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Precision cluster mass determination from weak lensing
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ABSTRACT
Weak gravitational lensing has been used extensively in the past decade to constrain the masses
of galaxy clusters, and is the most promising observational technique for providing the mass
calibration necessary for precision cosmology with clusters. There are several challenges in
estimating cluster masses, particularly (a) the sensitivity to astrophysical effects and observa-
tional systematics that modify the signal relative to the theoretical expectations, and (b) biases
that can arise due to assumptions in the mass estimation method, such as the assumed radial
profile of the cluster. All of these challenges are more problematic in the inner regions of the
cluster, suggesting that their influence would ideally be suppressed for the purpose of mass
estimation. However, at any given radius the differential surface density measured by lensing
is sensitive to all mass within that radius, and the corrupted signal from the inner parts is
spread out to all scales. We develop a new statistic ϒ(R; R0) that is ideal for estimation of clus-
ter masses because it completely eliminates mass contributions below a chosen scale (which
we suggest should be about 20 per cent of the virial radius), and thus reduces sensitivity to
systematic and astrophysical effects. We use simulated and analytical profiles including shape
noise to quantify systematic biases on the estimated masses for several standard methods of
mass estimation, finding that these can lead to significant mass biases that range from 10 to
over 50 per cent. The mass uncertainties when using the new statistic ϒ(R; R0) are reduced
by up to a factor of 10 relative to the standard methods, while only moderately increasing the
statistical errors. This new method of mass estimation will enable a higher level of precision
in future science work with weak lensing mass estimates for galaxy clusters.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions – dark matter.

1 IN T RO D U C T I O N

Many scientific applications require robust measurements of the
mass in galaxy clusters. One such application is the use of the dark
matter halo mass function to constrain cosmological model param-
eters, including the amplitude of matter density perturbations, the
average matter density and even the equation of state of dark energy
(e.g., most recently, Rines, Diaferio & Natarajan 2007; Mantz et al.
2008; Vikhlinin et al. 2009; Rozo et al. 2010). Another example is
validation and refinement of models of cluster formation and evo-
lution, which predict relations between the more easily measured
optical and X-ray emission, and the underlying dark matter halo
(Kravtsov, Vikhlinin & Nagai 2006; Nagai, Kravtsov & Vikhlinin
2007; Zhang et al. 2008; Borgani & Kravtsov 2009). Currently,
there are thousands of known clusters selected in various ways that
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can be used for these applications. Future surveys such as the dark
energy survey (DES),1 Pan-STARRS2 and the Large Synoptic Sur-
vey Telescope (LSST)3 will provide even larger and deeper samples
that can be used for this purpose, requiring greater systematic ro-
bustness in the mass measures to complement the smaller statistical
errors.

Many different methods have been used to measure the halo pro-
file of clusters and thereby estimate their masses. Kinematic tracers
such as satellite galaxies, in combination with a Jeans analysis or
caustics analysis, can give information over a wide range of physi-
cal scales and halo masses. While the issues of relaxation, velocity
bias, anisotropy of the orbits and interlopers need to be carefully
addressed, recent results suggest a good agreement with theoretical

1 http://www.darkenergysurvey.org/
2 http://pan-starrs.ifa.hawaii.edu/public/
3 http://www.lsst.org/lsst

C© 2010 The Authors. Journal compilation C© 2010 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85223378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Lensing cluster masses 2079

predictions for the form of the density profile (Biviano & Girardi
2003; Katgert, Biviano & Mazure 2004; Rines et al. 2003; Diaferio,
Geller & Rines 2005; Rines & Diaferio 2006; Salucci et al. 2007).
Hydrostatic analyses of X-ray intensity profiles of clusters use
X-ray intensity and temperature as a function of radius to recon-
struct the density profile and estimate a halo mass. The advantage
of thermal gas pressure being isotropic is partially lost due to the
possible presence of other sources of pressure support, such as tur-
bulence, cosmic rays or magnetic fields. These extra sources of
pressure support cannot be strongly constrained for typical clusters
with present X-ray data (Schuecker et al. 2004), but could mod-
ify the hydrostatic equilibrium and affect the conclusions of such
analyses. Recent results are encouraging and are in a broad agree-
ment with predictions, although most require concentrations that are
higher than those predicted by a concordance cosmology (Vikhlinin
et al. 2006; Buote et al. 2007; Schmidt & Allen 2007). While the
above-mentioned systematic biases cannot be excluded, the small
discrepancy could also be due to baryonic effects in the central
regions, due to selection of relaxed clusters that may be more con-
centrated than average (Vikhlinin et al. 2006), or due to the fact that
at a given X-ray flux limit, the more concentrated clusters near the
limiting mass are more likely to be included in the sample (Fedeli
et al. 2007).

