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SUMMARY

The potential of the new extended thin-sheet approximation (ETSA) has been
investigated by application to a representative range of 2-D problems. The system of
governing equations presented by Medvedev & Podladchikov (1999) for 3-D modelling
was reduced to two dimensions and tested on problems involving one- and two-
layer systems of Newtonian viscous materials. The application of ETSA in each case
included (1) setting boundary conditions, (2) completion of equations by evaluation of
coeflicients, (3) comparison of equations with governing equations of existing thin-sheet
approximations, and (4) linear analysis of small perturbations and determination of
their dominant wavelengths. It is shown that most previous approaches can be derived
by simplification of an extended system under specified boundary conditions. Linear
analyses compare well with exact analytical solutions over a wide range of wavelengths
for modelling isostatic adjustment, Rayleigh-Taylor instabilities and the development
of instabilities due to lateral compression and extension. These problems cannot be
described by the previous generation of thin-sheet approximations. Our results suggest
that the new extended thin-sheet approximation (ETSA) will be a powerful tool for the
realistic modelling of complicated 2- and 3-D geodynamic structures.

Key words: compensation depth, crustal deformation, density, perturbation
methods, viscosity.

1 INTRODUCTION

Although thin-sheet approximations are useful tools for modelling 3-D lithospheric structures because of their numerical simplicity,
there are a number of successful applications in two dimensions (which assume no variation along one of the horizontal coordinates).

We will follow Medvedev & Podladchikov (1999) (hereafter MP99) and divide existing thin-sheet approaches into PS, SS and FP
types (Fig.1). The PS (pure shear) approach assumes negligible vertical gradients in horizontal velocity; the SS (simple shear)
approach defines gravitational spreading by equilibration of vertical gradients in horizontal velocities; and the FP (flexing plate)
approach recognizes the importance of long-term flexural rigidity of the lithosphere by invoking equilibration of bending moments
(Fig. 1).

The equation governing the PS approach (England & McKenzie 1983) can be written for 2-D cases as (our notation)

o (_ vV, OH?
4&(“§)‘“W’ M

where

_ P*L*pzAp

Ar=—— 2%
2u*Vip

and v,(x, z) = Vy(x) (see discussion in Section 6.1 and Tables 1 and 2 for a description of dimensionless variables and characteristic
values).
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(a) PS approach

b) SS a h
® pproac (c) FP approach

TZZ

Compensation level Prescribed basal velocity V,, T,, No shear traction

Figure 1. Three main types of thin-sheet approximations are based on viscous rheologies in geodynamic modelling. Their derivations and possible
applications are defined by specific boundary conditions. (a) The PS approach is defined by lateral force with zero shear along the lower boundary and
Airy isostasy. (b) The SS approach is defined by prescribing a basal velocity field. (c) The dynamics of the FP approach are defined by equilibration of
the viscous bending moments. As in the PS approach, no shear is allowed along the external horizontal boundaries. The velocity profiles possible are
demonstrated for all cases (the mean velocity of the FP case, describing uniform plate thickening/thinning, is dropped for simplification).

Table 1. Definition of widely used dimensionless variables.

Variable Definition Coordinate Dimensional

dependence scale

a. Vertical boundary conditions partitioning coefficient, eq. (14) — —

D,E F, G, J,Q Coefficients for evaluation of horizontal viscous stress ., (eq. 17) (x, 2) —

h=S,—S, =8-S, Thickness of rheological layers in two-layer systems (x) H*

g, Iy, 22 Auxiliary functions of coefficient evaluation (eqs A1-A3) (x) -

M=z = Viscosity heterogeneity momentum in two-layer systems (eq. A3) (x) (H*)?

H

M,=zp Density momentum in vertical force balance (eqs 12, A4) (x) pF(H*)?

Ry, R- Dynamic integration functions (eqs 10) (x) P*, P*-¢

S1, 82, Sy Lower, upper and rheological boundaries of the system (x) H*

(Tx, T2)ls, Vectors of boundary tractions on the external surface S,,,, m=1, 2 (x) (P*, P*-¢)

(eqs 11, 12, 13, 14)

t Time — t*

Ve, V2) Basal velocity vector (kinematic integration functions) (eqs 20) (x) (VE VE

(0x, v2) Velocity vector (x, 2) (V¥, V5

w, Ze=(z—w) Reference surface and centred z-coordinate in the integrated vertical force balance (x) H*

(egs 12, 14)

(x, 2) Coordinate system (capital letters denote directions and Z-axis is directed upwards) — (L*, H%)

o, A Growth rate and wavelength of perturbations (eq. 26) — 1/¢5, H*

AT, Non-lithostatic correction of vertical boundary tractions, (eqs 12, 14) (x) P*

A, =py—p1, A= — 1y Density and viscosity contrasts in two-layer systems — ¥, u*

Op=A7,/ 1 Viscosity heterogeneity in two-layer systems (eq. A3) — —

Tyx Horizontal viscous stress (eq. 15) (x, z) P*

f Non-dimensional variables are used without special notations.

Table 2. Characteristic values.

Value Definition Units Comments
H*  Vertical length scale m H* ~hy + I in two-layer systems
L*  Horizontal length scale m Note that the horizontally oriented parameter A is scaled by the thickness H*

to emphasize the results

g Acceleration due to gravity ms—2

P*  Stress Pa P*=p*gH*
*  Time s =L*/VE=H*IV¥=p*/(p*gH")
V¥  Horizontal velocity ms~! VFE=P*L*/u*
V¥ Vertical velocity ms~! VE=P*H*/p*=cV}
€ Small geometry parameter - e=H*/L*«1
J*  Characteristic wavelength m a(2*) = max («(2))
w*  Viscosity Pas  p*=p, in two-layer systems
p*  Density kgm~3 p*=p, in two-layer systems
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588 S. E. Medvedev and Yu. Yu. Podladchikov

The simplicity of the PS approach limits its applications to 2-D problems (Fig. 1a). As part of their complex model, Wdowinski
et al. (1989) modified the PS approach to model deformations above subduction zones. Neglecting buoyancy forces and adding basal
shear traction results in (our notation)

PV,
4 =—Tis @)

This version is supported by asymptotic analysis and allows analytical solutions and agrees well with geophysical observations.
The kinematics of the PS approach are simplified by neglecting vertical variations of horizontal velocity. Since this model
applies Airy isostasy (England & McKenzie 1982), the evolution of the thin sheet can be completely described by the evolution of its
thickness:
0H 0
=y HV- A3)
Potential applications of the SS approach (Fig. 1b) to 2-D models are more general; several studies based on this approach have
led to significant developments in the understanding of geodynamic processes. Zanemonetz et al. (1976) applied it to modelling the
evolution of a two-layer sedimentary basin subjected to vertical movements of its basement. Buck (1991) used a velocity profile based
on the SS approach to investigate different modes of lithospheric extension, including core complexes for the first time. Buck &
Sokoutis (1994) compared the simplest analytical model of subduction with analogue models to demonstrate zones of horizontal
extension above subduction zones. Lobkovsky & Kerchman (1991) included the SS approach in their ‘two-level concept of plate
tectonics’ to describe continental deformations. Bird (1991) and Kaufman & Royden (1994) applied this approach to investigating
the influence of lower-crustal flow during deformation of the lithosphere.
Without the principal variations, the governing system of the SS approach is represented in all the works cited as follows:
dvy 1 0P oP

== —=— 4
0z u oOx’ 0z P “
which balances the horizontal with the vertical forces. This system allows analytical integration for most cases involving
creep rheologies (see e.g. Lobkovsky & Kerchman 1991 for the power-law creep derivation) and direct investigation of thin-sheet
kinematics in the form

oH
or

UTH] - S ), )

where L is a non-linear differential operator on H of order n>2. The order of this operator and its coefficients depend on the
rheology applied. For a single layer with Newtonian viscosity and constant density,
0 <ng 3 0H )

3u  Ox ©

(after Buck & Sokoutis 1994).

