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The aim of this article is to prove a result which has been thought true for some
time. Roughly speaking, if you take a universal unfolding of a germ in finitely many
variables, and add to it a non-degenerate quadratic form on an infinite-dimensional
space, you still have a universal unfolding. ‘

NoOTATION

For a pair of Banach spaces X and Y, the space of germs at 0 of C® mappings from
X to Y will be denoted by &(X, Y). £(X, R) will be abbreviated to £(X). Germs will
generally be confused with mappings defined on a neighbourhood of 0. This is for
brevity and to avoid awkward expressions. If X is a Banach space and X* its normed
dual, the number x*(x), where z*e X* and xe X, will be denoted by {z*, z).

LemmMA 1. Let X, A be Banach spaces and let fe &(X x A) be such that f(0, d) = 0 for
all ac A. Then f(z,a) = {h(z,a), z) where

he&(X x 4, X*).

Proof. flz,a) = fol % f(tz,a)dt

= fl (fo(tz,a),x) dt
0

= <j01fz(tx, a) dt,?>.

Levma 2. Let X and A be Banach spaces with X reflexive, let de&(X x A, X*) be
such that d(0,0) = 0 and D,d(0,0) is an tnvertible linear mapping from X onto X*.
Then for every fe £(X x A), there exist he £(X x A, X)) and re &(A4) such that

f(x, CL) = <d(x, a), h(x’ a')> + r(a).

Proof. The mapping (z,a)— (d(x, a), a) is by the inverse function theorem a diffeo-
morphism of a neighbourhood of (0, 0) in X x 4 to a neighbourhood of (0, 0)in X* x 4.
Let its inverse be the mapping (z*,a)— (y(z* a),a) where yed(X*x 4,X). By
Lemma 1

f(y(z*,a),a) = f(¥(0,a),a) + (2*, k(x*, a)),
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92 R. J. MaGNUS
where ke &(X* x A, X) (here we use the identification of X and X**). Now set

r(@) = f(y(0,a),0)
and h(z,a) = k(d(z,a),a).
This concludes the proof.
To introduce the main theorem we announce some puzzling terminology. Let X and
A be Banach spaces. Then we define % (X ; A) to be &(X x A). Why we should want
to do this is given by the next definition. Two members f and g of %(X; 4) shall be

called equivalent if f(@,a) = g(d(z,a), ¥(a)) +7(a),

where ¢e (X x 4, X), yeb(4,4), reE(4), ¢(-,a) is for each a, a diffeomorphism
on a neighbourhood of 0e X, ¥ is a diffeomorphism on a neighbourhood of 0 A, and
finally ¢(0, 0) = 0, r(0) = 0. Equivalence is an equivalence relation. This definition is
slightly different from the usual definition of isomorphism of unfoldings, (see (1)),
since f and g need not be unfoldings of the same germ.

TaeoreEM 1. Let fe(X;A), where X is a reflexive Banach space. Assume that
D, f(0,0) = 0 and DLf(0,0) = T is a Fredholm operator (since T is symmetric it suffices
to assume that it has closed range and finite-dimensional null-space). Let uf,...,u} be
elements of X* whose projections into X*[T X form a basis of the latter space. Then there
18 a germ ge &(R™ x A) such that f is equivalent to a member of U (X ; A) given by

(@, a) > KTz, 2) + 9 uf, 7), ..., {ug, ), a).
Suppose further that {u,,...,u,} is a basis of N(T) dual to {uf,...,u%}. If
D, f(x,0)esp{uf, ..., un} whenever xc N(T) then
gAy, oA, 0) = f(A u  + ...+ A,u,,0).

Proof. Let Z < X be the annihilator of {uf, ...,u}%}. Every z in X can be written
uniquely in the form z + X}, A;u; where ze Z and A; = (uf,x). Furthermore 7' is an
invertible linear mapping of Z onto TX, and the latter space is in a natural way the

dual of Z. Let F(z,A,0) = f(z+ZAuy,a)
where z€Z, A = (A, ...,A,)ER™ and ac 4.

LeMma 3. There exists a C® mapping b with range in Z of the variables z, A, a, and
an additional real variable t. The domain of h is defined by relations of the form

max (|z]), |A, lla]) < €e; —e<t<1l+e.
The following equation holds:
F(z,A,0)—¥KT7,2z) = (¢D, F(z,A,a) + (1 —t)T2,h(z,A,a,t)) + Y(A, a,t). (1)

In this equation r is defined on the same domain as kb but does not depend on z.

Proof of lemma. By Lemma 2 we can define ‘k’ and ‘¢’ for ¢ in a neighbourhood
of any point £,€[0, 1]. Just take Z to be the space X of Lemma 2 and amalgamate
the other variables into the 4 of Lemma 2. Pick a finite number of these neighbour-
hoods, say ¥, -.-, ¥, and a partition of unity of [0, 1] relative to them, say, ¢,, ..., §,.
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Universal unfoldings of functions on a Banach space 93

Let the ‘k’ and ‘¢’ on V; be denoted by %; and ¥, these mappings being extended by
setting them equal to zero for ¢¢ V. Finally we define b = Z¢,k; and i = Z¢;¥;. These
satisfy the required conditions.

Completion of proof of theorem. Let w(z,A,a,t) be the solution of the differential

equation )
§ = ‘_h(gu/}’a’ t) (§eZ) (2)

such that w(z, A, a, 0) = z. Define
o) = [ a0
Set, M(z,A,a,t) = tF(z, A, a) + (1 —t) Tz, 2).
Equation (1) now implies
(dfdt) M(w(z, A, a,1), A, 0,) = ¥(X,a,0).
Integrating between 0 and 1
F(w(z,A,a,1),4,0) = KTz2) +9(4, 0).

