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SUMMARY
Stationary autoregressions on a two-dimensional lattice are generalized to intrinsic

models where only increments are assumed to be stationary. Prediction formulae and
the asymptotic behaviour of the semivariogram are derived. For parameter estimation
we propose an approximate maximum likelihood estimator, a generalization of Whittle's
estimator; it is derived also for general intrinsic models.

Some key words: Approximate maximum likelihood; Autoregression on Z2; Intrinsic model; Mean free
prediction; Semivariogram.

1. INTRODUCTION

Most models proposed in the literature for planar lattice data X,, for / = (i,, i2) e Z2,
assume stationarity. For applications, however, this is often not very realistic. Locally
the assumption of stationarity is reasonable, but over larger areas the level and sometimes
also the gradient change substantially. For instance, Wilkinson et al. (1983) use a smooth
trend plus independent errors model for field trials. In time series in such a situation
one might model the first or second differences of the data. Yet in two dimensions this
approach is not very satisfactory since differences can be taken in many directions. A
more detailed discussion of the disadvantages of differencing is given in § 2.

We pursue in this paper the use of the so-called intrinsic models of geostatistics
(Matheron, 1973) where all possible spatial differences are modelled simultaneously.
However, whereas geostatistics uses only some small classes with a simple semivariogram
y(k) = 5£{(X, - X,+k)

2} (keZ2), we introduce here a class of models with simple predic-
tion formulae by which we can approximate almost any intrinsic model. This class, called
intrinsic autoregressions, is a generalization of the conditional autoregressions of Besag
(1974) to the nonstationary case. They have a simple spectrum, but it does not seem
possible to express the semivariogram in closed form. Section 2 gives their properties.

In § 3 we develop an approximation to the log likelihood of intrinsic autoregressions
which is very similar to the approximation of Whittle (1954) in the stationary case. The
corresponding estimator uses only the empirical semivariogram for small lags. If there
is a monotonic trend in the data, this is much more reliable than the empirical covariances
used to fit a stationary autoregression. We show also how the approximation can be
extended to other intrinsic models. The resulting estimator can be applied whenever the
spectrum can be calculated, for instance in the case of a linear semivariogram. Section
4 contains an example using Landsat data.

Often the sum of the estimated coefficients of a stationary autoregression is very close
to one. Since the asymptotic normality of these estimators breaks down when the sum
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of the coefficients tends to one, it is then difficult to make inferences. Our intrinsic
autoregressions can be considered as the limit of stationary autoregressions as the sum
of the coefficients tends to one. Using intrinsic autoregressions the above difficulty
disappears because here the asymptotic normality of the parameter estimators continues
to hold. This is another attractive feature of our models.

2. INTRINSIC AUTOREGRESSIONS

First recall the definition and the basic properties of the intrinsic model of Matheron
(1973).

Definition 2-1. A finite linear combination £A,X, is called an increment of order d if
2A,i"i?' = 0 for all a 2=0, a'2=0, 0*£a + a'=£d.

Thus an increment of order d filters out polynomials of order d. Increments of order
zero are also called contrasts. Note that in field experiments all estimators of treatment
effects are contrasts. All subsequent coefficients A, are such that 2A,X, is an increment.
A process Y}(A) = 2A/X,+J (jeZ2) is called an increment process.

Definition 2 2. The process {X,} for i e Z2 is called intrinsic of order d if all increment
processes of order d are stationary.

Usually it is assumed that all increments have zero means, and we shall do so in the
following. Clearly, if {X,} is intrinsic and second moments of the increments exist, each
increment process {Y,(A)} has a spectrum Fy(A)(da>), for w e (—TT, TT]2. Moreover, for
different coefficients A, these spectra are related and can be expressed by means of a
single measure. We state the result only for the absolutely continuous case. The general
case as well as proofs are given by Matheron (1973) and Gelfand & Vilenkin (1964, § III,
5.2). Let joi (je Z2, o> e {—TT, TT]2) denote the inner product j,a>,

THEOREM 2-1. If {X,} is intrinsic and all increment processes have an absolutely
continuous spectrum, then there exists a function f(w) (coe (—v, TT]2) with f (to) 3=0,
/ ( - « ) =/(w) and \\\u)\\2d+2f(w) da><oo such that

