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SUMMARY

We analyse the scaling and distribution of average dynamic source properties (fracture energy,
static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal
earthquakes. Shear-stress histories are computed by solving the elastodynamic equations while
imposing the slip velocity of a kinematic source model as a boundary condition on the fault
plane. This is achieved using a 3-D finite difference method in which the rupture kinematics
are modelled with the staggered-grid-split-node fault representation method of Dalguer & Day.
Dynamic parameters are then estimated from the calculated stress-slip curves and averaged
over the fault plane.

Our results indicate that fracture energy, static, dynamic and apparent stress drops tend
to increase with magnitude. The epistemic uncertainty due to uncertainties in kinematic
inversions remains small (¢ ~ 0.1 in log) units), showing that kinematic source models provide
robust information to analyse the distribution of average dynamic source parameters. The
proposed scaling relations may be useful to constrain friction law parameters in spontaneous
dynamic rupture calculations for earthquake source studies, and physics-based near-source
ground-motion prediction for seismic hazard and risk mitigation.

Key words: Earthquake ground motions; Earthquake source observations; Computational

seismology.

1 INTRODUCTION

The earthquake rupture process distributes accumulated strain en-
ergy into fracture energy, radiated seismic energy and heat. In this
context, the term ‘fracture energy’ is a mesoscopic parameter that
characterizes energy dissipation phenomena involved in the rup-
ture expansion. Quantifying the energy balance for the dynamic
rupture process remains a crucial issue in earthquake seismology,
as it strongly affects ground-motion estimation and seismic hazard
assessment, because rupture dynamics control the radiated seismic
energy.

Current efforts in advanced source modelling aim to adopt basic
principles of rupture mechanics, either through so-called ‘pseudo-
dynamic’ models (kinematic models that capture main features of
earthquake dynamics, e.g. Guatteri et al. 2004; Schmedes et al.
2010; Song & Somerville 2010; Mena et al. 2012), or by means of
fully dynamic spontaneous rupture simulations. The latter approach
is computationally demanding, and requires a full description of the
initial stress prior to the earthquake as well as the frictional be-
haviour on the fault that governs the slip weakening process (such
as dynamic stress drop, strength excess and slip weakening dis-
tance). Both stress and friction on the fault are still poorly known
and difficult to constrain with observations.

Several studies have been carried out to characterize the slip
weakening behaviour from earthquake source kinematics. The com-
mon principle is to retrieve the stress evolution at each point of
the fault plane as dictated by the slip history obtained from kine-
matic inversion (e.g. Bouchon 1997; Ide & Takeo 1997; Day et al.
1998; Dalguer et al. 2002; Fukuyama et al. 2003; Mikumo et al.
2003; Ripperger & Mai 2004; Tinti et al. 2005a,b). It is impor-
tant to note that small-scale features of the rupture process cannot
be resolved because kinematic inversions are generally performed
at low frequency (<1 Hz; Spudich & Guatteri 2004), and require
a priori choices for certain source parameters, for instance for the
shape of the source-velocity function (Piatanesi et al. 2004; Tinti
et al. 2009). Besides, it has been shown that kinematic inversion
techniques only provide a gross description of the rupture history
(e.g. Mai et al. 2007). Certain details of the slip evolution are
likely artefacts, introduced by the inherent non-uniqueness of the
inverse problem, errors in the forward model parametrization, and
modeler-dependent a priori choices in the inversion process (e.g.
inversion method, smoothing constraints, data selection). Despite
these limitations, important efforts have been made to analyse the
stress-change fields implied by kinematic models, and to investigate
their relationship to the physics of faulting. Kinematic source in-
versions thus provide a framework for incorporating observational
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constraints into earthquake rupture models, and in principle allow
for independent estimation of finite-fault stress parameters that can
be compared to standard earthquake source studies based on point-
source assumptions (e.g. Abercrombie & Rice 2005; Allmann &
Shearer 2009). In addition, a major advantage of using extended-
source rupture models compared to point source-base studies is that
variations in the distribution of energy flux due to directivity effects
can be accounted for (Ma & Archuleta 2006). Note also that stress
change estimates are physically well defined if computed directly
from source-parameter distributions, as then they are not affected
by spectral-domain measurement errors on corner frequency. In
point-source estimation of stress drop, using corner frequency and
a specific spectral decay model, small uncertainties in corner fre-
quency map into large uncertainties in stress drop (e.g. Prieto et al.
2007).

The goal of this study is not to investigate the space—time de-
tails of the dynamic earthquake rupture process. Instead, we aim
to constrain average, global dynamic source properties, and to ex-
amine their distribution and potential scaling properties. We assess
fracture energy, static and dynamic stress drops, as well as apparent
stress drop from a set of past earthquakes for which finite-source
rupture models are available. We carry out several tests to determine
if kinematic inversion models of limited resolution may still carry
useful information on the scaling of dynamic source properties.
We take advantage of a large earthquake rupture model database
(now at http://equake-rc.info/srcmod/), and analyse a suite of 31
rupture models from 21 crustal events with various styles of fault-
ing, and with M,, ranging from 5.7 to 7.7. We propose empirical
models defining the distribution of fracture energy, static and dy-
namic stress drops that may be useful in advanced source mod-
elling for ground-motion simulation (such as ‘pseudo-dynamic’
models or spontaneous rupture simulations). Finally, we investi-
gate if the inferred dynamic properties exhibit any relation with re-
spect to geologically observable quantities, like cumulative slip on
fault.

2 METHOD

2.1 Principle

Our strategy is to constrain average dynamic properties from a set
of earthquakes for which finite-source rupture models are available.
The principle is first to retrieve the spatio-temporal shear stress
distribution from source kinematics to constrain the spatial distri-
bution of dynamic parameters on the fault plane. Those parameters
are then averaged over the slipping area, and analysed with respect
to seismic moment.

