorthand for 'bounded', of
course. Usually, BAP (respectively BCAP) is used when we only know that we have
/l-BAP (respectively A-BCAP) for some L The case A = 1 corresponds to what is
usually called MAP (metric approximation property) and MCAP (metric compact
approximation property), respectively.

Only recently, C. Samuel [16] and N. Gronbsk and G. A. Willis [7] addressed
the corresponding problem of existence of RAI. One of the main results in [7] is
the following companion result of the preceding theorem:

THEOREM 2.2. Let X be a Banach space. Then X* has the A-BAP if and only if &(X)
has a A-BRAI.

The situation is less pleasant when # is replaced by JT. It is still true that if Jf (X)
has a A-BRAI, then X* has A-BCAP. However, the converse fails. As we shall see,
there is a Banach space X with AP, but which fails BCAP, while X*, X**,... are
all separable and have MCAP. If Jf(X) = &(X) has a BRAI, then X* would have
BAP, and so X should have BAP as well—but it does not. What is true here was
observed by C. Samuel [16]. That is, Jf(X) has a A-BRAI if and only if X* has the
A-BCAP given by w*-continuous operators.

Our example answers a question which originates in the work of A. Grothendieck
[8] and was restated as question 2 in [16]. (Question 1 in [16] has been answered
by G. A. Willis [19] and question 3 by Theorem 2.3 below.) To construct our
example, we need some results from the literature. Recall that a Banach space X has
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Self-induced compactness in Banach spaces 357

shrinking A-CAP if there is a set ux e 3f(X), \\ ua \\ ^ X, (ua) converges strongly to the
identity on X and (u*) converges strongly to the identity on X*. In his memoir [8],
A. Grothendieck showed that a separable dual space with AP has MAP. The
corresponding question for CAP is still open. However, an alternative proof of
Grothendieck's result due to J. Lindenstrauss and L. Tzafriri [11] will work for
shrinking CAP (see C. Cho and W. B. Johnson [3]).

THEOREM 2.3. If X* is separable and has CAP given by w*-continuous operators, then
X and X* have MCAP.

It follows that:

COROLLARY 2.4. IfX* is separable and X has shrinking CAP, then for every equivalent
norm \-\ on X, both X and (X,\-\)* have MCAP.

We are now ready for:

THEOREM 2.5. There is a Banach space X which has AP, but fails BCAP, while
X*, X**, ...are all separable and have MCAP.

Proof. Let Y be a separable reflexive Banach space with CAP which fails to have
AP, see G. A. Willis [19]. Choose a Banach space Z so that Z** has a basis and
Z**/Z*Y{see [11, the proof of Theorem l.e.7, p. 34]). Now, Z*** ̂ Z * e Y* fails
AP but has shrinking CAP since f 1) Z* has a shrinking basis, and (2) Y is reflexive
and has CAP. It follows that Y has shrinking CAP. By a construction of T. Figiel
and W. B. Johnson [11, p. 42], for each n, there is an equivalent norm | | n on Z**
so that (Z**,|-|n) fails n-BAP. But (Z**, |-|«)* still has shrinking CAP (being isomor-
phic to Z***). So by Corollary 2.4, this space and its dual have MCAP. (A similar
argument shows, in fact, that all of its duals have MCAP.)

Let

X=(ft e(Z*M

Then X has AP and fails BAP. So X fails BCAP. (It is easily seen that X has A-BAP
if and only if X has AP and A-BCAP.) The spaces X*, X**,... are all /2-sums of
Banach spaces having MCAP, and hence have MCAP. This completes the
construction. •

3. The properties^) and (Jf)

We shall now concentrate on left-approximate units. There is a natural question
related to Theorem 2.1: if the same X works for the BLAI and for the B(C)AP, could
it not be simultaneously 'eliminated' on both sides? More precisely, is it true that
#(X), respectively X{X\ has a LAI if and only if X has AP, respectively CAP?

Let ,s/ be SF or Jf. We say that a Banach space X has the property (,o/) if, for
each compact subset K of X, there is an operator u e stf(X) such that K a u(Bx).
This is what 'self-induced compactness' in the title is referring to. Of course, the
concept can be generalised in many directions, but we prefer to stay with the
present setup.

The following results are again due to Dixon [6]:
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THEOREM 3.1. Let X be a Banach space.
(a) IfX has AP (CAP), then ;¥{X) {Jf{X))_has a LAI.
(b) / / X has property (&) ((X)) and if &{X) (Jf(X)) has a LAI, then X has

AP (CAP).
(c) IfX has BAP (BCAP), then it has property ( # ) (pT)).

All we need to get started is a workable condition which is equivalent to property
(s/). This is elementary:

PROPOSITION 3.2. The following statements about the Banach space X are equivalent:
(i) X has property ( J / ) ;
(ii) given u e Jf~(/1; X), there are operators v e ..s/(X) and wn e t£(\y, X) (n e N) such

that limn_w || u — vwn || = 0;
(iii) same as (ii), but wn e ^ ( / ^ X);
(iv) /or eacfc u e JTf/j, X), i/iere are operators v e sf{X) and w e Sf{lu X**) such

that u = v**w;
(v) same as (iv), 6uf w e j f (/^ X**).