A viscous rheology is one of the main assumptions common to both the PS and SS approaches. By contrast, the FP approach can
be based on a variety of rheologies (e.g. Ramberg 1970a; Burov & Diament 1992). The FP approach (Fig. 1c) applied to a viscous
rheology is given by the ‘general equation for the bending of a thin viscous plate’. Turcotte & Schubert (1982) derived this equation
using a step-by-step analogy with the derivation of the elastic plate bending equation. It results in (our notation)

uH? s _ S

— 4T =T.. 7
3 d*xor  Px ™

Solutions of this equation give the vertical displacement, S, of a viscous plate as a function of time (see details in Section 6.1).
Application of this equation is limited by the need to invoke large viscosity contrasts between the sheet and its surroundings. The full
equations were applied to general cases by e.g. Ramberg (1970a) and Fletcher (1977).

The uses of various existing thin-sheet approximations are limited by a number of restrictions described in MP99. The main aim
of this work is to demonstrate that these limitations are not a necessary feature of thin-sheet approximations. MP99 introduced a
more accurate approximation (the ETSA) and showed the generality of the ETSA (that is, the possibility of deriving previous
approaches by simplification of the ETSA) and its applicability to a wide variety of boundary conditions and rheological profiles
(based on creep rheology).

The formulation and final equations of the model are 3-D; however, we employ a 2-D modification of the ETSA here. This
simplification renders the governing equations more transparent than the 3-D ETSA model and eases comparison with previous
models and exact analytical solutions. Here we apply the 2-D reduction of the ETSA to problems with boundary conditions related
to previous thin-sheet investigations (Fig. 1) and rheological profiles based on Newtonian viscous materials (Fig. 2).
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Ty

Figure 2. A general view of a thin sheet defined by condition L*> H*. The possibility of introducing layered systems is illustrated by the internal
rheological boundary S,. The rheology is described by Newtonian viscosities and densities which are constant within each layer. The balance with
external conditions is described by boundary tractions 7" (applied on external boundaries S; and S»), basal velocity " and lateral stress a.

Note that we only use non-dimensional values. Table 3 demonstrates a method to obtain dimensional values using Tables 2
and 1.

2 SYSTEM OF 2-D EQUATIONS FOR THE ETSA

The asymptotic investigations of Stokes’ equations presented in MP99 result in approximate profiles of pressure and vertical shear
stress, which can be rewritten for the 2-D case as

z

P(r.2)= — Rty L pdz, ®)
1

20
T(X, D)= R+ J — (P—1y)dz’, )
S ox

where R. and R, represent the first set of dynamic key functions,
Rz(-x) = (TZZ _P)|S| 5

(10)
Ri(x)=7zlg,

(see Tables 1 and 3 for notation). The inaccurate profiles in eqs (8) and (9) are verified by the exact equilibration of the integrated
force balance. This results in the system of equations governing the ETSA. Restricting this system to two dimensions (eqs 26 and 27
of MP99) results in the following form:

T 0 o

255+ S (RHAP)+ T =0, (an
2 A

O pmm iRz L om s ki) 2+ L (T BT =0, (12)

ox 0x 0x 0x

Here T, and AT represent the second set of dynamic key functions, those which refer to the sum of the external tractions acting
along the horizontal boundaries S; and S5. The relationship between the key dynamic functions and the full boundary tractions are

Table 3. Designation.

Attribute Definition Examples
Superscripts
* Characteristic value (Table 1)
d Dimensional value Using Table 1, for any function: F¢ = F - (Dim. scale)
Special designation
Vertical bar with one subscript ~ Function value on selected z level vls, =v(x, S1(x))
Vertical bar with two limits Difference operator between its upper and lower limits  (z - rm)lgf =(S2—=W)Tuxls, = (S1—=W)Tud)ls,
Overbar (1) For continuous functions: Z integrating through the = _ 5 = 5 [ ,
system (note that there is no normalizing by H) P, y)= s P(x, 2)dz, z+p= s z s p. dz' ) dz
Overbar (2) For discrete functions: sum values of the function at T,= Tils, + Txls,» 2+ T =81 Tx|s, +S2 Tx|s,

upper and lower external boundaries
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590 S. E. Medvedev and Yu. Yu. Podladchikov

defined by
oS
Tyls, = =R+ Q27xds, +R:) (3_1 ,
v (13)
T‘('Sz :Txi TX|S1 5
TZ|S1 = Rz_sz(az_ ])A_Tz’
(14)

T:|S2 :R: +p+520:A—T: s

AT.=e X(T.—p).

The last equilibration in eqs (14) illustrates the use of AT to correct the lithostatic model to the full vertical force balance. The
partitioning coefficient, a, is a free parameter in the ETSA. It illustrates the relation between the approximate vertical stress profile
eq. (8) and the exact boundary stresses in eqs (14). Setting a. =1 (or a.=0) results in satisfying the bottom (or upper) boundary
condition exactly by the approximate profile expressed in eq. (8). We will use examples to explore how the results depend on this
parameter.

The application of creep rheology results in the following approximation of horizontal viscous stress integrated over

depth:

- o 9 e OV — =V
Txx:2 |:(:u_4Gxx+Fxx) 3_); _(4G*x+4Gx>k_2E\‘>k) W; _(4G*>(<_F>k>k) W’;x
BB Rt (-3 R 35 CRe R o 0Ve g OV g ORe p OR e 15
+(Dx = D) Ry +(Dy — *xx)g_ wre 5~ Dwsx 3 T 5o =l T m A *W_Q” . 15)

A similar expression describes the averaged moment of the horizontal viscous stress Ty :

oV,
0x

zc-rxx=2{(zc-,u—4zc-Gxx+zc-Fxx) — ... (other terms)} . (16)

Here the coefficients are defined by

Dx:‘gz':u—\i(Jh le’)a
OX \Js K

D~xxx:84' —i(Ju <i “ E<J‘ ldzm)dzu)dz/) 5
0x \Js, \0x Js, 0x \Js, 1

et 5520).

ox \Js, Iz
2 a2
Fu=iep o (E250) (17)
ox 2

o (7 (17 ou
Gxx:£2 N (J (7 J - dZ”> dZ/> 5
k ox S \M Js, ox

0
Jo=6u =~ z—3S1),

LG
e =E U — - — dz'" \dz" \dz' | .
O Hax(sl w s Ox Slp

The series of indices indicated for each coefficient in (17) refers to the series of differentiation operators in the definition of the
coefficient. The remaining coefficients in eqs (15) and (16) can be obtained by skipping the differentiation operator corresponding to

the position of the ‘star’ index, e.g.