Shear-stress histories are locally computed via the elastody-
namic equations of motion using the slip velocity distribution
from kinematic inversion as a boundary condition on the fault
plane (Fig. 1). This is achieved by applying a 3-D finite differ-
ence method that uses the traction-at-split-node method adapted to
the velocity-stress staggered-grid finite difference scheme (Dalguer
& Day 2007). The code, initially developed for spontaneous dy-
namic rupture simulations, has been modified to be suitable for
such kinematically constrained calculations, referred to as ‘3-D
forward kinematic’ calculations in the following. Note that per-
fectly matched layers absorbing boundaries are implemented in the
code to avoid reflected waves at the boundaries of the modelled
volume.
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Figure 1. Conceptual workflow for computing fracture energy and stress
drop at a given point i on the fault plane, based on the slip rate function
obtained from kinematic source inversion. Fracture energy then corresponds
to the shaded area (bottom right).

2.2 Dynamic source parameters

The following parameters are computed: static stress drop Ao (dif-
ference between initial and final shear stress), dynamic stress drop
Aoy (difference between initial and minimal shear stress occured
during the slip evolution) and fracture energy G (Fig. 1). Those
parameters are first locally computed, and then averaged over the
fault plane. In the following, the average of the computed dynamic
properties will be denoted by G, Aoy, Aoy, Ac.

Our definition of fracture energy is equivalent to the breakdown
work defined by Tinti et al. (2005a):

T
G= | (x(t) — Tmin) - 2(t)dt, (1)
/

where () is the shear stress history, i(z) is the slip velocity and
T, is the time corresponding to the minimum traction 7, achieved
during during the slipping phase. G represents the ‘seismological
fracture energy’. As such, it characterizes several processes occur-
ring at the expanding crack tip such as micro-cracking, off-fault
plasticity, energy loss due to heat and other energy dissipative phe-
nomena (Cocco et al. 2006; Cocco & Tinti 2008). It thus represents
a mesoscopic parameter that contains all dissipative processes in
the volume surrounding the crack tip, but mapped onto the fault
plane. Therefore, due the scale of the fault and its complexity, it
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needs to be understood as a ‘phenomenological’ parameter. How-
ever, this partitioning of ‘seismological fracture energy’ does not
affect the global earthquake energy balance, defined in terms of
energy density as Es = (Aoyg — Aog/2) - D — G, where Es is the
radiated seismic energy per unit of fault area and D, Aoy, Ao, G
are the final slip, dynamic and static stress drops and fracture en-
ergy over the fault plane, respectively. Including the definition of
apparent stress drop, Ao, = /LE‘;—'OA, where A4 is the fault area,
we obtain a relation between apparent stress-drop and fracture
energy:

Aop = (Aoy — Ao /2) — % 2)

2.3 Data and data preparation

To analyse the distribution and scaling of the average dynamic
parameters, we use a dataset of 31 finite-source rupture models
obtained by kinematic inversion, from 21 crustal events with vari-
ous styles of faulting (Table 1). Rupture models have been selected
based on the availability of a complete rupture history in space
and time. Source models derived from inversion of teleseismic
data, whose spatio-temporal resolution is in general limited, have
been dismissed (except the model of Dreger (1994) for the 1994
Northridge earthquake, which is included to complete the analysis
of the epistemic uncertainty due to variations in the input kinematic

models). Also, rupture models obtained on segmented/curved faults
have been ‘flattened’ and mapped onto a single planar fault surface.

Since such rupture models are usually obtained on coarse grids
(~1-10 km), they need to be interpolated to ensure stability in the
3-D numercial calculations to accurately retrieve the shear-stress
history. We chose various grid interpolations, ranging from 50 m
(for small events, having short rise time and thus needing a good
spatial resolution) to 300 m (for the largest events). Because the in-
ferred dynamic parameter values may be affected by the particular
pre-processing choices for the source models, we test different inter-
polation schemes: linear, cubic, zero-padding and ‘k-square’. The
later assumes self-similarity of the static slip beyond the Nyquist
wavenumber of the original model by imposing a k=2 slope of the
slip spectrum. The impact of the static slip interpolation is first in-
vestigated on the model of Semmane et al. 2005b (referred to as
SemO05b in the following) for the 2000 Tottori earthquake. From
the different models, we then compute G, Ao, and Aay whose val-
ues in principle may be affected by the corresponding interpolation
procedures.

Our tests reveal that average dynamic parameters are almost
insensitive to the adopted slip interpolation method (Fig. 2 and
Table 2). The interpolation tends to decrease average slip in fault
regions in which the 2nd spatial derivative of slip is large. Conse-
quently, as proposed by Tinti et al. (2005a), we adopt an iterative
procedure to scale the original slip distribution until the interpolated
slip averaged on a given subfault reaches the initial slip value. We

Table 1. Source inversion models used in this study. Events and source models were selected from the database
of finite-source rupture models (http:/equake-rc.info/srcmod), except for Miyagi-Iwate Nairiku.

Event Location Date My, Reference

1 Iwate-Miyagi Nairiku 2008 June 14 6.9 Suzuki et al. (2010)

2 Fukuoka 2005 March 20 6.7 Asano & Iwata (2006)

3 Parkfield 2004 September 28 6.0 Custodio et al. (2005)

4 Boumerdes 2003 May 21 7.2 Semmane et al. (2005a)

5 Tottori 2000 October 06 6.7 Semmane ef al. (2005b)
6 Tottori — — Iwata & Sekiguchi (2002)
7 Izmit 1999 August 17 7.6 Delouis et al. (2002)

8 Izmit — — Bouchon et al. (2002)

9 ChiChi 1999 September 20 7.6 Zhang et al. (2004)

10 ChiChi — — Ma et al. (2001)

11 ChiChi — — Chi et al. (2001)

12 Yamaguchi 1997 June 25 5.8 Miyakoshi et al. (2000)
13 Kagoshima 1997 March 26 6.0 Miyakoshi et al. (2000)
14 Kagoshimaen-hobu-seibu 1997 May 13 6.1 Horikawa (2001)