\je^ £ A'k e^fico) dio. (2-1)

Then/(w) is called the spectral density of {X,}. It is similar to the spectral density of
a stationary process except that it can have a nonintegrable singularity at w = 0 and thus
may be used to calculate only covariances between increments. In particular, the spectral
density of an increment process {Y,(X)} is, by (21),

/v(A)(") = IIV*f/(a,). (2-2)

Any function / with the properties of Theorem 2-1 is the spectral density of some
intrinsic process {X,}. However, in contrast to the stationary case, even a Gaussian {X,}
is not completely determined by its spectral density since one can always add a polynomial
of degree =s d. One can thus choose the values of X, at {(d + l)(d + 2) points freely. An
intrinsic model should be regarded as a whole equivalence class of distributions of {X,}.
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Among stationary models, the conditional autoregressions of Besag (1974) form a basic
class of parametric models. They are defined by

- I ak)E(X,)+ I akXi+k, (2-3)
keN / JteN

where TV is a finite symmetric neighbourhood of the origin and ak = a~k. This means
that only the values close by are used in the predictor of a missing value. With increasing
TV we get models of increasingly complex interactions. Assuming that {A",} has a spectral
density/, it can easily be shown (Rosanov, 1967) that

£ ) (2-4)
keN J

where cr2 is the mean square prediction error E[{X, — E(X,\Xj,j$i)}2]. Since/(w) is
integrable, we must have 2afc cos (few) < 1 for all co. In particular, 1ak < 1, so the interpola-
tion always uses the mean. If {Xf} is Gaussian, (2-4) implies (2-3), and in any case the
right-hand side of (2-3) is the best linear predictor.

However, it is not quite obvious how to generalize these autoregressions to the class
of intrinsic models. By analogy to the ARIMA, autoregressive integrated moving average,
models of Box & Jenkins (1970) one might ask that a certain increment process is a
stationary autoregression. This approach fails in two dimensions. If {X,} is intrinsic with
spectrum / and the increment process {LXi+jXj\ is a stationary autoregression, then, by
(2-2) and (2-4), <r2{l -1ak cos \kw)}~1 = \1Xj eiJa>\2f(co). Because Xj are the coefficients of
an increment, \1Xjeijol\2 = (ZXjjco)2+0(\\co\\4) as co^O and hence H^fl^e'*"!"2 is not
integrable at zero. This contradicts J ||<u||2/(ci>) dw<<x> which should hold for d = 0. We
thus have seen that for d — 0 no increment process of an intrinsic model can be a stationary
autoregression. Further, whereas for d = 1 there are intrinsic models {X,} such that

with 0<)9 < | is a stationary autoregression, it is not clear how one can estimate /3 and
the model class obtained in this way is much smaller than the one we propose next.

We base our generalization on the form of the spectral density (2-4).

Definition 2-3. Let ak (keN) be coefficients with ak = a_k and P(<o) =
\-1ak cos (kio)^const ||a>||2''+2 for all co e(-ir, v]2. Then the intrinsic model with spec-
tral density f{ca) = o~2/P{a>) is called an intrinsic autoregression with neighbourhood TV.
The order is the smallest integer d such that P satisfies the inequality above.

In the one-dimensional case, if an even trigonometric polynomial P(co) has a zero of
order 2d + 2 at co = 0, then P(CJ) contains the factor (1-cos co)d+l. Hence a time series
{Xi} is an intrinsic autoregression if and only if its (</ + l)th difference is a stationary
autoregression. In more than one dimension such a factorization of polynomials is no
longer possible. For this reason our class is more general than the one obtained by the
approach described in the last paragraph.

What is the analogue of (2-3) for our intrinsic autoregressions? Here a problem occurs
since the spectrum no longer determines all the covariances of .{X,}. It is, therefore, not
possible to calculate from the spectrum the best linear predictor of Xt given Xj (j 4= i).
But the rationale behind the intrinsic model is to eliminate polynomial trends, so the
prediction and the inference should also be independent of such trends. Hence we restrict
the predictions considered as follows.
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Definition 2-4. Let V<=Z2 be finite. A finite linear combination ^fijXj is called an
intrinsic predictor of X, (i e V) given Xj (j£ V) if fij = 0 for all j e V and X, - ^n-jXj is
an increment. It is called the best intrinsic predictor if

for any other intrinsic predictor J./JL'JXJ.