G*x:gzﬂ.J (l J ?—idz”)dz’. (18)

si\M Js, O
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Here we apply this model to layers with constant viscosities; the averaged coefficients referring to viscosity derivatives
(Grxs Gyx» 7Gx, 2.G,,) can therefore be dropped. The horizontal velocity profile is described by

na=vieer [ Eo [(L] L[ BV Yar—a U [ €250,
s M s \OX Js, 0x \)s, p ox s Iz

ST 8 ([ 210 [F oV 4 (F o[ ov aV
2 - dz" \dz" Vdz' ,ZJ J dz" J e Xd//d/ 2 S 19
&L]< Lléx<J pz)z Zte ox 1oxz Sl@x'uﬁx o D (19)
where V. and V. represent the set of key kinematic functions
Vi(x)=wvi(x, 2)lg, s
(20

V;()C)IUZ(X, Z)|S1 .

A set of kinematic equations describing the motions of the boundaries is necessary to complete the system. These equations are based
on the condition of impenetrability and integrated mass balance. For any material boundaries S,, and S,

aSm aSm _
5, Tusls, 5 =tls, (21
A _ S
ASu=5D | 2 (J vxdz) -0, 22)
ot ox \Js,
J "0 gy IS =0. 23)
S ox

The last equation represents the integrated incompressibility condition and can be applied to non-material interfaces.

The system of equations (11)—(16) can be simplified for applications to cases with subhorizontally layered lithosphere by analogy
with the similar simplification in MP99. This case (‘well-stratified lithosphere’) is characterized by lateral gradients of density,
viscosity and basement S; that are so low that they can be neglected, and only those coefficients which have ‘stars’ as indices are
significant. If the reference level, w, is specified as flat, then its horizontal gradients will fall out of the equations

o |_av, V &V, —0R. m— @R, —— @R
e == Ox (4G***F**) J*W"'D*W*D***W;*E* 2 +7 (R H+p)|+T,=0, (24)
s oV - &V V. OR, —=—— @R, PR, 1
4ﬁxz|:zc.‘u_(4zc et **) o3 —ZetJy % +ze - Dx ox T Ze Dok 6x3. —zc-Ey 2 -+ (M +R.Z)
o I
+ 5, (2 T) +AT:=0. (25)

3 TECHNIQUE APPLIED

The behaviour of the ETSA solutions for different boundary conditions is investigated using linear analysis. A set of Maple programs
was developed to support these investigations. Maple programs are based on the initial assumptions of MP99 (eqs 19-21 and 34-41)
and follow the logic of asymptotic treatment presented in MP99. This significantly decreases the possibility of making mistakes
in these long unwieldy equations. It is also possible to investigate variations with additional assumptions, complications or
simplifications. Maple and Matlab codes for linear analysis of the full equations were based on Ramberg (1981).

Small sinusoidal perturbations of mean flow are investigated by linear analysis. To investigate the time dependence of the
deformation, the system of eqs (11)-(16) was completed by kinematic equations in the form of eqs (21)—(23) and the positions of
the boundaries were treated as unknown functions of horizontal coordinates. The unknown functions are given by

2
KF = KFy+ Agr - Trig (g) e (26)

where KFj is the unperturbed solution for unknown functions. The amplitude of the perturbation is Agr « 1. Trig(2mx/ 1) represents
the sinusoidal distribution of perturbations along the horizontal axis [cosine for X-related key functions (7%, V) and sine for the
remaining functions] and parameter o represents the growth rate of perturbations with time. Substituting boundary conditions and
the perturbed unknown functions in the form of eq. (26) into the force balance and kinematic equations, neglecting terms with order
more than 1 for the amplitudes of the perturbation, and subtracting factorized trigonometric and exponential functions gives a
system of equations in the form

Agr-A=0, 27
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592 S. E. Medvedev and Yu. Yu. Podladchikov

where
A, ajy app  aps ag
A a axp  axn a
Agr = , A= . (28)
A azy) axm axnto asx
Ay ag) Ay a3 Agta

Here, A, and A, are the amplitudes of perturbations of X- and Z-oriented dynamic key functions and A; and A, are perturbations of
moving boundaries. Components a;; of the matrix A are defined by the force balance and the kinematic equations and depend on the
wavelength, A. Eq. (27) refers to the system with two moving boundaries. The last row and column in matrix A should be dropped to
investigate the system with a single moving boundary. Non-trivial solutions of eq. (27) can be obtained only if

det (A)=0, 29)

and this is the equation that defines the growth rate, «. For cases with two moving boundaries, eq. (29) represents an algebraic
quadratic equation with solution

a12=(—B+\/B>—4A4y det (A))/244yn , (30)

where A is the matrix of elements (a;j) (i.e. matrix A but with os subtracted) and B=|433|+ |444| is the sum of cofactors to elements
a3z and a4 in matrix A. Agyn=(ar1ax» —aiaz;) represents the dynamic determinant which relates to perturbations of the key
functions only in equations for the balance of forces.

The general solution for the evolution of the boundaries is

<A1 ) (gll g12> <CXP(O<11))

= . , 31
Ay g1 &x exp (221)
where g, is the projection of the initial perturbation on the external or rheological boundary m with an eigenvector corresponding to
eigenvalue o;. It is not necessary to determine coefficients g; (Ramberg 1968a) or both eigenvalues in order to investigate the
behaviour of the perturbations. This is because of the exponential time dependence in eq. (26): only the larger (principal) of the two
eigenvalues determines whether the initial amplitudes of particular wavelengths grow or flatten with time. The results presented
below therefore only follow the behaviour of the principal eigenvalue.

Complicated perturbations can be described as a spectrum of sinusoidal perturbations, and the wavelength with the fastest
growth rate (eigenvalue) will eventually dominate. The dominant wavelength resulting from most geological processes is more easily
recognizable than the kinematic or dynamic characteristics of the process. Therefore, the results presented here are recognized as
correct if a defined dominant wavelength compares well with the exact solution.

The dynamic determinant introduced in eq. (30) plays a significant role in the behaviour of asymptotic systems. In the full
system of equations, the constant sign of this determinant (#0) demonstrates the ellipticity of the original equation system.
However, the level of approximation we apply for this determinant can change in sign. The ranges of parameters which result in a
constant sign for the dynamic determinant determine whether the model can be used. The change in sign of 44y, results in singularity
of the solution (30). The proper use of partitioning coefficient a. can increase the range of ellipticity of the governing system of the
ETSA. We will not discuss the details of the behaviour of this determinant in every example; instead we will present the results of
the most appropriate choice for a. and try to explore the simple rules empirically to match the correct solutions.

The reference surface w involved in evaluations of moments (eqs 12 and 16) is a free parameter of the ETSA (MP99) which
cannot change the results but is able to simplify the treatment. Linear analyses presented below do not depend on this parameter
since w falls out of the linearized system eq. (29). However, we emphasize the significance of the reference surface by describing
possible choices in each example.