15 Colfiorito 1 1997 September 26 5.7 Hernandez et al. (2004)
16 Colfiorito 2 1997 September 26 6.0 Hernandez et al. (2004)
17 Colfiorito 3 1997 October 14 5.9 Hernandez et al. (2004)
18 Kobe 1995 January 17 6.9 Wald (1996)

19 Kobe — — Yoshida et al. (1996)

20 Northridge 1994 January 17 6.8 Wald et al. (1996)

21 Northridge — — Hartzell et al. (1996)

22 Northridge — — Dreger (1994)

23 Landers 1992 June 18 7.2 Wald & Heaton (1994)
24 Landers — Hernandez et al. (1999)
25 Landers — — Cotton & Campillo (1995)
26 Loma Prieta 1989 October 18 6.9 Wald ez al. (1991)

27 Saguenay 1988 November 25 5.8 Hartzell et al. (1994)

28 North Palm Springs 1986 July 08 6.1 Hartzell (1989)

29 Imperial Valley 1979 October 15 6.5 Hartzell & Heaton (1983)
30 Imperial Valley — — Archuleta (1984)

31 Coyote Lake 1979 August 06 5.9 Liu & Helmberger (1983)
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Figure 2. Effect of the chosen final-slip interpolation scheme on inferred dynamic parameter distributions. The figures correspond to Sem05b’s source inversion
model for the 2000 Tottori earthquake. Dynamic parameters are averaged on a surface with slip above 20 per cent of the mean slip, defined by the contour lines
(roughly corresponding to the surface of non-zero slip of the original slip model). The average values are summarized in Table 2. « k-square » is obtained by
assuming a k=2 slope of the static slip spectrum beyond the Nyquist frequency of the original model. « Cubic + scaling » refers to an iterative procedure used
to preserve seismic moment on each subfault (top row).

Table 2. Sensitivity of the average dynamic parameters values (fracture steps (between 0.005 and 0.015s for the larger events). There-
energy, static and dynamic stress drops) to the adopted static slip interpo- fore, smoothing of the SRFs is needed to avoid introducing high
lation procedure. The values are for Sem05b’s source model for the 2000 frequencies that are not resolved in the inverted source models.
Tottori earthquake (see Fig. 2). The procedure adopted in the following is This is achieved by convolution with a hamming window of length
‘cubic + scaling’ that preserves seismic moment on each subfault. T . . .

hamm = 1/Fnax, Where Fi,y is the maximum frequency used in the

Slip interpolation scheme G (MIm~2)  Aos (MPa)  Acgq (MPa) inverted data.

Lincar 14 5 16 Once the input kinematic models have been interpolated, the
Zero-padding 17 55 18 dynamic parameter distributions are obtained from the shear-stress
k-square 16.5 85 22 time histories of the forward kinematic rupture calculations. Since
Cubic 16.5 6 17 kinematic models povide information about the stress changes only,
Cubic + scaling 22 7.5 21 and not about the absolute stress values, we need to make some
assumption to define the initial stress. As proposed by Tinti ef al.
remark that this approach yields slightly higher dynamic parameter (2005a), the initial stress is supposed to be colinear with the slip
values (~20 per cent). direction. As for input kinematic models with temporally and/or
The interpolation procedure requires two steps for source models spatially variable rake angles, we chose an initial stress colinear
derived with spatially variable rake angles. The most natural way with the final slip, and with a large value (500 MPa) to minimize

to proceed, adopted here, is to first calculate slip along-strike and the angle between the total traction and the slip velocity.
along-dip, and then to interpolate both slip distributions. Another Finally, average dynamic parameters are extracted by calculat-
possibility is to interpolate final slip and rake, and then calculate ing their mean value G, Ao,Aay and Ao, over the slipping area.
slip along-strike and along-dip. We estimate dynamic parameters We define the slipping area as the zone that slipped more than
for the Wald (1996) model for the 1995 Kobe earthquake using 20 per cent of the mean slip value. This particular choice is mo-
these two approaches. Choosing procedure 1 or 2 does not strongly tivated by the fact that this area approximately corresponds to the
affect the results (procedure 2 results in 15-20 per cent reduction of surface region of the original slip distribution with non-zero slip.
fracture energy and dynamic stress drop). Mai et al. (2006) use area with slip above 33 or 66 per cent of the
After performing the spatial slip interpolation, the slip rate func- maximum slip, because these regions are supposedly better resolved
tions (SRFs) are defined on each point on the fault from the func- in source inversion. However, maximum slip is generally less well
tional form employed in the specific inversion study. Stability con- resolved than average slip, which thus may introduce an additional

ditions of the finite-difference calculations implies very short time bias.
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3 SENSITIVITY ANALYSIS

The purpose of this section is to show the sensitivity of inferred
dynamic parameters due to uncertainties and variations in the input
kinematic models.

3.1 Sensitivity to the roughness degree of slip
heterogeneity

To quantify the sensitivity of average dynamic parameters to slip
roughness we generate synthetic ‘k-squared’ kinematic models (e.g.
Causse et al. 2009) with various degrees of slip roughness, and
compute their dynamic properties using the procedure described in
Section 1 (Fig. 3). The slip roughness is expressed in term of the
corner wavenumber (k) of the slip amplitude spectrum, controlled
by the non-dimensional parameter K: k. = K /+/(L? + W?). The
inverse of k. represents a characteristic scale of the slip distribu-
tion. For increasing K, the resulting slip maps become rougher, and
are characterized by enhanced small-scale complexity. The phase
angles of the slip spectrum are randomly chosen, but are similar
for each slip distribution. The source-velocity function is assumed
triangular with a constant rise time of 1 s. The rupture velocity is
sub-shear, set to 3 km s~'.