This implies the required equivalence, since the mapping z—>w(z,A,a,1) is a
diffeomorphism.

A note on the existence of solutions of (2): by considering Lemmas 1 and 2 it may be
seen that £(0, 0, 0,¢) = 0. Hence the solution of (2) with initial value 0 exists for all ¢
when A = 0 and @ = 0. It is just { = 0. The set of quadruples (z, A, a,?) such that the
solution of (2) with initial values z exists on the interval [0, ¢] is open. Hence this set
contains an open neighbourhood of the set {(0,0,0,¢):0 < ¢ < 1}, which is what we
require.

To obtain the last part, note that the stated assumption is equivalent to
D,F(0,A,0) = 0. Then by (1), ¥(4,0,t) = F(0,A,0) = f(£A;u;,0), whence the result.

We shall now state two corollaries which use the idea of a universal unfolding. Let
ne&(X) and let fe % (X; A) be such that f(x, 0) = 5(x). f is called an unfolding of 7.
f is called a universal unfolding of 7 if given ge % (X; B) such that g(z, 0) = y(x), we
have

9(x,b) = f(¢(x,b), ¥(b)) +r(b), 3)

where ¢e8(X x B, X), ye&(B, A), re &(B), ¢(-,b) is, for each b, a diffeomorphism of
a neighbourhood of 0e X such that ¢(-, 0) is the identity, and y(0) = 0. Since ¥ need
not be invertible the relation expressed by (3) is quite different from equivalence. If
for some fe%(X;4) and ge % (X; B) the relation (3) holds, except that ¢(-,0) need
not be the identity, we shall say that g is induced from f.

CorOLLARY 1. Let Z be a reflexive Banach space, T:Z—>Z* a symmetric linear
homeomorphism. Let ne&(R*) such that %'(0) =0 have a wuniversal wunfolding
feU(R™; A). Then the germ (z, A)— 3Tz, 2) +3(A) which is a member of &(Z x R") has
a universal unfolding (z,A,a) > ¥ Tz 2) +f(A,a).

CoroLLARY 2. Let ne &(X), where X is reflexive, be such that '(0) = 0 and "(0) = T
18 a Fredholm operator. Let {u,, ..., u,} be a basis for N(T') and suppose there exists a
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94 R. J. MAGNTUS

topological supplement Z of N(T) with the property that for any xe N(T) and z€ Z,
M'(x),z) = 0. Let y(A) = 9(Auy + ... + A, u,) and let g(A, a) be a universal unfolding of
v. Then any unfolding of 1 is induced from the unfolding germ

(x,a)~>T'z,2) +9(A, a)
where x = z+ZAu;, 2€Z.

ExamprLE. This is taken from (). Let X = {xeH —1,1]:2(—1) = z(1) = 0}.
H?[ — 1, 1] is the space of L2-functions on [ — 1, 1], whose first- and second-order distribu-
tion derivatives are LA-functions. Such functions are continuous, and it is a Hilbert
space. Define e &(X) by

n(x) = %le (Iac”(s)]z—’;—2 |x’(s)|2) ds+§ (fil |x'(s)|2ds)2,

where k is a constant. The physical meaning of n according to (2) is the following. Consider
an elastic beam of small cross-section fixed between the points — 1 and + 1, and subjected
to an increasing compressive stress exactly in line with it. Then at a certain value of the
stress the beam buckles. If, with this value of the stress, the shape of the beam happened
to be described by the function x(s), then y(x) would be its elastic energy. In reality the
configuration of the beam is supposed to be a function x such that y’(x) = 0.

We have
@y = [ ( )u (s)—”{x( we)as+g ([ weias) ([ sowen)
and 7" (0)v, u) = f (v (s)u"(s) —%Z'v’(s)u’(s)) ds.

That T = 5"(0) is a Fredholm operator and that its kernel is spanned by cos i7s is shown
in (2). Now
1
('(A cosims), u) = const /laf u(s) cos ymrsds.
-1
Hence if we define

1
zZ = {zeX:f 2(s)cos3msds = 0:
-1
then Z has the properties required in Corollary 2. Finally

7 (A cosims) = const A%,

The germ A% has a universal unfolding (A, ay,a,) > A*+a,A2+a,A, (see 3)). Hence any
unfolding of (x) is induced from

x> At +a, A2 +a, A+ Q2),
1
where A= f x(s) cosimsds,
-1

z = x—Acosinms, and Q is a non-degenerate quadratic form on Z.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:45:40, subject to the Cambridge Core terms of use,
available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100000293


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100000293
https:/www.cambridge.org/core

Universal unfoldings of functions on a Banach space 95

REFERENCES

(1) The classification of elementary catastrophes of codimension <5. Lectures by E. C. Zeeman
(Spring 1973). Notes written and revised by D. J. A. Trotman.

(2) CarLLingwoRTH, D. The catastrophe of a buckling beam. Proceedings of the Symposium on
Applications of Topology and Dynamical Systems, University of Warwick, 19734 (ed.
A. K. Manning).

(3) THoOM, R. Stabilité structurelle et morphogénése (Benjamin, 1972).

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:45:40, subject to the Cambridge Core terms of use,
available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100000293


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100000293
https:/www.cambridge.org/core