4 EXAMPLE A: EVOLUTION OF A LAYER DRIVEN BY BASAL VELOCITY (SS CASE)

Consider a single lithospheric layer with constant density and viscosity. The lower surface S;(x) is subjected to a prescribed velocity
field (Vo ={Vo.x(x), Vo-(x)}), while the upper surface S»(x) is stress-free:

Vx = VO,x 5 V: = VO,: s

(32)
Tyls, =0, T:|s,=0;
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therefore,
Tx= T’C|S1 5 Tzz Tz|Sl . (33)

Since both the kinematic and the dynamic boundary conditions are set on horizontal boundaries, the key unknown functions have to
include two dynamic functions (MP99):

R(x), R(x), Si(x), S$xx), (34)

where R.=(p—T-). The horizontal projection of boundary force balance in eqs (13) gives

STV LT 6

The vertical partitioning is defined by eqs (14):
Ro=a.R—p, TV=¢2R.. (36)

Substitution of boundary conditions and partitioning into eqs (11)—(12) gives

a‘L'X\ (’aﬁz ~ 5S CSZ 6S1 aVox

—R.+2 A H R.==2) —pH == +4u =L X0 37
te "h( o T ax> x T T @7

* H3 - 0 H? _\ ow

= _ " Rl R N> I Bkl

F) {2207” p(zC 3 )—I—ahRézc }—l—ax KZIM P 2 +aARL) (')x}

0 v 0S 1

+- {h (RS’—(M * +a.R.— p) %)] —8—2R =0. (38)

After substitution of coefficients evaluated for this case into eq. (15), the horizontal viscous stress is

OR, 0 H &R, 0S, &°R, 0S| 0R. H? &*R.
(e 25 (1 DR R (20K R)

0x ox

H3 %S, S, oS oS %81\ oV >V 08| Vy.
2 2 2 1 2 1 2 1 0,x 2 2 0,z 1 0,z
ol ———-—-H — - — 2H —H — | H —2H —

te p( 3 0x2 ox 8x> < < x) 0x? ) 0x te < 0x? ox Ox

0S1 *Vor 5 5 OV
H> ——. —uH? —== .
ox  0x2 EH 0x3

The coefficients D,,, and D, were dropped as they are smaller than D, and D, by a factor > and refer to the same unknown

+2e2u

(39)

functions. Terms z.Dy., and zcﬁ*xx were dropped for the same reason in the following expression for the averaged moment of
horizontal viscous stress (from eq. 16):

oV OR, oS R 88| R, 0S; OR. R,
T () = 4% ai +2¢? (ZT(” Oa; —zg— Rx) —2¢* (zc“) 53 "E) o 19 )+2 ae <<“ ntad Rk S ALY )

¢ ox Ox 0x*? ox ox 0x?
’S, oS, aS as St Vo FVo. _ S Vi
2 —Q2) 0 2 (1) 1 002 12 2 091 =) 1 0,x 22 [ = 0z  — 1 0,z
+e p( ox? ox ox ox o ) Tox ez a2 ox ox
22,0 051 Vo 62O 3 Vox 40
+aetpze o ol MR aa (40)
Two kinematic equations should be added to complete the system:
oS oS
5 Vo7 =V @1
0H 0 0 [H?> (R, 0S, Vo, OVy- 0 H3 p S 1 0R 1%V,
— 4 — H) 48— |=— (= - . X = 2 —_— == 11 =0. 42
ot * 0x (VoxH)+e ox { 2 (u ox  Ox ox )] T ox uo 0x ,u x 2 ox? 0 “2)

Eq. (42) is developed by integrating the velocity field over the depth and substituting the result into eq. (22). The velocity field is

Rx (?Vo,x 6S1 6V0,z) 82 (Z—S1)2 <p 552 3 (32 Vo,x 1 ﬁﬁz>

ox ox 0x

u o 0x 0x? u ox 3)

vil(x, 2)= Vo +& (z—S)) (— -
I 2
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4.1 Simple cases
4.1.1 The SS* approach

Subtracting ¢ terms in force balance eqs (37)—(39) allows a simplified solution for the key dynamic functions:

R.=0,

0 (1 Vox\ 4, Wox 08 ) .08 (44)
ox ox 0x

R.=4u —
= 0x
Substitution of the solution of eq. (44) into the expression for the velocity field eq. (43) yields

) oS Vo, 0(4S,—S
L‘x(X,Z)=Vo,x—82§(H—Z ])(Z—Sl)‘a—;-i—sz(z—&) 0 045~ 5)

2 0x 0x
3 0>V, Vo
+2 (4HE—S)— 5 (=817 ) 3t =2 85) S 43)

2 O0x Ox

Evolution of the layer can be described by

0H 0§ 0 p 08, 38N 0 [H? (0(4S,—S)) Vo Voo

DL v — L L _2 X 2 9|2 LPox 90z | 4

ot +6x (Vo) —e 6x|: (3,u ox 2 0x% ) 0x 0x 0x 0 (46)

This approach was derived by the authors (1995, unpublished) and applied to modelling of the evolution of salt extrusions
(Talbot et al. 1998). The SS* approach can handle a larger range of basal velocities than the pure SS approach (described below).

4.1.2 The SS approach

Results with accuracy up to O(&*) can be obtained for ‘slow’ basal velocities (Vs ~ &2 V) by neglecting terms containing both basal
velocity and ¢? and rescaling (' =t/¢%, v’ = &%v):

a8
B D)= Vssa— 2 =2 - (2= S1)(2S =51 —2).
i Ox
0H 0 o0 (H? oS “n
! 0 )\
ot + 0x (VssH) JTRGAS ( 3 ax) =0

Eqgs (47) represent the SS approach (Lobkovsky & Kerchman 1991; Medvedev 1993; Buck & Sokoutis 1994). Comparison of eqs (47)
with the more accurate expressions, eqs (43) and (42), emphasizes the need to scale the basal velocity correctly (Lobkovsky &
Kerchman 1991) and use a full description for deformation subjected to singular boundary conditions (Buck & Sokoutis 1994;
Royden 1996).

4.2 Isostatic adjustment

Consider the development of small perturbations in the top of an initially horizontal layer without lateral forces and with basal
velocities (Vo =0, Vp.=0). This simple test illustrates the isostatic adjustment of perturbations in a single lithospheric layer.
Previous thin-sheet approximations demonstrated increasing adjustment rates with decreasing wavelengths; this does not compare
well with natural examples, which demonstrate the existence of dominant wavelengths. Ramberg (1968b) demonstrated this
phenomenon analytically.

The solution of the equations gives the unperturbed flow parameters

R,=0, R.=0, H=H,. (43)
Small periodic perturbations have the form of eq. (26):
SH=6S,=eArsin(wx), OR.=eA.cos(wx), OR.=e"A.sin(wx). (49)

Note that no perturbations were considered along the bottom boundary as the motion of boundary S; is defined exactly by the
boundary conditions (eq. 41). Substitution of the perturbed fields and a zero basal velocity into eqs (37)—(40) gives the general
solution in the form of eq. (30).

The dependence of the growth factor, o, on the wavelength of the perturbations, /, for this simple case of isostatic adjustment
calculated using the ETSA and the exact solution (after Ramberg 1968a,b) shows not only qualitative similarity but also good
quantitative reproducibility (Fig.3). The ETSA results have a low partitioning dependence if a.€[0, 1]. Application of the SS
approach (eq. 47) demonstrates the common behaviour of low-order thin-sheet approximations: shorter waves develop faster.
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Figure 3. Example A. Spectrum illustrating the dependence of dimensionless growth rate on wavelength for isostatic adjustment of an upper
boundary perturbation in a single-layer system (a, =0).