Our tests reveal that maximum values of static and dynamic stress
drops increase with increasing k. (or K). Because stress drop is pro-
portional to the derivative of static slip, and larger values of k. result
in stronger fluctuations of static slip at small scales, stress changes
will increase with increasing k. This is corroborated by Burjanek &
Zahradnik (2007) from analysing the dynamic stress fields implied
by k-squared source models and by Noda et al. (2013), who investi-
gated the sensitivity of the average stress drop measures to the level
of slip heterogeneity. A less intuitive result is that G also increases
with slip roughness. This is consistent with the study of Rice et al.
(2005) that shows for pulse like source models: G; Diz, where
G; and D; denote local fracture energy and slip, respectively. One
then expects G to be sensitive to the spatial distribution of static
slip. The theoretical relationship of Rice et al. (2005) has been re-
cently verified by Bizzarri (2010) for a large number of constitutive
models, using 3-D spontaneous dynamic rupture simulations. Addi-
tionally, pronounced spatial correlation between G and D? has been
inferred from numerical simulations (Tinti et al. 2005a, see their fig.
11). Using the distributions of dynamic source parameters shown
in Fig. 3, we estimate the average apparent stress drop from eq. (2).
It scales with slip roughness, with values of Ao, of 0.9, 1.7 and
3.2 MPa for K = 0.5, 0.8 and 1.3 respectively. This particular scal-
ing of apparent stress suggests that rough (i.e. more heterogeneous)
slip distributions more effectively radiate high-frequency seismic
energy.

3.2 Rupture velocity

In the approach adopted in our study, rupture velocity is not an
outcome of the 3-D forward kinematic calculations, but is imposed
as a boundary conditions. Slow rupture expansion generates high
stress peak (or yield stress) at the rupture front, and accordingly
tends to increase the fracture energy; slow rupture also results in
lower minimum stress (or breakdown stress), and consequently gives
rise to higher dynamic stress drop. We therefore conduct sensitivity
tests assuming various rupture velocities to quantify the effects of
potential uncertainties in the inverted rupture times. The results are
summarized in Table 3. As a conclusion, G and Aoy are not strongly
affected by small variations of average rupture velocity or small-

scale perturbations of the rupture front. Changes of £10 percent
in rupture speed yield only 3—5 per cent variation in the dynamic
parameters.

3.3 SRF and rise time

The shape of the inferred stress histories is influenced by the shape
(functional form and rise time) of the SRF (e.g. Tinti ez al. 2005b).
A sharp initial rise of the SRF results in high yield stress, and a sharp
decrease generates large dynamic stress drop, that is strong over-
shoot effects. Thus, short rise times generate large peak slip-rate,
and thus larger G and Aoy. Our calculations may thus be affected
by the a priori choice of the SRF in kinematic inversions, as well as
by potential uncertainties in the rise time. We therefore compute G
and Aoy assuming various slip-rate functions, for the 2000 Tottori
earthquake (Sem05b model). Table 4 displays the values of G and
Aoy, and Fig. 4 presents the SRFs in the time and frequency domain
as well as the inferred shear stress histories and friction laws at the
maximum slip zone. Fig. 4 (top) indicates that the shape of the SRF
cannot be resolved by Sem05b inversion, matching strong-motion
data only up to 0.4 Hz. As shown in Table 4, the values of G and
Aoy are stable if a causal SRF is used, but the use of a non-causal
‘smooth ramp’ leads to much smaller values. However, these dis-
crepancies are diminished by low-pass filtering (smoothing) of the
SRFs. Although this procedure somewhat underestimates the values
of G and Aoy, a ‘smoothened’ data set is more suitable for mutu-
ally comparing source models and analysing the scaling of dynamic
source properties.

4 SCALING OF SOURCE PARAMETERS

4.1 Scaling of average fracture energy

To investigate the scaling of fracture energy, we derive a simple em-
pirical model of the form: log,o(G) = a log10(M,) + b, by applying
a least-square regression (Fig. 5). In our data set, composed of 31
source models from 21 earthquakes, seven events have more than
one published source model. Performing regression using each of
the 31 models separately would then require attributing weights to
the individual earthquakes. Therefore, we compute specific empir-
ical models for the seven multiple-model events, and then derive
a single average estimation for the corresponding (M,, G) couple.
Our analysis returns that G increases with seismic moment, such
as:

log,o(G) = 0.60 log,,(M,) — 11.6. 3)

This relationship is similar to the one derived by Cocco & Tinti
(2008), using a suite of 18 finite-source rupture models from 13
events. We obtain slightly higher values for the coefficients a and b,
most likely because Cocco & Tinti (2008) average fracture energy
over the entire fault plane, and not only over the slipping area. We
also investigate the scaling of G with average slip D, (Fig. 5), and
find:

log,o(G) = 1.35log,o(Dn) + 1.15, 4)

valid for Dy, in the range 0.05 < D, < 4.0 m. For large events
(D > 1 m), this model is very close to the one derived by Mai
et al. (2006), logo(G) = 0.87 log;o(Dy) + 0.28, obtained from a
set of spontaneous dynamic rupture calculations that closely match
target kinematic inversion models (12 models from 9 events). We
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Figure 3. Effect of the roughness degree of static slip heterogeneities on the inferred dynamic parameters. The three synthetic kinematic models (top) are
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Table 3. Sensitivity of average dynamic parameters (fracture energy and dynamic stress drops) to
the rupture time distribution for different kinematic source models. Uncertainties on the rupture
time distributions expected in kinematic inversions are represented by £10 per cent variations on
the average rupture velocity (for the model by Wald & Heaton 1994), or by including £10 per cent
randomness in the original rupture times (for Sem05b model).

