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ABSTRACT

Motivation: Many statistical tests have been proposed in recent

years for analyzing gene expression data in terms of gene sets,

usually from Gene Ontology. These methods are based on widely

different methodological assumptions. Some approaches test

differential expression of each gene set against differential expres-

sion of the rest of the genes, whereas others test each gene set on

its own. Also, some methods are based on a model in which the

genes are the sampling units, whereas others treat the subjects

as the sampling units. This article aims to clarify the assumptions

behind different approaches and to indicate a preferential methodo-

logy of gene set testing.

Results: We identify some crucial assumptions which are needed

by the majority of methods. P-values derived from methods that use

a model which takes the genes as the sampling unit are easily

misinterpreted, as they are based on a statistical model that does

not resemble the biological experiment actually performed.

Furthermore, because these models are based on a crucial and

unrealistic independence assumption between genes, the P-values

derived from such methods can be wildly anti-conservative,

as a simulation experiment shows. We also argue that methods that

competitively test each gene set against the rest of the genes create

an unnecessary rift between single gene testing and gene set testing.

Contact: j.j.goeman@lumc.nl

1 INTRODUCTION

A successful microarray experiment typically results in a long

list of differentially expressed genes. The gene list is usually

not the end point of the analysis; it is the starting point of a

complicated process of interpretation, in which the biologist

will search for patterns in the differential expression. A list of

differentially expressed genes is easier to interpret if the genes

exhibit similarity in their functional annotation or chromo-

somal location.

In recent years, many authors have proposed methods to

formalize this interpretation process using statistical hypothesis

tests. These methods group all genes that are annotated to the

same annotation term together into sets and analyze the result

of the microarray experiment in terms of these sets. This

essentially shifts the level of analysis of the microarray

experiment from single genes to sets of related genes. Such an

analysis allows biologists to make use of previously accumu-

lated biological knowledge in the analysis and makes a more

biology-driven analysis of microarray data possible. The

annotation terms are usually obtained from libraries such

as Gene Ontology (Ashburner et al., 2000) or KEGG

(Ogata et al., 1999). The sets of genes in this type of analysis

are always given a priori and are constructed without reference

to the data.
A great variety of methods has been proposed for testing

differential expression of a gene set with a single test. The most

popular method starts from the list of differentially expressed

genes and tests whether the gene set is overrepresented in this

list, using a test for independence in a 2� 2 (contingency) table.

This approach has been described with minor variations by

many different authors (Al-Shahrour et al., 2004; Beissbarth

and Speed, 2004; Boyle et al., 2004; Hosack et al., 2003; Lee

et al., 2005; Pehkonen et al., 2005; Yi et al., 2006; Zeeberg et al.,

2003; Zhang et al., 2004, among others). See Khatri and

Drăghici (2005) for an overview.
Other authors have criticized this approach because it

requires a strict cut-off for differential expression of indi-

vidual genes. As an alternative they have proposed methods

that use the whole vector of P-values. Breitling et al. (2004)

and Al-Shahrour et al. (2005) use the same 2� 2 tables, but test

simultaneously at many cut-off values. Mootha et al. (2003) test

whether the ranks of the P-values of the genes in the gene

set differ from a uniform distribution, using a

weighted Kolmogorov–Smirnov test (see also Subramanian

et al., 2005). Pavlidis et al. (2004) use a test based on

the geometric mean of the P-values of the genes in the

gene set. Barry et al. (2005) provide a general framework for

post hoc testing based on P-values or other test statistics per gene.
A very different approach is used by a third group of

authors, who do not start from the P-values per gene, but from

the raw expression data. Goeman et al. (2004, 2005) test

whether subjects with similar gene expression profiles have

similar class labels, based on a logistic regression model.

Conversely, Mansmann and Meister (2005) test whether*To whom correspondence should be addressed.
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subjects with similar class labels have similar expression

profiles, based on an ANOVA model. Tomfohr et al. (2005)

use a t-test after reducing the gene set to its first principal

component.
Criticism of these methods in general has come from Khatri

and Drăghici (2005) who pointed out limitations of the anno-

tation databases used. More fundamental criticism has been

given by Allison et al. (2006) who questioned the foundations

and the validity of some approaches.

This article addresses the questions raised by Allison et al.