5 EXAMPLE B: EVOLUTION OF A TWO-LAYER SYSTEM DRIVEN BY BASAL VELOCITY

Our second example is a system with two layers (e.g. crustal and subcrustal lithosphere) with constant densities (p; and p, for bottom
and top layers respectively) and viscosities (x; and u,) and differs from the first example only in rheology. S, (x) is the rheological
boundary between the two layers. Note that the viscosity difference may be significant. The boundary conditions, key functions and
partitioning are the same as in example A (eqs 32-36) with only u changed to u; on the bottom boundary (eq. 35). The boundary
and rheological settings result in the 2-D system of force balance (from eqs 11-12)

OTrx (H 6R ~ 052) _sz IAY) aS* 08, . (3V0,x

+R. - 4u =0 50
ox 2 ax T e T o T T (50)

2

ox?

) vy < N 1~
Jra—x{hw(Rg_”—(%W a.R.— )axlﬂ—s—zRZ:o. (51)

The averaged horizontal viscous stress and averaged moment of the horizontal viscous stress have the same form as for the general
2-D case in egs (15) and (16). The evaluation of the coefficients is carried out in Appendix A. The viscosity contrast between the two
layers results in the appearance of a viscosity heterogeneity coefficient J, and its momentum A, in the equations. If y; « u,, these
two coeflicients introduce singularities into the equations since 6,,M > 1. In this case the coefficients presented in Appendix A can
be simplified by dropping insignificant terms.

The position of the reference surface w(x) is significant in this case. For example, putting the reference surface w=(S,+.53)/2
reduces the singular terms (which involve the viscosity ratio) in vertical force balance, because then the momentum of viscosity
heterogeneity M, =0. This is convenient for numerical calculations and balances analytical solutions. However, the simplest
presentation of the averaged moment of horizontal stress is obtained by putting w=S; (see Appendix A).

The horizontal projection of the velocity field for z < S, is

— ~ 0 ~ 0
[zzcrxx + Mp + (a:Rz _E)Z_C] + & {(2$+ (asz )H + ,0) 7W:|

R, Vo, 0S1 aVy.\ 3 v (z—S1)?
N _ 20, Rx O’X.ilf 0,z 22 2, X 2 1 g
0%, 2)= Vo + 8z S‘)(m . ) Y S G e S K (52)
where
[0S, oS,  OR.
Re= (Pz R E)
and the horizontal projection of the velocity for z > S, is
h FV x 0S1 0V
o 2) = Vot 2 (1 L ESN\ g -5 (Lox . 851 Vo
Hl Ha ox = 0Ox
12 _ _ 2
2#1 125) 21, 2#2 0X
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Evolution of the layers can be described by eqs (22) after integrating the velocity field

ohy 0 e 0| ,,(Re WVor 0S1 Vo.\ 3 Vo. KK
— (Vouh)+ = — |3 = - =2 2 - 222 ) ) : =0 54
o Tt I Ty e T e )T e T |0 (54
0H 0 o [(mH I H? (0V,. 0V 05
L (Voo H)+E — | [ — + =2 )R, — = bz x 2
ot +6x( oxH)+e 6xK I +2u2) T2 (8x * ox  Ox
H . AN\PVox (B Why kB n oS,
(-2 ) T+ (G 3 B ) K g 50 9

5.1 Simple cases
5.1.1 The SS approach

Zanemonetz et al. (1976) and Medvedev (1993) investigated this model under the condition of ‘slow’ basal velocity Vg ~ &2 V. The
governing equations of this approach can be obtained by neglecting terms containing both basal velocity and ¢ in eqs (50)—(55) and
rescaling (£ =t/&2, v/ = &2v):

08, 0Sy,

5(ms) (ms) _
R =0, R"™x)=—p,H—+Ah — 56
. , RW()=—p, oy TAM A (56)

The velocity field for z < S, is

) aS: oS
vx(x, 2)=Vssx+ (=51 (pz(z—Sl —2H) o2 —Ay(z—S1—2I) _*) , (57)
21 0x 0x
and for z > S,
j A0
016 D)= Vst 22 52 [ $)) e — Sy — 2H) + oo, ] 462 201 85 (58)
21, 0x 2u; Ox
Evolution of the layers is described by
ohy 0 h? 0S, oS
— 4+ — | Vs + —- h —3H) —= +2A,h —=) | =0
T 6x[ 55, 1+6,u1 (Pz( 1 ) R 6)‘)} , )

oH 0 A2 (B B\ 0S 23 213 hihaH 8S;
— Ve H e W id Y e * M <" =0.
or +0x{ s (3 " 2) x p2(3u1 TR ) ax}

This approach is applicable only to situations with low viscosity contrasts (Medvedev 1993).

5.1.2 The Ellis et al. (1995) model

Ellis et al. (1995) investigated a similar case with the additional assumptions of a thinner bottom layer with constant thickness,
hy =const«/h,, a more competent upper layer u, >y, and hy/ > hy/ pis.

Ellis et al. (1995) applied a dynamic vertical boundary condition on the base which is not quite the same as the boundary
conditions in eqs (32)—(33). However, the simplicity of balancing the vertical forces suggested by Ellis ez al. (1995) allows a
comparison of the analytical results of this approach with the ETSA in this section by adding Airy isostasy as in eq. (63).

Let us consider the behaviour of eqs (50)—(55) using the assumptions of Ellis et al. (1995). The vertical force balance eq. (51) is
simplified by neglecting all ¢ terms to give the lithostatic condition R. =0. Consideration of the velocity field in the upper layer
(eq. 53) allows the extraction of two leading terms:

h
vulx, 2) 3 Vo +8° u—‘ Re=uvls, =7x) 2> S,. (60)
1

This shows the independence of the horizontal velocity in the upper layer at the level of approximation presented here. Hence,

My
Ry=—5—0x—Vox). 61
= Vo) (61)
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Substituting eq. (61) into the horizontal force balance in eqs (50) and (15) gives, after neglecting all ¢ terms and neglecting
insignificant terms due to the condition y; <, (the latter is indicated by =),

i oS s _
—poH 22 Ay S ),
ox Ox ox = & (62)
Vox — — —— OR, oy
T =20 U 6D R+ 6D, S A 2yyhy X
0x 0x 0x

Application of the Airy scheme of isostasy (Turcotte & Schubert 1982) on the basis of mantle density p,, and assuming a constant
thickness for the bottom layer gives

R oS 0S8y  py(pym—py) O3
H—— 0x—Ajhy ok = pohy =2 = P2Pm—P2) 05
< 08, Ox =Byl 0x pah2 0x 20m 0x 63)

Substitution of eq. (63) into eq. (62) gives the equation derived by Ellis ez al. (1995) and proves the applicability of Couette flow for
description of deformations in the bottom layer:

O (O _palom—p) OB5
ox \'? ox 8omit,  Ox  4&u,h

(ﬁ - VO,x) 5

_ 64
C . <, &4
1

UX(X)ZE, Z>S*.

Ux(xa Z) = VO,X +

We describe this case as a variation of the SS approach because deformation is defined by the horizontal boundary velocities
prescribed along the base. In contrast, Ellis e al. (1995) recognized their model as an extension of the PS approach (following the
model of Wdowinski ez al. 1989). The model presented by Ellis et al. (1995) is not completely supported by the asymptotic analysis
described in the ETSA formulation because eq. (61) is not fully compatible with the simple vertical force balance (R. =0) (cf. eq. 51).
However, the model of Ellis ez al. (1995) has a number of advantages for the modelling of rheologically stratified systems.