Source model Rupture time distribution GMIm™2) Aoy (MPa)
Landers 1992 (Wald & Heaton 1994) V; =2400ms~! 97 34
V; =2700ms~! 94 33
Ve =3000ms™! 90 32
Tottori 2000 (Sem05b) Original model 22 21
+10 per cent perturbations 25 23

Table 4. Values of average dynamic parameters obtained for the 2000 Tottori event (Semmane
et al. 2005b) using different slip-rate functions. Ty¢. indicates the duration of the acceleration phase,
expressed as a fraction of the total rise time. The SRF low-pass filtering is achieved by convolution
with a 1 s Hamming window, representing low-pass filtering of the SRFs below 1 Hz, the maximum
frequency inverted in Sem05b.

Type of slip-rate function (SRF) G (MJm~2) Aogq (MJ)
SRF not filtered
Smooth ramp (used by Semmane ez al. 2005b) 22.5 21
Boxcar 43 35
Triangle 41 33
Regularized Yoffee (Tinti et al. 2005b, Tyee = 0.2Tvise) 42 35
Asymmetric cosine (Taec = 0.275ise) 36 30
Asymmetric cosine (7Tyce = 0.5Tvise) 43 34
SRF low-pass filtered at 1 Hz
Asymmetric cosine (7Tce = 0.5Tvise) 27 24
Smooth ramp 21 20

also compare our model to the study of Abercrombie & Rice (2005)
that uses point-source models. They report log;y (G') = 1.28 log;
(Dm) + 0.72, where the quantity G’ is derived from the energy
balance between fracture energy, static and apparent stress drops,
assuming a simple linear slip-weakening friction law. In their work,
static stress drop and radiated energy are measured from 30 earth-
quakes recorded at a borehole station (2.5-km depth) at less than
15 km. Although their inferred G’ values are smaller than our G
estimates (factor ~2), the overall scaling (i.e. the slope a) is very
similar, indicating a clear increase with magnitude. The shift (differ-
ence in intercept b) may arise because Abercrombie & Rice (2005)
assume a simple linear slip-weakening model for a point source,
and thereby neglect the transient dynamic stress variation in space
and time of the finite fault ruptures. Their quantity G' may thus
underestimate the total fracture energy. Note also that their work is
based on smaller magnitude earthquakes (M,, ~ 0-7).

4.2 Scaling of static and dynamic stress drops

Numerous studies, considering mostly point-source models, cor-
roborate that the common hypothesis of ‘self-similarity’ (i.e. scale
independence of stress drop) applies for earthquakes of all sizes
(e.g. Brune 1970; Somerville et al. 1999; Kanamori & Brodsky
2004; Allmann & Shearer 2009). In this case, static and dynamic
stress drops would be independent of seismic moment. In contrast,
recent analysis of slip distributions measured at the surface after
earthquakes or derived from source inversion models indicate that
stress drop, related to strain-drop or D-L measurements, are highly
variable (e.g. Manighetti et al. 2007), and thus the hypothesis of
self-similarity may not hold for all types of events. Kanamori &

Riviera (2004) demonstrated that constant stress drop scaling is in-
appropriate for a wide magnitude range. An independent study of
Dalguer ef al. (2008), who calibrated dynamic rupture models to
match statistical properties of past earthquakes derived from kine-
matic source inversion models, shows that average stress drop is
independent of earthquake size for buried earthquakes, but scale
dependent for surface-rupturing earthquakes. This work suggests
that buried earthquakes may follow self-similarity scaling, while
surface-rupturing earthquakes break self-similarity. Recently, Can-
dela et al. (2012a) related stress drop to the scaling properties of
fault-surface topography. Using high-resolution laser distance me-
ter measurements on two exhumed faults, they found that fault-
surface topography is scale dependent (fault ‘roughness’ is larger at
small scale). Consequently, they propose that stress drop should de-
crease with increasing source dimension. In contrast, Drouet ef al.
(2011) analysed a seismic sequence following an M, 6.3 event
in the French West Indies, claiming that Brune’s stress drop in-
creases with moment magnitude, with the rate of increase dimin-
ishing for high magnitudes. This is also suggested by the studies
of Mayeda & Malagnini (2009, 2010), using the coda source ratio
method.

Using least-square regression from our data set, we obtain the fol-
lowing empirical relationships for the scaling of static and dynamic
stress drops (Fig. 6):

log,, (Aos) = 0.18 log,(M,) — 2.7, %)
log,, (Aadh = 0.24log,,(M,) — 3.5. (6)

These indicate that stress drop tends to increase slightly with
seismic moment. This tendency is consistent with the studies of
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Mai et al. (2006) and Abercrombie & Rice (2005). Note however
that stress drop values scatter significantly (the coefficients of de-
termination for the static and apparent stress drops are R? = 0.17
and R? = 0.24, respectively, indicating that the regression line does
not fit the data very well). The average dynamic stress drop is
larger than average static stress drop due to undershoot effects (e.g.
Kanamori & Riviera 2006). By least square regression, we obtain:
Aoy = 1.5A0g + 3 (with stress drops expressed in MPa). However,
the exact relationship depends on the fault plane area on which stress
drop is averaged. The difference between dynamic and static stress
drops becomes smaller when using only the fault regions with pos-
itive static stress drop.

4.3 Scaling of apparent stress drop

The apparent stress drop represents the density of radiated seismic
energy per unit of slip. It is of fundamental interest for seismic
hazard, since it directly pertains to the level of ground motion at in-
termediate frequencies. We then compute Ao according to eq. (2).
As pointed out by Ide (2002), using kinematic rupture models in-
herently leads to substantial underestimation of the actual radiated
seismic energy, because certain small-scale details of the rupture
process—like abrupt variations of the rupture velocity generating
high frequency—can not be resolved. For the 1995 Kobe earth-
quake, the values of Ide (2002) are threefold smaller than the ones
derived from other studies based on integration of far-field wave-
forms. In our study, input kinematic source models are initially
‘smoothened’ (see Section 2.3). The values of Ao, are hence likely

biased downward. Indeed, we obtain negative apparent stress-drop
for some models. We then average Ao s over the fault area with
positive static stress drop (area of potential radiation of seismic
energy). Still, six source models remain with negative values for
Aoa; those models are excluded from the subsequent analysis. As
an illustration of the effect of the input data ‘smoothing,, the mod-
els of Sem05b for the Tottori earthquake returns Ao, = 1.5 MPa,
which becomes Ao, = 2.7 MPa if a cosine SRF (low-pass filtered)
is assumed, and Ao, = 4.2 MPa if a cosine SRF (not filtered) is
assumed.