Then we have the following theorem.

THEOREM 2-2. If {X,} is an intrinsic autoregression of order 2*0, then XakX,+k is the
best intrinsic predictor of X, given X} (j =}= i). Conversely, if {X,} is intrinsic with spectral
density f and S^ikX,+k is the best intrinsic predictor ofX{ given Xj (j 4= 0, then

Mk = M_k, / ( « ) = E{(X, - X fikxi+k)
2}/{i - I nk cos ( M l ;

that is {X,} is an intrinsic autoregression.

Proof. For any increment 2A,X( we have, by (2-1),

j - £ akXj+k) £ A /X /} = (2TT)-V2 I P(oi) e'* I \, e-""P(a>)-* da>

is an intrinsic predictor of XJy ^ = 0 and 2akX^+k -1fi,Xt is an increment. Hence

£{(X, - X ^/X,)2} = £{(Xy - X akXj+kf} + £ { ( ! afcX;+k - ^ M(X,)2},

and the first part follows. For the converse we first note that for d = 0 we must have

E{(Xj-l fikXj+k)(X,-X,Hlfi))} = 0 (/*j,j + (1,0)),

otherwise 2^.kXj+k + e(X;-X ;_(1 0)) would be better for some e. Hence we obtain from
(2-1)

/(fti)(l - X /*k e
ik-)(l - eto«) = c, + c2 «*"•

except on a set of Lebesgue measure zero. In other words /(&>)(1 -1fik eiko>) is a function
of o>, alone. The same argument with X/-X,_(0,i) shows that f(<o)(l -*Liike

ilua)
is a function of <o2 alone, and hence it is a constant. For d > 0 the arguments are
similar. •

For the formulation of the next result it is convenient to define ak for all k e Z 2 by
putting ak = 0 if k £ N.

THEOREM 2-3. Let {X,} be an intrinsic autoregression. Then for any finite V, the matrix
(8y — a,_y)UeV has an inverse denoted by gv. Furthermore, with /iy = 2g^ak_, ( ie V,_/£ V),

intrinsic interpolation of Xt (ie V) given Xj (j£ V) is 2 / I ^ X J and

Proof. We give the proof for d = 0, the other cases being similar. Choose io£ V and
put Yi = X,-X fc. In the proof of Theorem 2-2 it was shown that Yl-'LakYl+k =
X, - 1akXi+k is uncorrelated with Y, for j^i, so in the Gaussian case

E(Yt\Yhj^i)=ZauYl+k (i*i0), £{ (y , - Ia k y i + k ) 2 }>o .

The existence of an inverse follows now from Kunsch (1979, Th. 4.1, form. (4.5)).
Furthermore

keV JtV keV keV JeV
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so that 2/iyX, is an intrinsic predictor and Xi-ih^Xj = Y, -S/iy Y}. But this last random
variable is by the same theorem of Kiinsch uncorrelated with Yj (j £ V), and therefore
also with all increments 2A,A) such that A, = 0 for all j e V. By the usual orthogonality
argument the proof is completed. •

According to Matheron (1973, Th. 2.4), an intrinsic model of order zero is stationary
if and only if the semivariogram is bounded. We next show that the semivariogram of
intrinsic autoregressions in two dimensions increases logarithmically. Such a behaviour
is known in geostatistics in the so-called de Wijsian scheme and indicates a rather mild
departure from stationarity.

THEOREM 2-4. Let y(k) = \E{(Xi+k-X,)2} be the semivariogram of an intrinsic
autoregression of order zero with coefficients ak (ke N). As \\k\\ ->°o, y(fc)/log ||Jt|| conver-
ges to a2/{2v(det M)H, where M is a 2x2 matrix with elements Mi} = 1aklqkj. Moreover
y(k) - cr2/{27r(det M)*} log ||fc|| converges to a constant which depends on lim &/||fc||. Here2 2 l

When all coefficients ak are positive, the semivariogram is proportional to the Green's
function of the random walk with transition probabilities ak (Spitzer, 1964, eqn (12.3)).
In this case the result is well known; see Spitzer (1964, Prop. 12-3) for a proof in the
isotropic case. The proof for the general case goes along the same lines and is left to the
reader.