Since we are working with (weakly) compact operators v:X-*X, we may and
shall consider v** as an operator X**-*X; accordingly we have

Proof of Proposition 3.2. (i)=>(ii) Given w e / ( l i , X ) , we can find for each n e N
vectors xk e Bx such that || uxk — uek || ^ « " 1 for all IceN, and then define wn: /t -> X
via vvnefc = xk for each fc.

(ii)=>(iii) Any u€ J^\1UX) can be written as u = ulu2, where w1:/1-»A' and
u2: lY -> /j are compact operators.

(ni)=>(iv) We may assume that ||wnj| ^ 1 for each n. Let ^ be a free ultrafilter on
N and define w.^-^-X** by w(c) = lim^ wn^, the limit being taken in the weak *
topology of X**. This is a bounded linear operator, and u = v**w.

(iv)=>(v) is obtained in the same way as (ii)=>(iii), so we are left with (v)=>(i). Let
K c l b e compact. Then K aconv {xn:n e N} for some null sequence (xn) in K. The
operator u:lx^X defined by uen-=xn for each n is compact, so there are ve,tf(X)
and w e X' (!l7 X**) such that u = v**w. We may assume that | | w | | ^ l , so that
K a u(Bh) c v**{Bx**). D

Since /x enjoys the lifting property [11, p. 108], a Banach space X has property
isJ) whenever the following applies: no matter how we choose the Banach space Y
and the operator u e tf{Y, X), we can find a quotient Q of X along with operators
v e sJ(Q, X) and w e S^(Y, Q**) such that u = v**w. It is interesting to note that in
case si = Jf, the preceding proposition allows us to extend this almost to a character-
isation. We have the following weak version of the Cohen factorisation theorem:

PROPOSITION 3.3. Let X be a Banach space.
(a) If X has property (jf') then, given any Banach space Y, every operator

»eJT(Y, X) admits a compact factorisation through some quotient Q of X**: there
are operators v e JT{<2, X) and w e JfTfY", Q) such that u = vw.

(b) Suppose there is, for every Banach space Y and every u e Jf'(7, X), a quotient
space Q of X together with operators v 6 .)T{Q, X) and w e .X\Y, Q**) such that u =
ii**w. Then X has property (Jf).
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Proof, (a) Suppose that X has (jf) and let Y and u e Jf (Y, X) be given. Of course
we may assume that Y is separable; so we can work with a quotient map q: /j -> Y.
Thanks to Proposition 3.2 there are operators v0 e •W{X') and w0 e Jf (/j, A"**) such
that ug = i#*w0. Set Q - X**/ker (uj*(, let p: * * * ^ ( ) be the quotient map, and let
v e JT(Q, .V) be such that pp = uj*. As v is injective, there is a vv e Jf(Y, Q) such that
wq = pwQ. Note that u = wv.

(b) Apply the hypothesis to any Jf (/,, X) and use the lifting property of ^. I ]

We do not have a corresponding result for the property (#").
We continue by giving a number of immediate consequences of Proposition 3.2.

If the Banach space X admits a quotient which is isomorphic to /: then, by the
lifting property of /x, this quotient is isomorphic to a complemented subspace of X.
So we may state:

COROLLARY 3.4. Any Banach space which admits a quotient isomorphic to /x has the
property (,:<F).

If X fails CAP, then X®^ fails CAP and has /, as a quotient space. It follows
from Theorem 3.1 that for such a space X neither X'(X) nor :^{X) can have LAI.
We can easily extend the list of such examples.

LiiMMA 3.5. Let X, Y and Z be Banach spaces. Suppose that X is a quotient of Y, that
Z is a quotient of X, and that every ueJf 'f/^Y) can be written u = vw where
w 6 X{1UZ) and v e .o/(Z, Y). Then X has the property (tf).

This is an immediate consequence of the fact that /, has the compact lifting property.

COROLLARY 3.6. Let X be a subspace of c0 or lp (1 Sp< co). Then X* has property

on
But X* may well fail to have CAP, in which case neither ?F{X) nor JT(X) can have
a LAI.

The proof is immediate from the lemma and the fact that every infinite dimensional
subspace of cQ or lp contains a subspace which is isomorphic to c0, respectively lp,
and complemented in the whole space [11, Proposition 2.a.2, p. 53].

We do not know if every subspace of cQ or lp (1 ^p < co) has (Jf~) or {&). Also,
we do not know how (s$) behaves with respect to duality.

W. B. Johnson has proved in [10] that there is a separable Banach space, Cl t

such that if Z is any separable Banach space, then Z* is isometrically isomorphic to
a norm-one complemented subspace of C*. It follows that C* fails CAP but it has
the property (#") since lj is complemented in Cf. Consequently, neither Jf (C*) nor
.f{C\) can have a LAI.