(2006), identifying and investigating some fundamental

methodological differences that exist between gene set testing

methods. We do not want to compare all available methods, or

even to give a comprehensive account of all these methods. The

aim of this article is to discuss some important methodological

questions that arise when analyzing gene expression data in

terms of gene sets. We focus on two methodological issues on

which there is a clear disagreement. The first is the definition of

the null hypothesis; the second is the calculation of the P-value.
Concerning the definition of the null hypothesis, we make

a distinction between competitive and self-contained tests.

A competitive test compares differential expression of the gene

set to a standard defined by the complement of that gene set.

A self-contained test, in contrast, compares the gene set to a

fixed standard that does not depend on the measurements of

genes outside the gene set. The competitive test is most popular:

only Goeman et al. (2004, 2005), Mansmann and Meister

(2005) and Tomfohr et al. (2005) present self-contained tests.
Concerning the calculation of the P-value, we make a dis-

tinction between gene sampling methods and subject sampling

methods. The former bases the calculation of the P-value for

the gene set on a distribution in which the gene is the sampling

unit, while the latter takes the subject as the sampling unit. In

both cases, the sampling units are assumed to be independent

and identically distributed. Gene sampling methods are most

popular, with only Goeman et al. (2004, 2005), Mansmann and

Meister (2005), Mootha et al. (2003) and Tomfohr et al. (2005)

using subject sampling.
Because the focus of this article is not on details of specific

methods but on methodological issues, we do not compare

published methods (Dı́az-Uriarte, 2005; Manoli et al., 2006),

but we specifically construct methods that differ only with

respect to the issue at hand. This is done on the basis of the

2� 2 table overrepresentation methods, because these are most

popular and easy to understand. The 2� 2 table methods are

competitive and gene-sampling methods. For purposes of

comparison we will construct methods that are similar to the

2� 2 table methods, except that they are self-contained, subject

sampling or both. Section 2 describes the 2� 2 table methods.

Section 3 then studies competitive versus self-contained testing.

Section 4 compares gene sampling and subject sampling.

2 2�2 TABLE METHODS

The general idea of 2� 2 table methods is to search for an

overrepresentation of the gene set among the differentially expressed

genes, or, equivalently, an overrepresentation of differentially expressed

genes among the genes in the gene set. There are minor differences in

the methods proposed by various authors (Khatri and Drăghici, 2005),

but we give a general description here.

First, a measure of differential expression is calculated for each gene.

This is usually a P-value from a t-test or some other statistical test for

differential expression of single genes. It can also be a simple measure

such as fold change (Breitling et al., 2004). Next, a cut-off is found to

separate differentially expressed from non-differentially expressed

genes. This cut-off can be simple, such as the 100 genes with smallest

P-values, or it can be more sophisticated, e.g. based on a multiple

testing criterion such as Bonferroni or the false discovery rate

(Benjamini and Hochberg, 1995).

Given the list of differentially expressed genes and the list of genes in

the gene set, it is possible to fill a 2� 2 table as indicated in Table 1.

The table simply counts the number of genes on the microarray with

every possible combination of the attributes ‘differentially expressed

(yes/no)’ and ‘in the gene set (yes/no)’.

The P-value for overrepresentation of the gene set among the

differentially expressed genes is subsequently calculated using a test for

independence in the 2� 2 table of Table 1. A number of different tests

have been proposed for testing this independence, including the �2 test,

the hypergeometric test (Fisher’s exact test) and the binomial z-test for

proportions. Each of these tests is equivalent to a procedure that finds

the null distribution of a test statistic by randomly reassigning genes

to the labels for being in the gene set and for being differentially

expressed. The differences are in the choice of the test statistic and

whether the random reassignment is done with or without replacement.

These differences are not fundamental and tend to be unimportant

in practice (Khatri and Drăghici, 2005). In this article we use the

hypergeometric test, which takes the size of the overlap between the

gene set and the list of differentially expressed genes as the test statistic,

and reassigns labels without replacement (i.e. it keeps the marginal

totals in the table constant).