If we want to treat more general intrinsic models, we have to consider limits of intrinsic
predictors. We then can extend Theorems 2-2 and 2-3 to a large class of intrinsic models
by putting ak = -ak/a0, where

Iak = (277-r2 I f((o)-x cos (kto) dot. (2-5)

The only condition needed is 1\ak\<oo. If f(w)~const ||w||~2 as (u->0, the asymptotic
growth of the semivariogram is logarithmic, whereas if/(a>)~ const ||a>||~3 it is linear.

For higher dimensional lattices Zv, the order of the zero of P(w) needed to get intrinsic
models depends on v. For instance, if i> = 3 and P(w)~const ||o>||2, then P((o)~l is
integrable and thus leads to a stationary model, but its correlations are not summable.
For an intrinsic autoregression of order 0 we need, for v = 3, P(<o)~ const ||w||4. Apart
from these differences, our results can be extended to Z".

3. PARAMETER ESTIMATION

Assume that we have observed an intrinsic autoregression {X,} in an n x m rectangle
V, and that we want to estimate the parameters ak (ke N) and a1. We restrict ourselves
to the case d = 0. Since ak = a-k and 2ak = l, the number of linearly independent
parameters is 5|JV|. We take as our parameterization ak = a^'2 (ke N). Denoting the
empirical semivariogram i(n-\k1\y

l(m-\k2\y
11(Xi-Xi+k)

2 by y(k), we propose to
estimate ak by minimizing

L(a) =-(2TT)~2 log[£ ak{\-cos(ko))}/(\-{cos u>x-\cos <D2)] dto

+ Iaky(k). (3-1)
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Taking derivatives we get

(2T7)-21 {1 -COS ( » } [ £ ak{l -cos (**>)}]" ^ = y(j) (je N); (3-2)

i.e. we have to choose the parameters in such a way that the theoretical and empirical
semivariograms agree for lags close to zero. This is completely analogous to the case of
stationary autoregressions (Besag, 1974, § 6-3). The Hessian of L is easily seen to be
strictly positive-definite for all {ak), so the solution of (3-2) is unique and determines a
minimum of L. Furthermore, consistency and asymptotic normality of ak follow from
the law of large numbers and the central limit theorem for yk. At least for Gaussian {X,}
these can be proved by standard arguments. Note however that for the central limit
theorem it is important to have the denominator (n -|/c,|)(m -\k2\) instead of nm in the
definition of y(k) (Guyon, 1982). Expression (3-1) is an approximation to the Gaussian
log likelihood similar to the one by Whittle (1954) in the stationary case. Its derivation
follows. Denote by W the interior of V, so ie W if and only if ii + ke V for all ke N.
First condition on the boundary dW = V\W using the best intrinsic predictors and their
covariances from Theorem 2-3. Then minus twice the Gaussian conditional log likelihood
is

An algebraic manipulation of the quadratic form using the definitions of h w and gw

leads to 1aky(k) plus boundary terms. A rather long computation shows that the
expectation and variance of the boundary terms are O(|dW|). Finally we need an
asymptotic approximation to log (det gw) = -log {det (50 - af-,)(je w}- Since P(<o) is the
spectrum of a stationary random field and Jlog P{to)dco> -co, we could invoke the
two-dimensional version of Szego's theorem. However we take a different approach and
consider the ratio of two determinants.

THEOREM 3-1. Let {ak}keN be the coefficients of an intrinsic autoregression of order 0
and put bk=\ if \kl\ + \k2\ = l, bk = 0 otherwise. Then

nm"1 log {det (8,j-aM)UeV/dtt (5y - bM)UeV}

converges to

(2TT) 2 log{Xak(l-cos(/c6)))/(l-5Cos w,-jcos w2)}dw

as n,m^> oo.

The proof is similar to that of Theorem 2-5 of Kunsch (1981). We consider coefficients
ak(0) = dak + (1 - 6)bk and then show first that {nm)~xd log det {Sy - a,-j{d)}UeV/d6 con-
verges to (2n)~2 $Z(bk-ak) cos (lao)/{1-lak(9) cos (ka>)} dw. Details are left to the
reader.