The scaling of Ao, is represented on Fig. 7, as well as the
scaling of the quantity Aoy — Acdg/2 (i.e. available elastic energy
per unit of slip). The ratio (T% - E/Z) /Aoy (related to the
inverse of radiation efficiency) is around 10-15, which means
that the radiation efficiency is less than 0.1, that is, less than
10 percent of the available elastic energy is radiated as seismic
energy. In the case of Aoy = Ao (no undershoot or overshoot
effects), Abercrombie & Rice (2005) obtain 1/2 - Acy/Acs ~ 5,
which corresponds to 20 per cent of radiated seismic energy. This
discrepancy is likely due to the low-pass filtering of our input
data.

Regardless of the underestimation of the inferred Ao, values,
the least-square regression of our data set suggests a scale depen-
dence of the apparent stress drop, which slightly increases with
seismic moment (the coefficient of determination is R = 0.50).
This tendency is also suggested by Abercrombie & Rice (2005)
for M, ~ 0-7, and corroborated by Drouet et al. (2011), who also
found that the rate of increase diminishes for A, > 4.5-5.
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5 UNCERTAINTY ANALYSES AND
VARIABILITY OF DYNAMIC SOURCE
PARAMETERS

Although our analysis reveals a scaling of average dynamic prop-
erties with magnitude, the scatter is rather large, especially for the
smaller events. Part of this scatter is epistemic, due to uncertainties
in the input kinematic inversion models, while aleatory variability
stems from the natural randomness of the rupture process. As an il-
lustration of the epistemic uncertainty, Fig. 8 displays the static slip
distributions for the 1994 Northridge earthquake obtained by differ-
ent authors (Dreger 1994; Hartzell et al. 1996; Wald et al. 1996), as
well as the inferred dynamic parameter distributions. Table 5 also
reports the main features of the different inversion models. As for
fracture energy and dynamic stress drop, this uncertainty is mainly
due to variations in rise time values and the degree of roughness of
the static slip distribution, both of which are inherently difficult to
capture by kinematic source inversions (see Section 3).

To test if ‘poorly resolved’ kinematic models still provide ro-
bust information to examine the scaling of average dynamic source
properties, we conduct an uncertainty analysis. The dispersion of the
computed parameters around the average prediction is quantified by
splitting the residuals into ‘epistemic’ and ‘aleatory’ components
(see Fig. 5 for the case of fracture energy G), thereby isolating
the variability due to the uncertainties in the input finite-source
rupture models from the event-to-event variability arising from the
unpredictable randomness of the source process. We compute the
‘epistemic’ uncertainty, defined as (in the case of G):

1 ~ = 2
¢ = N\/Z (loglo(chlc.Ei,Mj) - loglo(Gpred,specnEi)) ) (7)
m i

where Ny, is the number of rupture models of events analysed
(Nm = 17 in our study), G aic.£i, mj is the value calculated for model
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M; of event Ej, and G pred.spec.£i Tefers to the partial average predic-
tion using only data from event £;. The ‘aleatory’ variability is then

defined as

1 — - 2
\/Z (IOgIO(Gp)'ed,xpec. Ei) - IOglo(GpredAglab, Ei)) (8)

T =
cht

where N,y is the number of events, and G pred.glob.Ei 18 the global
average prediction for event £;.

The resulting epistemic uncertainty remains small (less than a
factor of 1.5, see Table 6), from which we conclude that the global
scaling properties of the dynamic parameter revealed by our com-
putations are robust.

The parameter that is least affected by uncertainties in kinematic
inversion models is the static stress drop, for which ¢ ~ 0.06, and
an aleatory variability of  ~ 0.3. This remains small in compari-
son to many stress-drop estimates assuming a point source model.
Cotton et al. (2013) have shown that such point-source analyses
lead to a total variability o4, a0 ~ 0.6, which may be attributed
to uncertainties in the corner frequency measurement. Recently,
Baltay et al. (2013) have proposed an alternative approach from
the measurement of @, and obtain ojg,, o, ~ 0.4. Moreover, our
uncertainty analysis for Ao yields © ~ 0.15, which corresponds
to a factor of ~1.5. This is also smaller than the errors reported
for various methods based on integration of regional or teleseismic
velocity records, giving factors larger than 2 and even as large as
10 (Pérez-Campos & Beroza 2001). Therefore, we claim that finite-
source rupture models can provide robust alternative information to
analyse the distribution of stress drop and apparent stress drop.

It is important to note that the epistemic uncertainty ¢ computed
from eq. (7) only provides a quantitative measure of the variability
due to uncertainties in the kinematic inversion models, that is in
the input data. It does not include uncertainties due to the method
proposed to calculate dynamic parameters. In addition, a rigorous
analysis of the epistemic uncertainty would require a significantly
larger data set, including multiple models for the whole set of earth-
quakes. Such a data set is not available presently.

6 DYNAMIC PARAMETERS VERSUS
CUMULATIVE SLIP

Some recent studies adress the link between long-term properties
of faults, like the degree of ‘maturity’, and earthquakes dynamics
or ground-motion (e.g. Manighetti et al. 2007; Choy & Boatwright
2009; Radiguet et al. 2009). The fault maturity depends on the fault
geometry and long-term fault history, that is age, maximum slip
rate and cumulative displacement.