3 COMPETITIVE VERSUS SELF-CONTAINED
TESTS

The main difference between competitive and self-contained

tests lies in the formulation of the null hypothesis. Loosely, the

null hypotheses can be formulated as follows. Let G be the gene
set of interest and Gc its complement, then the competitive null

hypothesis is

H comp
0 : The genes in G are at most as often differentially

expressed as the genes in Gc,

while the self-contained null hypothesis is

H self
0 : No genes in G are differentially expressed.

Note that these hypotheses refer to the number of truly

differentially expressed genes, not to the number of genes called

differentially expressed, even though the empirical numbers of

genes called differentially expressed will be used to test them.

Table 1. A 2 � 2 table for assessing overrepresentation

Differentially

expressed gene

Non-differentially

expressed gene

Total

In gene set mGD mGDc mG

Not in gene set mGcD mGcDc mGc

Total mD mDc m
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The hypothesis H self
0 is almost invariably more restrictive

than H comp
0 . The two null hypotheses are equivalent only in the

case that none of the genes in Gc are truly differentially

expressed, which is a highly unrealistic situation unless Gc is

very small. In general, truth of H self
0 implies truth of H comp

0 .
In this section, we discuss the merits of the two formulations

of the null hypotheses using the example of the 2� 2 table

methods. To avoid the complicating issue of dependence of

genes, which will be covered in detail in Section 4, we assume

for simplicity that the P-values of all genes are independent.
The 2� 2 table method tests the competitive null by

comparing the proportions of genes called differentially

expressed in G with the corresponding proportion in Gc, relying

on the reasonable assumption that a larger proportion of

truly differentially expressed genes in G will result in a higher

probability that a randomly chosen gene in G will be called

differentially expressed.
We can construct a self-contained counterpart of the 2� 2

table method. This method tests H self
0 with a binomial test

based on a test statistic m�, which is the number of genes in G

with P-values smaller than �. Under H self
0 and assuming

independence of genes, m� should have a binomial BðmG, �Þ
distribution, where mG is the number of genes in G. Note that

this test, like its null hypothesis, is self-contained in the sense

that it does not use any information on genes in Gc. The

binomial test for the self-contained null hypothesis in a multiple

testing situation was first proposed by Tukey under the name of

higher criticism. It has recently been developed into a more

sophisticated method by Donoho and Jin (2004).
It is easy to compare the two procedures based on the two

different null hypotheses. There are a few remarks to be made.

Most of these have to do with the competitive nature of the

competitive null, which pits each gene set against its comple-

ment in what Allison et al. (2006) called a ‘zero-sum game’ (see

also Damian and Gorfine, 2004).
The first remark is about power. A test based on the self-

contained H self
0 will almost invariably have more power than

a test based on the competitiveH comp
0 . This follows immediately

from the fact that the self-contained null is more restrictive than

the competitive null, as noted above. As a consequence, a self-

contained test will almost always reject the null hypothesis for

more gene sets than a competitive null. This is especially the

case in a data set in which there are many differentially

expressed genes. In the competitive set-up, the significance of

the gene set G is ‘penalized’ for the significance of the gene

set Gc. Relative to the self-contained test, the competitive type

of test can be said to voluntarily relinquish some power in order

to make a stronger statement.

A second remark concerns the relationship between single

gene testing and gene set testing. It can easily be seen that for

a gene set containing only a single gene, Tukey’s higher

criticism will simply call the gene set significant whenever the

single gene’s P-value is below alpha. The self-contained test

is therefore an immediate generalization of single gene test-

ing to gene sets, in the sense that the two procedures are

completely equivalent for singleton gene sets. This is a desirable

property, which does not hold for the competitive test.

On the contrary, the competitive test treats a singleton gene

set very differently from a single gene, especially when there are

many differentially expressed genes in Gc.
Thirdly, it is interesting to look at the set of all genes on the

chip. This gene set cannot be tested in a competitive way,

simply because there is no complement to test the gene set

against. In contrast, the set of all genes can be a very useful

gene set to test with a self-contained test. It tests the global null

hypothesis that there are no differentially expressed genes.

Rejecting this null can be an interesting preliminary data

quality check, as a failure to reject this null leaves little hope

that anything can be found in the data. A self-contained test for

the set of all genes can also have a useful prediction

interpretation (Goeman et al., 2004).
The main objection that can be made against self-contained

testing, on the other hand, is that it can sometimes be too

powerful: in a situation in which there are many differentially

expressed genes almost all gene sets may be called significant.