On the basis of this, it is tempting to conjecture that the property (.c/) is preserved
under the formation of complemented subspaces. The above observation about duals
of subspaces of c0 and lp would then appear as a consequence of C*'s property of
having (#) ; in fact, the dual of any separable Banach space would have (&). We
shall now see that this is not the case-

Let r2 denote the ideal of all Banach space operators which factor through some
Hilbert space.
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PROPOSITION 3.7. Suppose that the Banach space X has the property (<s/). If
r2(X), then X is isomorphic to a Hilbert space.

Proof. In fact, Grothendieck's Inequality (see [15, Proposition 6.2, p. 71]) informs
us that jf{li,X) consists of absolutely summing operators only. By trace duality,
however, this can only happen when X is isomorphic to a Hilbert space. •

It was shown by G. Pisier [14] that ^(X) is contained in T2{X) whenever X and
X* both have coptype 2, and a few years later, he proved [15, Theorem 10.6, p. 71]
that every cotype 2 space Z embeds into a non-Hilbertian space Pz which, together
with its dual, has cotype 2. Such a space necessarily fails AP. Thus:

COROLLARY 3.8. The Pisier spaces Pz fail to have property {&).

The same is true for all the duals of the spaces Pz. But thanks to Corollary 3.4, the
spaces Pz®h enjoy property (#) . Conclusion:

COROLLARY 3.9. The property ( # ) is not preserved when passing to complemented
subspaces.

Another way to obtain this is by using Johnson's universal space C*: if Z is
separable, then Pisier's construction leads to a separable space P7, so that P* is
complemented in C*.

Actually, the spaces Pz enjoy even more exotic properties. For example, #(PZ)
coincides with jV(Pz), the algebra of all nuclear operators u:Pz-*Pz. We do not
know if &(PZ) = J^{PZ) can have a LAI; actually, the question of what the meaning
of the existence of LAI in .Jf{X) is in terms of X does not seem to have been
investigated. However, it was recently shown by Y. V. Selivanov [17] that ~V(X)
has a BLAI if and only if X is finite dimensional; see also H. G. Dales and H. Jarchow
in [5]. The arguments employed before also show that T2(PZ) does not have a LAI.

4. Odds and ends

We start by listing a few open problems:
(a) Are there Banach spaces failing (Jf)?
(b) Are there Banach spaces failing (Jf) such that X(X) has (does not have) a LAI?
(c) Can any of the algebras #(PZ) have a LAI?
(d) When do the algebras JV{X\ T2(X),... have a LAI?
(e) How do the properties (Jf) and ( # ) behave with respect to duality?
(f) Regarding {Jf) and {^), what can be said when the underlying Banach space

X is a Banach lattice, Hm, a C*-algebra,... ?
Here are some further ideas which lead to many more problems. The property

(,srf) can be generalised as follows. Given a Banach space X, let s$x be the collection
of all Banach spaces Z such that for each compact subset K of X there is an operator
u e JJ/(Z, X) such that K <= u(Bz); again si is j f or # .

It seems plausible that investigation of such a concept could be helpful in under-
standing compactness in general Banach spaces through known characterisations of
compactness in e.g. classical spaces. Not much, however, is known, and what is
known indicates that the picture will by no means be easy to understand.
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There are Banach spaces Z which belong to r\x^x\li and the duals of Johnson's
spaces Cp provide examples.

If X has BAP (respectively BCAP), then X belongs to .Wx (respectively Xx),
whereas the Pisier spaces Pz satisfy Pz $ ,^Pz.

These spaces also satisfy Pz4^(pz)*- I n fact, K. John [9] has shown that every
compact operator Pz-> (Pz)* is nuclear, so that PzeJ^P z )* would entail
•'% {li, Pz)*) = - '"(/i, (Pz)*) which cannot be reconciled with P7 being infinite
dimensional.

On the other hand, there are Banach spaces X such that X e .^x*'- think of X =
ly, X = Cp, X = l2,.... Can one characterise such spaces?

By the same type of argument, we get that if X is a non-Hilbertian cotype 2 space,
then 3PX cannot contain any Z such that Z* has cotype 2. In fact, otherwise we
would get X{luX) = r2{li,X){d. [14]), and this is only possible if X is isomorphic
to a Hilbert space. Similarly, if X has cotype 2 and if Xx contains a Banach space
of type 2, then X must be Hilbertian.

All these examples revolve around Hilbert space and amount to the conclusion
that ,tfx contains a Hilbert space if and only if X is isomorphic to Hilbert space.

We claim that, if X is Hilbertian, then Xx contains even all dual Banach spaces.
(All spaces are supposed to be infinite dimensional.) This can be seen as follows. Let
uily-^X be a compact operator. Since X is Hilbertian,

where ux and u2 are compact operators. Now let Z be any Banach space. By a result
of S. Bellenot [1] (J. S. Morell and J. R. Retherford [12]) there exists a quotient
space Q of Z* and compact operators iy.Q-*X and v-2:l2^Q s u c n that u1 = vlv2.
Invoke the compact lifting property of ^ to finish the proof.

The situation resembles the one encountered in Proposition 3.3. Question: can
one get a factorisation through Z rather than through Z*?
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