In this section, we show how static stress drop, fracture energy and
apparent stress drop evolve with cumulative displacement for six of
the 22 analysed earthquakes (Table 7). Estimates of cumulative dis-
placement are from Radiguet et al. (2009), from the Fault Morphol-
ogy Database (http://isterre.fr/recherche/equipes/mecanique-des-
failles/observatoires-et-plateforme-de/article/fault-morphology-
database) and from Yue et al. (2005) for the 1999 ChiChi
earthquake. This analysis seems to indicate that static stress drop
and fracture energy decrease with the amount of cumulative
displacement (Fig. 9). Apparent stress drop also appears to
decrease with cumulative displacement, aside from the 1999 Izmit
earthquake for which the high apparent stress drop is consistent
with the reported super-shear rupture velocity (e.g. Bouchon ef al.
2002; Sekiguchi & Iwata 2002), thus implying that most of the
available strain energy was radiated seismically. These tendencies,
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Table 5. Inversion parameters used by different authors for the 1994 M 6.7 Northridge earthquake, and inferred values of averaged dynamic source quantities.
Note that magnitudes are slightly different. Since G is expected to be magnitude-dependent (see next sections), we generated ‘scaled’ versions of the models
of Hartzell et al. (1996) and Dreger (1994) to set all M,, to 6.80 (by simply scaling static slip).

Kinematic My Slip
model function

Inverted data
SGM Teleseismic GPS rise time (MJm™2) (scaled models) (MPa) (MPa)

Inverted G G Aoy Aog

Wald et al. (1996)

Dreger (1994) 6.66 One triangle

6.80 Three triangles (fyi = 0.6 s, thin = 0.4s) 38
Hartzell et al. (1996) 6.73 Three triangles (fyi = 0.6 s, fshif = 0.4s) 35

13 26 1.4 13 13 8.5 14
- - 1.4 7 10 5.5 10
8 - 1 14 25 10 15.5

Table 6. Values of ‘aleatory’ variability and ‘epistemic’ uncertainty of
the inferred average dynamic source parameters.

Dynamic ‘Aleatory’ variability ~ ‘Epistemic’ uncertainty
parameter (logio units) (log1o units)
Fracture energy 0.44 0.11
Dynamic stress drop 0.25 0.06

Static stress drop 0.30 0.06
Apparent stress drop 0.15 0.13

Table 7. Cumulative displacements of 6 of the 22
events analysed.

Event My, Cumulative slip (km)
Parkfield 6.0 >150

[zmit 7.6 ~85

ChiChi 7.6 ~3

Landers 7.2 3.14.6
Imperial Valley 6.5 ~24

Coyote Lake 5.9 ~24

though supported by only a sparse dataset (six source models), may
simply be explained by fault-plane surfaces tending to become
smoother with increasing cumulative displacement (e.g. Brodsky
et al. 2011; Candela et al. 2012b). Such smoother fault-surfaces
are supposed to generate smoother slip distributions (Candela et al.
2011) associated with lower stress drop, smaller fracture energy
and thus lower apparent stress drop (see Section 3.1 and Fig. 3).

7 DISCUSSION AND CONCLUSION

We conduct 3-D forward kinematic rupture simulations to infer the
average fracture energy (G), static stress drop (Acy), dynamic stress
drops (Aoy) and apparent stress drop (Ao,) from 31 kinematic
source inversion models of 21 crustal earthquakes with various
styles of faulting. Our analysis reveals that: (1) G scales with seis-
mic moment, corroborating previous results (e.g. Tinti et al. 2005a;
Bizzarri 2010). We propose new scaling relations that are useful to
constrain friction law parameters in spontancous dynamic rupture
simulations and physics based near-source ground-motion predic-
tions; (2) Ao, Aoy and Ao, slightly increase with seismic mo-
ment, indicating that self-similarity (scale-independent stress-drop)
would not be valid in the investigated magnitude range (M,, ~ 6—
7.5) for non-point-source earthquake parameters; (3) Ao seems to
decrease with cumulative slip, like G and Ao, but the tendency is
less clear. Given the limited data set (six events) for this analysis
this last conclusion remains tentative. (4) The epistemic uncertainty
of G, Aos, Aoy and Ao, (i.e. due to uncertainties in the input
kinematic source inversion models) is approximately ¢ ~ 0.1 (in
logo units), which corresponds to a factor ~1.3. This uncertainty
remains small compared to many studies based on point-source
models, reporting factors of ~4 for stress drop (Cotton et al. 2013)
and larger than 2 for apparent stress drop (Pérez-Campos & Beroza

2001). Therefore, we claim that kinematic source inversion models
provide robust alternative data to analyse the scaling of dynamic
source properties. However, it is important to note that the band-
width limitation in the input source models may lead to an under-
estimation of the dynamic parameters, especially for the apparent
stress drop.

It is important to emphasize that the derived dynamic source pa-
rameters were inferred from stress changes calculated from forward
kinematic rupture models, in which typically the stress on the fault
drops continuously with slip, and stress gradually weakens at small
and large slip (Figs 1 and 4). If we attempt to interpret these kine-
matic results in terms of friction models, one can imply that this
pattern of stress change is ‘dynamically inconsistent’ because in a
spontaneous rupture simulation these models would not necessarily
propagate. However, it needs to be highlighted that the purpose of
our calculations is not to derive friction models for dynamic rupture
simulation, but average dynamic source parameters independent of
the frictional properties.