Certainly, a direct application of Tukey’s higher criticism to

gene set testing in microarray data would lead to very large

power. However, this overly large power is for a large part due

to the strong independence assumption of the P-values that

this procedure requires. This independence assumption is the

subject of Section 4.

In the end, the issue of using a competitive or a self-contained

test should depend on the biological interpretation of the null

hypothesis. The self-contained null hypothesis that no gene

in the gene set is differentially expressed always has a clear

biological meaning. At the same time, it may not always be

biologically interesting, e.g. when comparing cancer versus

normal tissue: in such cases we may not expect the self-

contained null hypothesis to be true for any gene set. The

competitive null hypothesis on the other hand, although

sometimes more relevant, is much more difficult to test because

its definition is closely tied to a gene sampling model with

independent genes. The gene sampling model is the subject of

Section 4.

4 GENE VERSUS SUBJECT SAMPLING

The 2� 2 table method and related methods are based on a

model which uses the gene as the sampling unit. This approach

is very different from the usual statistical setup, in which the

subjects are taken as the sampling units (Klebanov and

Yakovlev, 2006). It is instructive to compare the stochastic

models. This comparison shows enormous differences not only

in the assumptions underlying the respective models, but also in

the interpretation of the resulting P-values.

4.1 Gene-sampling and subject-sampling models

Classical statistical tests are based on a experimental design

that samples subjects. Each subject gets the same fixed set of

(gene expression) measurements. In the usual supervised

setting, the sample is assumed to consist of n independent

realizations (for the n subjects) of

ðX1,Y1Þ, . . . , ðXn,YnÞ, ð1Þ

where Xi is the m-dimensional vector of the expression

measurements of the ith subject, and Yi the corresponding

J.J.Goeman and P.Bühlmann
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response variable (usually a class label, e.g. treatment versus

control). It is assumed that the n measurements of the different

subjects are independent and identically distributed, but that

different gene expression measurements within the same subject

may be correlated. A replication of the experiment under a

subject-sampling model would involve a new sample of

subjects, which are subjected to the same set of measurements,

i.e. the experiment is repeated for new subjects, but with the

same genes.
The model behind the 2� 2 table methods is based on an

urn model which turns the classical statistical setup around.

The 2� 2 table is filled with a sample of genes, each of which

is drawn at random from a big urn of genes. Each gene is

subjected to the same fixed set of two measurements. The first

measurement (A) indicates whether the gene is part of the gene

set or not; the second measurement (B) indicates whether the

gene is in the list of differentially expressed genes, based on the

P-value of that gene in the specific experiment performed.

The sample is assumed to consist of m observations (for the

m genes) of

ðA1,B1Þ, . . . , ðAm,BmÞ: ð2Þ

The test that is subsequently performed assumes that the

m measurements of the m different genes are all independent

and identically distributed.

Essentially, the gene-sampling urn model completely reverses

the roles of samples and genes relative to the classical statistical

setup. Instead of a sample of subjects which are given a fixed set

of measurements, we have a sample of measurements coming

from a fixed set of subjects. A replication of the experiment

under the urn model would therefore involve taking a new

sample of genes and subjecting these genes to the same

measurements, i.e. repeating the experiment for new genes

and the same subjects.
Note that the sample size is very different in the two setups.

The subject-sampling approach has sample size equal to the

number of subjects n, while the gene-sampling approach uses a

sample size equal to the number of genes m.

4.2 A subject-sampling 2� 2 table method

For comparison we construct a subject-sampling analog to the

gene-sampling 2� 2 table method. In general, this can be done

by calculating the P-value by subject permutation instead of

using the hypergeometric distribution, as proposed by Barry

et al. (2005) (and by Mootha et al., 2003, for GSEA). This

calculates a non-parametric permutation null distribution for

the null hypothesis that X and Y are independent, under the

assumption that ðX1,Y1Þ, . . . , ðXn,YnÞ are independent and

identically distributed. It is well known that for any test

statistic calculated from ðX1,Y1Þ, . . . , ðXn,YnÞ, its null distribu-

tion under these assumptions can be non-parametrically

computed by the distribution of the same test-statistic based

on ðX1,Y�ð1ÞÞ, . . . , ðXn,Y�ðnÞÞ, where the distribution is gener-

ated from all (or many randomly generated) permutations

� : f1, . . . , ng ! f1, . . . , ng.
The subject-sampling analog of the hypergeometric test is