5.2 Rayleigh-Taylor instability

In additional to the boundary conditions of Example B (eqs 32-33), the basement S; in this case is a constant in time and space
and Vo =0. The density contrast A, =p, —p; > 0 illustrates the gravity instability in this test. The linear analysis is similar to that
performed in Example A with an additional equation to describe the motion of the rheological boundary (eq. 54).

Fig. 4 compares the results for different approaches. The SS approach behaves well only for long wavelengths and tends to
infinity for short wavelengths (not indicated in Fig. 5 because of the difference in scale).

57 I A
o t! I \ H/u=1 0’

5 .
(x10 )4 | ! This study (a,=h,/H)

_____ This study (a,=h,/H)

— - —  Ramberg (1968)
........ MS approach

_______ Exact dominant
wavelength

d *
AH
Figure 4. Example B. Comparison of applying the different approaches to the growth of Rayleigh—Taylor instabilities in two-layer systems
with free upper surfaces and no-slip bottom boundaries. Comparing the ETSA results for different partitioning coefficients a, illustrates the
criteria of correctness: the proximity to the correct wavelength, not the correct growth rate. The partitioning coefficient a.=h,/H performs well
over a wide range of geometries and rheological conditions. The SS approach works well for long wavelengths but not for short wavelengths
(m/H=0.1, p,=12-py).
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25

(d)

This study — — - Ramberg (1968)

Figure 5. Example B. Comparison of the influence of different factors on the growth rate of Rayleigh—Taylor instabilities in two-layer systems with
free upper surfaces and no-slip bottom boundaries. (a) and (b) illustrate the influence of different viscosity contrasts. (a), (c) and (d) show spectra due
to differences in geometry: (upper layer thickness/full thickness)=0.1, 0.5 and 0.8 respectively (p, =2p,, a. =h,/ H).

Our investigations into the influence of partitioning emphasize the significance of coefficient a.. ETSA applications with
different partitioning coefficients were compared with the exact solution (after Ramberg 1968a). This comparison (Fig. 4) illustrates
the criteria we used to define the correct solution. Even the maximum growth rate is about double the exact solution for a, =h/H;
this result is treated as more accurate than results based on other values of a. since the dominant wavelength is closer to the exact
dominant wavelength. Our experience suggests that the coefficient a, =5,/ H is appropriate. This means that the most appropriate
boundary condition to be satisfied at a low level of approximation (eqs 8 and 36) is that closest to the most intense rheological
gradient within the model. This is well demonstrated by Figs 4 and 5. Nevertheless, the results demonstrate the great advantages of
ETSA compared to previous thin-sheet approaches, even with the use of inappropriate a..

There is good agreement between the ETSA and the exact solution for different rheological settings (Fig. 5). Fig. 6 shows that the
dominant wavelength depends on the viscosity contrast. In contrast to general opinion that this exhibits a cubic root law behaviour
(e.g. Whitehead 1988), Fig. 6 indicates that the dominant wavelength varies much closer to the sixth-order root of the viscosity
contrast, probably because of the influence of the upper stress-free surface.

5.3 Systems driven by basal velocity

This section considers the influence of applying a basal horizontal velocity. The vertical component of the basal velocity is set as
Vo, =0 and the bottom boundary is constant in time and space (S; =const). The basal horizontal velocity is defined by a constant
gradient V= V*x. The unperturbed flow is described by

R.=0, R.=0, v,=V*x, v.=—V*z—S)), H=Hyexp(—V*). (65)

The linear analysis was performed for the case V* < 0, which laterally compresses the system (Figs 7 and 8).

Comparison of Figs 7(a) and (b) shows that the dominant wavelength depends more on the viscosity contrast then on the
magnitude of the velocity gradient, as suggested by Ellis ez al. (1995) (although we cannot compare our results with theirs directly
because our boundary conditions differ).
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Figure 6. Example B. Dominant wavelength versus viscosity ratio for two-layer systems with free upper surfaces and no-slip bottom boundaries
with a density instability. Comparison of results from this study and Ramberg (1968a,b). Line A~ {/p,/u; illustrates the asymptotic behaviour
(p2=2py, /H=0.1,a,=0.1).
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0.3} P<p, g N
| EEER- . :
ot H /' AN
grad(V)=-0.1 , —_ w/pn,=10° N
| A Mo/, =107 N
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O0b = = = o T == —mommoaaa
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0.1— /r - = - = =TT =

ETSA —— — — grad(V)=-0.1
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Figure 7. Example B. Basal-driven compression with a constant gradient of velocity along the bottom boundary. (a) Comparison of spectra for
different viscosity ratios. (b) Comparison of spectra for different basal velocity gradients demonstrating the low dependence of dominant wavelength
on velocity gradient. The SS approach (after Medvedev 1993) shows independence from rheology and is controlled mostly by the velocity gradient.
The scaling factor for the dimensionless velocity gradient is (p*gH™*/ ™) (h/H=0.1, p, =0.8p;, a. =0.1).
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Figure 8. Example B. The dominant wavelength versus viscosity ratio for basal-driven compression with a constant gradient in boundary
velocity. Line A~ {/u,/y, illustrates the asymptotic behaviour. The scaling factor for the dimensionless velocity gradient is (p*gH™/u*)
(h/H=0.1, p,=0.8p,, a-=0.1).

The results of applying the pure SS approach (after Medvedev 1993) and the model of Ellis et al. (1995) reformulated for a stable
bottom boundary, V., =0, were compared with the results from the ETSA (Fig. 7). The two low-order approaches result in the same
spectra, both of which are defined by a velocity gradient V* and are independent of wavelength.

The behaviour of the dominant wavelength for different viscosity ratios calculated using the ETSA is shown in Fig.8. It
compares well with results of the linear analysis of the full equations (‘exact solution’).

6 EXAMPLE C: LATERAL EXTENSION OR COMPRESSION OF A LITHOSPHERE BOUNDED
BY A LOW-VISCOSITY SUBSTRATE (THE PS CASE)

Consider two layers (e.g. crustal and subcrustal lithosphere) of constant density and viscosity. The non-material lower surface S|
is the compensation level with the compensation pressure P. and zero shear stresses constant in time and space. Even though it is
constant in time, the vertical velocity across this surface is not necessarily zero. The upper surface S, is stress-free:

Tx|s1 =0, Tx|s2 =0; (66)
T s, =PFc, T.ls,=0;

therefore,

T.,=R,=0, T.=P.. (67)

These boundary conditions can be applied if the upper layer is much more competent than the lower layer (u, > ;) (Ranalli 1994;
Burov & Diament 1995). The key unknown functions are

Vi) =vx(x, 2lg,, Va@)=v:Ax, 2)ls,, Si(x),  Sax). (68)
Partitioning of the vertical boundary conditions is defined by eqs (14):
R.=a.(p—P.)—p, A—Tz=372(Pc_p)~ (69)

Substitution of boundary conditions and partitioning into eqs (11)—(12) gives

OTex 0 _ 0S, 0S4
2 . — [H(P.—Pp)]—p,H — +A,hy — =0 70
o T aX[ (Pe—p)—p> oy A 1 , (70)
;o o _ - ow] 1 _
_2[ZZCTU+Mp7p'zc+a:ZC(p*PC)]+—\_ (2Tvx+a:H(P*Pc)+P*PH)_ :_z(p*Pc): (71)
ox 0x 0x g
where the horizontal viscous stress is
Te=2| (4 Fo) 0 — (4G - 2F) uilé (4Gr F_)63V*+J—"V; 7. OV On—(a.—1(E P Vol (72)
P =2 TR Ty i T 0x2 e TR oy Y ox *ox2 weE Tox T Foxt)|”
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This expression is similar to that for the averaged moment of the horizontal viscous stress:
- = 0V
Ze Tox =2 (Zefi+ zc Fyy) —— — ... (other terms)| . (73)
0x