Omitting all terms which are of smaller order or independent of ak we arrive at (3-1).
In the stationary case where similar approximations occur, it seems difficult to improve
upon the resulting estimators even for quite small n and m (Kunsch, 1983).

The integrands in (3-1) and (3-2) are bounded, but they have a discontinuity at zero.
The most successful method for the numerical integration seems to be the substitution
o)t = TT{1 —tanh (u,)} (i = 1,2), which takes the discontinuity to infinity and produces an
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analytic integrand decaying exponentially. The integral can then be well approximated
by a trapezoidal sum since the error is of smaller order than any power of the step size
by the Poisson Summation formula (Henrici, 1977, eqn (10-6-21)).

For the minimization of (3 • 1) we used the IMSL routine ZXCGR. With nearest neighbours
the convergence was quite fast, but with more neighbours a method adapted to the
particular situation might be more efficient. As a starting value we used the so-called
least-squares estimator which minimizes 1{X, -1akXi+k)

2 under the side condition
J.ak = 1. Since it often gives estimates dk for which 1 — 2 a t cos (kw) becomes negative,
some modification is needed in these cases.

The approximation (3-1) of - 2 log likelihood can be extended to a parametric family
of intrinsic models with spectrum f(a>, 6) (de 8 ) . We assume that there is a spectrum
g(u>) such that f{w, d)/g(oj) is continuous and bounded away from zero. Then the
analogue of (3-1) is

JL(6) = (2TT)-2 J log {f(w, e)/g(u>)} d<o + £ ak(6)y(k),

where ak has been defined in (2-5). In the case of an unknown scale, y(k, 0) = 6yo(k)
and f((o, 6) = Of0(w), which has also been discussed by Switzer (1984), we obtain

Z ( k )

4. A N EXAMPLE

In this section, we will apply our techniques to a set of Landsat data. These data are
measurements of the reflected energy in four spectral bands for each of 400 pixels arranged
in a 16 x 25 rectangular grid.

These data have been used by Switzer (1980). The area consists of three rock types,
so the assumption of stationarity is doubtful. The simple model X, is a function of
rocktype at site i plus white noise is not adequate either. There seems to be some blurring,
and other features of the ground like texture and orientation contribute also to the signal,
so that the values in two regions of the same rocktype differ considerably. For this reason
an intrinsic model looks plausible.

Since we deal only with univariate observations, we considered one of the four spectral
bands. The estimated coefficients for three different neighbourhoods are given in Table
1. Since the expression L of formula (3-1) is an approximation to - 2 log likelihood per
observation, we can select a model by minimizing 400 L plus C times the number of
parameters with C = 2 (Akaike), or C = 2 log log 400 = 3-58 (Hannan) or C= log 400 =
5-99 (Rissanen). It thus seems by all these criteria worthwhile to include more than just
the four nearest neighbours although their coefficients are clearly the most important
ones. There is also a clear anisotropy in the data. The difference between ax, and a, _,
displaces the ridges in the spectrum somewhat from co, = 0 and o>2 = 0, which seems rather
peculiar.

Table 1. Estimated parameters of intrinsic autoregressions for Landsat data

dk, for specified k
(0,2) (1 , -1) (1,0) (1,1) (2,0) 400L(d,c72)

Number of
neighbours

4
8

12

a2

7-35
605
5-74

(0,1)

0-346
0-385
0-442

ak,
(1,

- 0
- 0

for
-1)

•014
•002

specified k
(1

0
0
0

1,0)

154
•267
206

(1,

-0 -
-0 -

1)

138
104

931-7
9050

- 0 0 5 7 - 0 0 0 2 0-206 -0-104 0015 897-8
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Finally, let us see how well these models fit the data and how they compare with
corresponding stationary models. For this we fitted also a stationary autoregression with
12 neighbours. The sum of the coefficients is 0-4977; that is we obtain almost an intrinsic
model. We then calculated numerically the theoretical semivariogram of the intrinsic and
of the stationary autoregression for lags k with 1^,1^6, |fc2|^6. For both models the
agreement between theoretical and empirical semivariogram is surprisingly good, but for
larger lags the autoregressive model gives always too small values. This indicates that
the intrinsic model is to be preferred and gives a better description of the data.
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