a subject permutation test based on the same test statistic that

the hypergeometric distribution uses, namely the overlap

mGD between the set of significant genes and the gene set
(see Table 1). Suppose that the data set has mD differentially

expressed genes, of which mGD are in the gene set of interest.
The algorithm is described in Table 2.
It should be noted that switching to subject permutation also

changes the null hypothesis that is tested. The subject
permutation null distribution is the complete null distribution
that no gene in G and Gc is differentially expressed, which is a

very specific case of the competitive null hypothesis, which is, in
fact, also a self-contained null hypothesis. The alpha level of the

test of Table 2 is guaranteed for the complete null hypothesis,
but is unclear for the competitive null hypothesis in general.
In a sense, the algorithm in Table 2 is a hybrid form between

gene sampling and subject sampling, as well as between
competitive and self-contained testing. The test statistic is

motivated by a gene-sampling model, but the P-value is
calculated using subject sampling. The test statistic is compe-
titive in the sense that it involves the genes in Gc, but the actual

null hypothesis tested is the complete null hypothesis, which
is both competitive and self-contained. A completely self-
contained and subject sampling alternative to the method of

Table 2 is given in Section 5.
Note also that permutation tests are not adequate in cases

where the subjects were not sampled according to the simple
sampling scheme given in (1), e.g. in time series or when
covariates are present. This means that a subject-sampling

equivalent of a specific 2� 2 table method may not always
exist.

4.3 Interpretation of the P-value

The interpretation of a P-value greatly depends on the sampling
scheme on which the test is based. Because the gene-sampling

scheme is the mirror image of the subject-sampling scheme,
we will first review the interpretation of the classical subject

sampling P-value and derive the interpretation of the gene
sampling P-value by analogy.
The meaning of a P-value is related to hypothetical

replications of the experiment performed. By definition, if the
null hypothesis is true, no more than a fraction � of the

replications of an experiment will yield a P-value smaller than
�. This property of the P-value is the basis of all statistical
inference based on it. However, as it is a statement about

replications of the experiment, its meaning and interpretation
are closely tied to the sampling scheme implied in the model.
In the classical subject-sampling setup, replications of the

experiment involve taking a new sample of subjects and

Table 2. A subject sampling alternative to the 2 � 2 table method

1. Permute the sample labels Y1 , . . . ,Yn N times.

2. For each permutation, recalculate the P-values for all genes based on

the permuted data.

3. For each vector of permutation P-values, count how many genes

in the gene set are among the mD genes with the smallest P-values.

Store these counts as k1 , . . . , kN.

4. Find the P-value of the gene set as the proportion of k1, . . . , kN
which are greater than mGD.
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measuring these subjects on the same variables. The interpreta-

tion of the P-value of a subject-sampling method therefore

relates to true biological replications of the experiment to new

subjects. A significant P-value excludes random variation at the

subject level as an explanation for the associations found, and

therefore gives confidence that the same associations will be

found for a new sample of subjects. On the other hand, the

subject-sampling P-value does not make any statement about

replications to new genes: if a Gene-Ontology term is

represented on a chip by only a single gene, a very significant

P-value for that singleton gene set does not say anything about

other genes from the same Gene-Ontology term.
In the gene-sampling setup, the roles of genes and samples

are reversed in the interpretation of the P-value. The

interpretation of the P-value relates to replications of the urn

experiment, which would take a new sample of genes and

calculate their P-values for the same subjects. A significant

P-value gives confidence that a similar association between the

variables ‘membership of the gene set’ and ‘being differentially

expressed’ will be found with these subjects on a new array with

different genes. However, the gene-sampling P-value does not

say anything about biological replications of the experiment

using different subjects.

This interpretation of the P-value of a gene-sampling method

can explain the radical claim made by Breitling et al. (2004).

They proposed iGA, a variant of the 2� 2 table method that

bases the cut-off for differential expression of genes on fold

change instead of P-value, and simultaneously looks at all

possible choices of the cut-off. They claim that iGA even

produces valid P-values when used on a single two-color array.