The evaluation of coefficients presented in Appendix A shows that the only terms having a singularity due to the viscosity contrast in
this case are those referred to E. Hence the position of the reference surface w can be defined for several purposes; for example, to
make the system easier to manipulate (w=S;) or to drop the singular terms from the vertical force balance [by putting
w=(S>+S3)/2]. Alternatively, the order of the vertical force balance can be lowered by putting w as the solution of the equation

zF—42.G,y =0, (74)

which is the coefficient for the highest-order derivative of unknown key functions in the vertical force balance (3° Vy/dx%).
The velocity field for z < S, is

L 3, , Ve v, (z—S1)* ép
b= Vam 3 =80T T =R =S G — e =) S o (75)
and for z > S, is
3 AL &V av.
, 2 2 X z
bx_Vx_g |:<2 (Z_Sl) +4hl(Z_S*) ?:) (‘}Xz +(Z_Sl) ax:|
A, 0 B - —S,)*\ op
bPms )2 Do OSx_p py(M ME=S | G807 P (76)
2uy  Ox 2 tha 2uy ) Ox
The combination of kinematic relations eqs (21)—(23) can be integrated here in the form
oS o (5
"= J vn(x, 2)dz= V. 77
ot ox Jg,

for material boundaries (S,, = {Sy, S>}). Integrating the horizontal velocity within the limits of S; and the corresponding surface
yields equations describing the evolution of the material surfaces:

=V., (78)

050, 0 [, PRV BBV PR o
ot Ox 2 Ox? 2 ox 6u, Ox

: 3 2 2 Ly 3 3 -
9 0 yom— ‘1 {(i 22y (% —1>) 0V (B OV, Ahy 25y —(az—l)(H— —657" (3h1h§+h;)) i—ﬂ —V..
2

o ox " ox |\ 2 ) 0x2 2 dOx 6y, Ox 64, -
(79)
6.1 Simple cases
6.1.1 The PS approach
Neglecting ¢ terms in the expression for the horizontal velocity of the upper layer (z > S, eq. 76) results in
vx(x, 2) & Vi(x) . (80)
Neglecting the same order terms from the vertical force balance eq. (71) gives the Airy isostasy condition
PC:p1h1+p2h2. (81)
Algebra gives
0 = 0/11 (’5/12
a(R:H‘FP)——Aphz a——ﬂz(l—Pz/Pl)hza- (82
Substituting isostasy into the horizontal force balance eq. (70) and neglecting all ¢ terms yields
0 (Vi) pa(1—py/py) Oh3

4 —|pg—|="r—"T""2—=

0x ( 0x ) 2 Ox (83)

Normalization of both @ and the right-hand part of eq. (83) by H gives the governing equation presented in England & McKenzie
(1983).
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England & McKenzie (1983) investigated this case using a viscous fluid with a power-law temperature dependence. Estimation
of 7i can be performed by the technique suggested by England & McKenzie (1982, Appendix A) or by England (1983), which was
supported by analytical investigations by Sonder & England (1986). The rheological settings applied in our Example C (two layers
with constant viscosities) are not the power-law creep considered by England & McKenzie (1983). However, both cases share the
property of the averaged viscosity depending on the horizontal coordinate.

6.1.2 The bending equation

Consider the development of a thin sheet subject to a deviatoric horizontal stress, o, which is constant inside the layers. The vertical
distribution of the deviatoric stress allows pure shear deformations in the system, thus o /u; =02/, =a/u. In the case of perfectly
plane boundaries, the unperturbed stress balance in the horizontal plane gives

2u%7p o+, (84)
O.X

where o, expresses the lithostatic stress, which is eliminated after substitution of pressure from the vertical stress balance:

ov, Ovy
P:—(rp+2uE:—ap—2,u o (85)
The unperturbed flow is described by
oV [ P. ©
ve(x, 2)=Vi(x), x__ % =const, V.==-%. z =const,
Ox 4p p1 4R
(86)
T P.—pyh
ha(8)=hoa exp (4—_ f> . = Pe=piho1+ pahoz,
u P1

where /o) and A, are the initial thicknesses of the layers.

The small perturbations of mean flow with long wavelength are assumed not to change the thickness of the competent (upper)
layer: 15=0, and therefore /= S;= S5 (hereafter in this section, primes indicate the perturbed flow parameters). This assumption is
common when considering folding and is valid as long as u, > u; (Fletcher 1977). These assumptions allow us to linearize the
equations, keep only the lowermost derivatives of unknown functions, and neglect insignificant terms due to the condition p; < fi,.
The subtraction of eq. (78) from eq. (79) (a.=1) after simplification gives

0Ss—St) _, Vi o H*—hi v AR S,

0= ot =h ox 2 o b,  0xX2 ®7)
Then, the perturbed horizontal velocity can be expressed as
v s V: AR PS
S =eX(hy/2+h 2.k 88
Ox ‘5( 2 + 1) 6‘[,12 axz ( )
Kinematic eq. (78) gives
oS, oS, oV ovy dSy

Vie 4V, == +hi +h —hj 89

=y Tttt T ‘4u (89)

The vertical force balance eq. (71) can be simplified using the assumptions and form of eq. (25), and after substitution of the
coefficients (Appendix A, w=S}), simplification and linearization can be rewritten as

2V

2 ’ 4
4 L id “2 (543l H) 57| = pii. (90)

& e u2(2h2+4h1h2) +hig—
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Here we use the condition ¢/ u~a/n. Substitution of the horizontal velocity from eq. (88) and the vertical velocity from eq. (89) into

the vertical force balance eq. (90) gives

Lk ot (dsy S,
; ; 91
¢ 3 64)6 &o ( )

=—phi.
dt 62)6 p1m

Then, replacement of the material boundary S, by the non-material marker S [vertical position of rheological boundary,
(dS/dt=0S/01)], rescaling of the horizontal coordinate using the thickness of a thin sheet (setting ¢=1) and changing the right-hand
side to the general case leads to the general bending equation (6-181) of Turcotte & Schubert (1982) (eq. 7 in this paper). Note that the
simplifications of the derivations in this section preclude finding any characteristic wavelengths using eq. (91). To investigate
characteristic behaviour, the general bending equation should be specified with an external flow influence (Turcotte & Schubert 1982,
eq. 6-189; Ramberg 1970a). With the boundary conditions employed in this section, the characteristic behaviour can be investigated

with the full ETSA system of equations (70)—(73), as is demonstrated in the next section.

6.2 Buckling and gravity instability

Let us investigate the problem outlined in Section 6.1 with a mean flow described by eqs (84)-(86) and a small perturbation in
the form of eq. (26). The density contrast A, can be of different sign, allowing either stable (A, <0) or unstable (A, > 0) density
stratifications. With ¢ > 0, the lateral stress is compressive, while ¢ < 0 indicates extension of the thin sheet.