7.1 Scaling of fracture energy

The physical phenomena involved in the observed scaling of G are
not yet fully understood. G represents an observational mesoscopic
parameter that contains all dissipative processes in the volume sur-
rounding the crack tip. To understand its scaling, a holistic view of
a fault is then required, in which a geometrically complex (fractal)
fault is embedded in a 3-D medium that is heterogenous (fractured)
at all scales. Campillo ez al. (2001) and Latour et al. (2011) show
that small-scale heterogeneities of fault strength may be represented
by effective friction laws that reproduce the global behaviour of
the fault rupture process. Such effective friction laws yield effec-
tive fracture energy that increases as the characteristic wavelength
of the fault strength heterogeneity grows. This suggests that large
faults, containing potentially larger scale strength heterogeneities,
may have larger G. The importance of fault heterogeneities for
energy dissipation during the dynamic rupture is also pointed out
by Ohnaka & Shen (1999) who observed larger slip weakening
distances in case of larger scale fault-surface irregularities in lab
friction experiments. Assuming that the roughness of slip distri-
bution is controlled by the roughness of fault strength and fault
topography (e.g. Candela et al. 2011), their results are consistent
with our numerical simulations based on a k=2 kinematic source
description, illustrating that G scales with the roughness degree of
slip heterogeneities.

While the role of fault plane heterogeneity is fundamental in
earthquake dynamics, off-fault damage constitutes another impor-
tant factor of energy loss. Indeed, large crustal faults are associated
with zones of damage rock characterized by high crack density (e.g.
Ben-Zion & Sammis 2003). Andrews (2005) performed dynamic
simulations in which the slip zone is modelled as a fault plane with
off-fault dissipation according to a Coulomb yield condition. They
found that energy loss, which can be mapped into G, is proportional
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Figure 9. Static stress drop (Ao'g), fracture energy (G) and apparent stress
drop (Aos) versus cumulative displacement, for six events for which data on
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to propagation distance, and hence tends to increase with earthquake
size. Whereas the effect of heterogeneities in frictional properties
potentially could be captured by kinematic source inversion (within
the resolved frequency band), it is difficult to assess if kinematic
models contain the effects of off-fault damage. Understanding the
proportion of both processes mapped into G is an important question
that could be addressed through dynamic simulations including
oft-fault plasticity (e.g. Templeton & Rice 2008; Dunham et al.
2011; Gabriel et al. 2013) or friction experiments including off-
fault damage and various length scales of fault strength.

7.2 Scaling of stress drop and apparent stress drop

Our results suggest that Ao and Ao scale with magnitude, in con-
tradiction to the classic self-similarity hypothesis of earthquake
behaviour that implies scale-independent (constant) stress drop.
Dalguer et al. (2008) points out that self-similarity may still hold
for buried rupture events, but may be broken for surface rupture
events only. Nevertheless, performing our analysis by screening out
the surface rupture events does not change the scaling properties of
the static stress drop, which still increases with seismic moment in
the same manner.

Such a scaling of stress drop is also reported by Abercrombie
& Rice (2005). The consistency between their and our findings is
interesting as they use a completely independent approach and data.
While we compute G and Ao, and then infer Ao, from energy-
balance considerations, they obtain static and appparent stress drops
from point-source estimates of corner frequency and radiated seis-
mic energy. Next, they deduce fracture energy from the energy
balance, and find that it scales with magnitude. The main advantage
of their approach is that (1) the considered frequency band is not
limited to ~1 Hz; (2) the analysed earthquakes are approximately
from the same region (whereas we are constrained to mix different
geologic-tectonic areas to create sufficient input data). The increase
of Aoy inferred from both studies may still be controversial, because
measures from corner frequency estimation are subject to large un-
certainties (Cotton et al. 2013), while our estimates of Aoy reveal
only a slight increase. Nevertheless, if both G and Ao, do increase
with seismic moment, the available strain energy and Ao need to
increase as well.

It is interesting to mention that many studies that reveal stress
drop scaling (e.g. Mayeda & Malagnini 2009, 2010; Drouet et al.
2011) are based on analyses of aftershock sequences. On the con-
trary to main shocks, aftershocks occur in areas where stress has
already been released. Our study, based on a data set of main shock
analyses, presents an alternative viewpoint on scaling properties of
stress drop.

7.3 Link between dynamic properties and cumulative slip

For six well-studied earthquakes, for which estimates of cumulative
slip are available, we find that Aoy tends to decrease with cumu-
lative slip. G and Ao, also appear to decrease with cumulative
slip, though this trend is less clear. Note that these observations
are based on a sparse data set, and therefore our conclusions are
preliminary at this point. Nevertheless, the observed tendencies
may be related to a simple physical process. Fault-plane surfaces
tend to become smoother with cumulative displacement; smoother
fault-surfaces may generate smoother slip distributions; smooth slip
distributions are associated with lower stress drop, smaller fracture
energy and lower apparent stress drop. For apparent stress drop,




this scaling behaviour may not apply if super-shear rupture occurs,
which is favoured on particularly smooth faults. This was the case
for the 1999 Izmit earthquake, associated with high Ao, and large
cumulative slip. However, given the limited number of reported
super-shear ruptures, there is no statistical meaningful database at
present to further examine this scaling aspect in detail. Note that the
rupture of the 1979 Imperial Valley was also reported to be locally
super-shear, but the average rupture velocity was less than the shear
wave velocity (Archuleta 1984).

As mentioned by Ben-Zion & Sammis (2003), the increasing
amount of slip on faults may progressively destroy small-scale struc-
tures, and thereby produce more linear fault structures. However,
Ben-Zion & Sammis (2003) claim that faults with large cumula-
tive displacement are also associated with wider zones of damaged
rock with a high crack density. Accordingly, there are two major
competing effects that change G as a fault accumulates slip: on
one hand faults become smoother, which tends to reduce G, while
on the other hand, the zone of damaged rock widens, and tends to
increase G. Unfortunately, our data set is too sparse to validate such
mechanism.

Finally, it is important to note that cumulative slip represents
a limited proxy of structural maturity of the fault, which is gov-
erned by other fault features like the age or the maximum slip rate
(Manighetti et al. 2007). Structural maturity might be a better in-
dicator of faults, and might be better correlated with earthquakes
dynamic properties.
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