In their abstract they write:

‘In the extreme, iGA can even produce statistically

meaningful results without any experimental replication.’

This statement is valid only in the context of the urn model.

A significant P-value of iGA only indicates that the specific

pair of subjects whose gene expression is measured on the two-

color array tends to have consistently high fold changes for the

genes in the gene set. However, this P-value does not say

anything about the next pair of subjects.
Just as in Section 3, it is instructive to look at the relationship

between gene set testing and single gene testing by considering

a single gene as a singleton gene set. If the statement made

about iGA were true, it would suddenly be possible to test for

differential expression of single genes without any experimental

replication by viewing the genes as singleton gene sets. This is

against all common sense. If single gene tests are always based

on a subject-sampling model, there is no real reason to base

gene set tests on a widely different model.
However, the most important problem with the gene-

sampling urn model is that it does not mimic the actual

biological experiment performed. A biological replication of the

experiment always takes a new sample of subjects, not a new

sample of genes. Biologists expect a P-value to measure the

strength of the evidence based on the biological experiment

actually performed and will interpret it in this context.

Calculating a P-value based on a gene-sampling urn model

can too easily lead to wildly misleading interpretations, and

should be discouraged in the strongest terms.
A related misleading aspect of the urn model is the apparent

sample size, which is equal to the number of genes m in that

model. This is not the same as the sample size of the biological

experiment, which is equal to the number of subjects n. The urn

model can therefore be seen as a model that artificially inflates

the sample size, resulting in inflated power. This increase in

power is not real, as it depends on a highly unrealistic

assumption of independence between genes. This is the subject

of Section 4.4.

4.4 The independence assumption

The gene-sampling model (2), on which all tests used in the

2� 2 table methods are based, relies on the assumption that

the observations (Ai,Bi) for each gene are independent and

identically distributed. This is a highly unrealistic assumption

for gene expression data.
It is well known that strong correlations between genes occur

frequently in microarray data and that complete independence

between any two gene expression measurements is rare, if only

due to the presence of array effects. Correlations are especially

expected between functionally related genes. As gene sets to be

tested are usually chosen on the basis of functional annotation,

it should be expected that many of the genes in a tested gene set

are correlated.

Such correlations are problematic for tests used in 2� 2 table

methods. Correlations between gene expression measurements

of genes tends to result in positive correlations between their

(two-tailed) P-values, which in turn causes their indicators Bi of

differential expression to be correlated. In turn, this results in

over-dispersion (see for example McCullagh and Nelder, 1989,

Ch. 4.5) for the number of genes called differentially expressed.

If P-values are positively correlated, the true null distribution of

the hypergeometric test is not hypergeometric, but has much

heavier tails. This can be understood by considering the

probability that two genes are both called differentially

expressed. This probability is much smaller when the genes

are independent than when the same genes have positively

correlated P-values. As a consequence, the use of the

hypergeometric test is anti-conservative; it may greatly under-

state the true P-values if the genes in the gene set are not

independent.
The anti-conservatism of the hypergeometric test may also

be understood in a different way. The null hypothesis of the

hypergeometric test assumes that the genes in the gene set are

not unusually often differentially expressed, but also that the

genes in the gene set are independent. Although designed to

detect the first kind of deviation from the null hypothesis, the

test also has power to detect the second. A significant result

from the hypergeometric test may therefore indicate unusual

differential expression of the genes in the gene set, but it may

also simply indicate that the genes are dependent.
To quantify the anti-conservativeness of the 2� 2 table

method under dependence of genes, we conducted a small

simulation experiment, simulating data under the null hypoth-

eses with various degrees of dependence between genes. The

simulation setup was as follows. We varied a correlation
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coefficient � from 0 to 1 in steps of 0.1. For each value of �, we

generated 5000 independent data sets. Each data set had 10 000

genes for 20 subjects. The genes were divided into 100 gene sets

of 100 genes each. Gene expression measurements were

generated independently for each subject according to

a multivariate normal distribution which had mean 0 and

variance 1 for each gene, and for which the correlation between

any two genes in the same gene set was taken equal to �,
while the correlation between genes of different gene sets was

taken as 0. The 20 subjects were divided into two groups of

10 each. The distribution of gene expression was independent of

the group indicator, so that none of the genes was in reality

differentially expressed.