We first investigated gravity instability alone (6=0); Fig.9 shows how the growth rate depends on the wavelength. The
maximum growth rate is poorly defined for long wavelengths (~1 per cent), while the growth rate drops significantly for shorter
wavelengths. Both the ETSA and the exact analytical solution demonstrate this behaviour. Application of the PS approach gives an
entirely impractical mean growth rate for almost all wavelengths.

Application of compressional (Fig. 10) or extensional lateral stresses to the system leads to more clearly defined dominant
wavelengths. Fig. 11 compares the results of this section with analogue and analytical investigations presented in Ramberg &
Stephansson (1964) and Ramberg (1970a,b).

An additional investigation shows that the results are not strongly influenced by the partitioning coefficient @, in the limits
0<a.<1. The dependence of spectra on partitioning is recognizable only for wavelengths shorter than 2H*, and more realistic

results can be obtained with a. ~ 1.

ot
107y ¥
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Figure 9. Example C. Instability in two-layer systems with inverted density. The bottom boundary is the non-material level of compensation. The
dominant wavelength is poorly distinguished (~1 per cent) for this case; the growth rate o tends to — oo for short wavelengths. The PS approach

shows no changes over the range of wavelengths considered (hy/H =0.1, p, =2p,, a.=1).
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Figure 10. Example C. Interaction of a gravity instability and folding for a two-layer system with inverted density due to lateral compression with
different rates. The gravity instability is not recognizable for o/4u > 10~4. The dominant wavelength and corresponding growth rate increase with
increasing applied force. Both the PS approach and the ETSA demonstrate the same tendency at long wavelengths. However, the PS approach has no
dominant wavelengths and shows inappropriate behaviour approaching short wavelengths. The dimensionless uniform strain rate of mean flow is

o/4u= —(0V?/ox) with scaling factor (p*gH™/ i*). Note that wavelengths are scaled to the thickness of the whole system. To rescale the wavelength
for upper-layer thickness, it should be multiplied by a factor of 10 (hy/ H=0.1, py=2p,, 15/ t; =103, a. =1).
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Figure 11. Example C. The dominant wavelengths for the two-layer system due to different magnitudes of lateral compression and extension. There
is no density inversion in this case (p, =0.8p,). The curve for compression satisfies the asymptotic behaviour predicted by Ramberg & Stephansson
(1964) well. The scaling factor for the dimensionless parameter of this example (a/4u) is (p*gH™*/1*) (ha/ H=0.1, jiy/ pt; =103, a. =0).

7 CONCLUSIONS
7.1 Partitioning coefficient

The analytical treatment of MP99 leaves the vertical boundary partitioning coefficient @, as a free parameter in the ETSA. This
parameter represents the relation between approximate profiles of stress functions and their integrated correction. MP99 demon-
strated that the value of a. gives preference to satisfying certain boundary conditions at a low level of approximation [i.e. by the
approximate stress profile, eq. (8), which is able to satisfy only one boundary condition].
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Our tests show that the influence of the partitioning becomes insignificant at wavelengths longer than about double the
characteristic wavelength. Thus, investigations of the influence of partitioning are limited by intermediate (near-characteristic)
wavelengths.

Example C (the PS case) shows a very low dependence of solutions on the choice of the partitioning coefficient unless 0 <a. < 1.
The need for solutions to be realistic over a wide range of wavelengths defines the preferential choice of a.~1 by investigating
wavelengths shorter than 2H*.

When the bottom boundary is subjected to external shear (the SS case, example B), our tests show that preference should be
given to the external horizontal boundary which is closer to the most intense rheological gradients within the model domain. In the
few examples we have studied, this approach resulted in extremely accurate asymptotic solutions.

The ETSA was also tested with free-slip along the bottom boundary. All cases were found to be strongly dependent on the
partitioning and we did not identify the most appropriate partitioning rule because the technique we applied in example B failed to
improve the solutions. Rayleigh—Taylor instability spectra for the case of a free-slip boundary condition compare well with the
exact solution using negative values of the partitioning coefficient: —1<a. < 0. The most appropriate choice for the partitioning
coeflicient for this case needs further work.

7.2 Results of experiments

Testing problems were investigated on the basis of single- and two-layer models of Newtonian viscous materials. Linear
analyses compare well with exact analytical solutions over a wide range of wavelengths for the modelling of isostatic adjustment,
Rayleigh—Taylor instabilities and buckling due to compression and extension. The examples show the following.

(1) The new ETSA generalizes the most popular existing thin-sheet approximations. Whereas existing approaches only allow
particular types of boundary conditions, the new model allows stipulation of all likely geodynamic boundary conditions. It was
shown that the previous generation of thin-sheet approximations could be derived by simplification of the ETSA under each of their
restricted boundary conditions.

(2) Comparison of exact 2-D solutions with our results shows the surprisingly high accuracy of the ETSA. Accurate instability
spectra defined by linear analyses were obtained by our long-wavelength approximation, even at short wavelengths.

(3) The ETSA can be applied to geodynamic problems that cannot be described by previous thin-sheet approximations. Only
buckling could be handled by the FP approach. The development of other mechanical instabilities was not possible with any of the
previous generation of thin-sheet models, even where the competence (viscosity) contrast was high and the dominant wavelengths
were much longer than the thickness of the thin sheet.

(4) The examples presented here are 2-D; however, the formulation and final equations of the ETSA are 3-D (3-D tests are in
preparation). However, even the 2-D model shows great advantages for investigations of the evolution of 2-D structures.

The results of this work show that the new extended thin-sheet approximation is a powerful tool for realistic modelling of
complicated 2- and 3-D geodynamic structures.
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APPENDIX A: EVALUATION OF INTEGRATED FUNCTIONS FOR TWO-LAYER SYSTEMS

(EXAMPLES B AND C)

The momentum integration auxiliary function is introduced by

S
Z_c(k)=J Ze J~~~sz...dz dz.
St —

k
Therefore,
H2 H2
T(O)ZZZT—hnHa Zic(l):__hw 7 >
H* H? H H*
7O _p = O _p =
Z, 8 w 6 9 ZC 15 w 12

The heterogeneity functions for the case of two layers are

It h3
Su= (M—T - ) . M= (72 —h*hz)aﬂ,

(A1)

(A2)

(A3)

where h, =(w—3S)), h,=(w—S,). The other integrated functions of this case are presented in a form which distinguishes them from
the single-layer system. Setting all differences (A, and A,) and heterogeneity functions (6, and M) equal to 0 and p; = p, u, = uleads
to integrated functions for the single-layer system. The averaged rheological functions applied in the force balance are

ﬁ:le"_AphZ >
T=p H 2+ A03/2,

ﬁ:ﬂZH*Ayhl P
A= H? —Ah})/2,

(A4)

U= =0 hy ., I o h
M,=p iz’ +A, ?_h*i 5 Ze 0= hZc — Ay ?_hwhl .

The evaluation of integrated coefficients for horizontal force balance is presented in Table Al. The evaluation of integrated
coefficients for vertical force balance is presented in Table A2. Coefficients of D type are very large after the triple derivations and
integrations. Hence evaluation of these coefficients is presented in a separate table, Table A3.
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Table Al. Integrated functions for horizontal force balance.

D, = e(H?/2408,hhy)
D. = ( H- @Jra L 6th>
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ox
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Table A2. Integrated functions for vertical force balance.
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Table A3. D-related integrated functions.
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