On each data set, we performed a two-sided student t-test for

each gene under the (valid) assumption of equal variance. This

was followed up by a 2� 2 table analysis for all gene sets based

on the hypergeometric test and on a cut-off for significance

of each t-test at 0.05. Together, this simulation setup gave a

collection of 500 000 gene set P-values for each value of �, all

generated under the null hypothesis so that there is no dif-

ference in differential expression between gene sets. We counted

the number of rejections under various nominal �-levels of the

hypergeometric test. The results are given in Table 3.
From the table we note that the hypergeometric test keeps

the �-level for uncorrelated genes, as expected. For �¼ 0, the

test is even somewhat conservative due to the discrete nature of

the test. Despite this conservatism, the test already becomes

anti-conservative for very moderate correlations of 0.2–0.3,

depending on the �-level. The anti-conservatism can grow to

rejection rates up to 50 000 times the nominal level for some

higher correlations and small �-levels. It is most pronounced in

the tail of the distribution and for high correlations. The case

�¼ 1 is an unrealistic but interesting extreme case in which all

100 genes in the gene set have the same expression, so that

either all or none are called differentially expressed. This

results in hypergeometric P-values of either (essentially) zero

or exactly 1, the former occurring with probability 0.05

(the �-level of the original t-test), the latter with probability

0.95. Note that we focus especially on the extreme tail of the

distribution in Table 3, because that is the important part when

correcting for multiple testing. Similar anti-conservatism was

found by Breslin et al. (2004), who found that gene permutation

gave much smaller P-values than subject permutation in several

microarray data sets.

5 ADAPTING EXISTING METHODS

In the previous sections, we have studied the 2� 2 table method

which tests a competitive null hypothesis on the basis of a gene-

sampling model. Using the 2� 2 table methods as an example,

we have identified some important problems in competitive

methods as well as in gene-sampling methods. On the basis of

these we recommend to use methods which test a self-contained

null hypothesis and base the calculation of the P-value on a

subject-sampling model. There are two options for this.
The first option is to use one of the proposed gene set testing

methods that are based on classical statistical models, and

which by construction already test a self-contained null

hypothesis and calculate to P-value based on a subject-

sampling model that does not involve an independence

assumption of genes. Such methods have been proposed by

Goeman et al. (2004, 2005) based on the locally most powerful

test of Goeman et al. (2006), by Mansmann and Meister (2005)

based on an ANOVA model and by Tomfohr et al. (2005),

based on principal components. These methods do not proceed

Table 3. Fraction rejected for the 2� 2 table method (standard hypergeometric test) for various nominal levels of �, and for various degrees of

correlation among the genes in each gene set

Correlation � Nominal �-level
0.1 0.05 0.01 0.001 0.0001 0.00001 0.000001

0 0.067 0.032 0.0061 0.00058 0.000036 0.000006 0.000000

0.1 0.068 0.033 0.0064 0.00061 0.000060 0.000006 0.000000

0.2 0.074 0.038 0.0088 0.0013 0.00023 0.000040 0.000012

0.3 0.094 0.058 0.022 0.0070 0.0028 0.0012 0.00058

0.4 0.12 0.088 0.047 0.023 0.013 0.0080 0.0050

0.5 0.15 0.12 0.078 0.049 0.033 0.024 0.018

0.6 0.17 0.14 0.10 0.075 0.057 0.046 0.037

0.7 0.17 0.15 0.12 0.097 0.080 0.067 0.058

0.8 0.16 0.15 0.13 0.11 0.094 0.084 0.075

0.9 0.14 0.13 0.12 0.10 0.095 0.088 0.083

1 0.050 0.050 0.050 0.050 0.050 0.050 0.050

The table is based on 500 000 simulated gene sets. All simulations are under the null hypothesis.

Table 4. Tuckey’ non-competitive subject sampling alternative to the

2� 2 table method

1. Permute the sample labels Y1 , . . . , Yn N times.

2. For each permutation, recalculate the p-values for the genes in the

genes set.

3. For each vector of permutation p-values, count how many genes in

the gene set have p-value below �. Store these counts as k1, . . . , kN.

4. Find the p-value of the gene set as the proportion of k1, . . . , kN which

are greater than mGD.
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in a post hoc fashion from the single gene P-values, but model
the gene expression data directly.
The second option is to adapt an existing post hoc method to

test a self-contained null hypothesis and to calculate the P-
value using subject sampling. Each of these adaptations has
already been demonstrated separately for the 2� 2 table

method. We can combine the two adaptations into a combined
method, which is a subject-permutation version of Tukey’s
higher criticism. The algorithm is given in Table 4. Fix some �
beforehand and let mGD be the number of genes in the gene set
that have P-value below �.
Other methods may be similarly adapted to a self-contained

null hypothesis and to subject sampling. An interesting method
in the context of adaptation is GSEA (Mootha et al., 2003;
Subramanian et al., 2005). This method uses a Kolmogorov–

Smirnov test statistic to test whether the ranks of the P-values
of the genes in the gene set can be a sample from a uniform
distribution. To calculate the P-value they use subject

permutation. This method is interesting because the
Kolmogorov–Smirnov test statistic is motivated by a gene-

sampling model, whereas a subject-sampling model is used for
calculating the P-value. In this sense the method is similar to
the hybrid method described in Section 4.2. It is interesting to

see that GSEA is sometimes found to have low power, as can be
seen from the GSEA user guide, which recommends 0.25 as the
most suitable FDR threshold (www.broad.mit.edu/gsea). This

low power may be due to the fact that the model and null
hypothesis used to motivate the test statistic are different from
the model and null hypothesis that are used when calculating the

P-value. GSEA can easily be transformed to a self-contained test
by calculating the Kolmogorov–Smirnov statistic on the basis of
the P-values themselves, instead of on their ranks.

The method of Pavlidis et al. (2004) takes the arithmetic
mean of the P-values as a test statistic per gene set and tests
this by using gene label permutation. Their method is gene

sampling and uses a competitive null, but it may easily be
transformed to a self-contained subject-sampling test by

switching from gene permutation to subject permutation.

6 DISCUSSION

This article has investigated methodological issues in methods
that test for differential expression of gene sets. It has revealed
some methodological aspects of popular methods that are

inefficient or even incorrect from a statistical point of view.
Although this article looked specifically at supervised methods

for gene set testing, similar problems occur in unsupervised
settings, for example when using a hypergeometric test for
testing overrepresentation of a GO term in a cluster of genes

from a cluster analysis.
We have given strong arguments against models that take the

genes as the independent sampling unit and therefore implicitly

or explicitly assume that the genes are independent. We have
argued that because the statistical model underlying these
P-values turns the actual experimental design on its head, the

interpretation of the P-value changes radically from the
traditional statistical one. This can easily lead to misunder-
standings and false conclusions. Furthermore, we have shown

that such tests do not give valid P-values when the genes on the

microarray are correlated. The P-values may easily be falsely

significant when the genes in the gene set are correlated, even

when none of the genes is truly differentially expressed. We

strongly recommend against the use of gene-sampling models in

gene set testing.
The issue of self-contained testing versus competitive testing

is closely connected to the issue of gene versus subject sampling.

A competitive null hypothesis is natural and easy to formulate

in a gene-sampling model, just as a self-contained null

hypothesis is natural in a subject-sampling model.
Methods for testing a self-contained null hypothesis are

all based on a subject-sampling model (Goeman et al., 2004,

2005; Mansmann and Meister, 2005; Tomfohr et al., 2005).

The classical statistical combination of a subject-sampling

model and a self-contained null hypothesis gives the advantage

of valid P-values, easy interpretability and a close relation

to single gene testing, as single gene testing is also based

on a self-contained null hypothesis and a subject-sampling

model.
Methods for testing a competitive null hypothesis are usually

based on a gene-sampling model and suffer from the same

validity problems as described for 2� 2 table methods earlier.

A few methods such as GSEA (Mootha et al., 2003) and the

method of Table 2 (see also Barry et al., 2005) are hybrid in

the sense that they motivate their test statistic on the basis of

a gene-sampling model, but calculate their P-value in a subject-

sampling manner. The discrepancy between the two models

makes the statistical properties of the test unclear and its

interpretation difficult. These problems are unavoidable, as the

definition of the competitive null hypothesis is intimately tied to

the gene-sampling model, whereas valid P-values are easily

available for subject sampling only.
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