Gravitational lensing is by definition sensitive to the total mass,
and is therefore one of the most promising methods to measure
the mass profile independent of the dynamical state of the clusters.
Many previous weak lensing analyses have focused on individ-
ual clusters (e.g. Hoekstra 2007; Pedersen & Dahle 2007; Abate
et al. 2009; Okabe et al. 2009). Measuring the matter distribution
of individual clusters allows a comparison with the combined bary-
onic (light and gas) distribution on an individual basis, and so can
constrain models that relate the two, such as Modified Newtonian
Dynamics (MOND; Milgrom 1983) versus cold dark matter (CDM;
Clowe et al. 2006). However, these measurements can be quite noisy
for individual clusters. Stacking the signal from many clusters can
ameliorate this problem, since shape noise and the signal due to cor-
related structures will be averaged out. Such a statistical approach is
thus advantageous if one is to compare the observations to theoret-
ical predictions, which also average over a large number of haloes
in simulations. A final advantage of stacking is that it allows for
the lensing measurement of lower-mass haloes, where individual
detection is impossible due to their lower shears relative to more
massive clusters. Individual high signal-to-noise ratio (S/N) cluster
observations and those based on stacked analysis of many clusters
are thus complementary to each other at the high-mass end, with
the stacked analysis drastically increasing the available baseline in
mass.

Extraction of cluster dark matter halo masses from the weak lens-
ing signal is subject to a number of uncertainties, which we discuss
in this paper in detail, including the ways in which the uncertain-
ties differ for individual versus stacked cluster lensing analyses. In
brief, these uncertainties are: (i) biased calibration of the lensing
signal; (ii) modification of the lensing profile in the inner cluster
regions due to accidental inclusion of cluster member galaxies in
the source sample, intrinsic alignments of those galaxies, non-weak
shear, magnification, baryonic effects that modify the initial clus-
ter dark matter halo density profile and cluster centroiding errors;
(iii) contributions to the lensing signal from non-virialized local
structures and large-scale structure (LSS). Furthermore, paramet-
ric modelling of the mass requires the assumption of a form for
the dark matter halo profile, which may differ from the intrinsic
profile and/or have poorly constrained parameters. Non-parametric

modelling, while not subject to this weakness, results in projected
masses that must be converted to three-dimensional (3D) enclosed
masses to be compared against the theory predictions, all of which
are currently phrased in terms of 3D masses. We quantify the degree
to which this conversion depends on assumptions about the density
profile. Generally, we show the effects of many of these uncertain-
ties on the estimated masses from cluster weak lensing analyses,
both in the stacked and in individual cases, using parametric and
non-parametric mass modelling.

Effects that modify the cluster density profile in the inner re-
gions (�0.5 h−1 Mpc) are particularly problematic given that the
weak lensing signal ��(R) is sensitive to the density profile not
just at a projected separation R, but also at all smaller separations.
We propose a modified statistic, denoted by ϒ(R; R0), that removes
the dependence on the projected density between R = 0 and R =
R0, with R0 chosen to avoid scales with systematic uncertainties.
The decrease in systematic errors that results from removing scales
below R0 comes at the expense of somewhat increased statistical er-
rors. We explore the optimal choice of R0, and quantify the degree to
which our use of this new statistic to estimate cluster masses lessens
systematic biases and increases statistical errors. Our tools for this
investigation include simple, idealized cluster density profiles; more
complex and realistic density profiles from N-body simulations
and, finally, real cluster lensing data from the Sloan Digital Sky
Survey (SDSS; York et al. 2000) that was previously analysed by
Mandelbaum, Seljak & Hirata (2008a).

We begin in Section 2 with a discussion of the theoretical aspects
of cluster-galaxy weak lensing, including a detailed discussion of
the challenges of mass determination, and a summary of typical
approaches to parametric and non-parametric mass estimation, with
the introduction of a new statistic from which to derive parametric
mass estimates. In Section 3, we describe the N-body simulations
that we use to provide sample cluster density profiles. Section 4
has a description of the SDSS cluster lensing data we use to test
for some of the effects that we find using the simulations. Results
for both the theoretical profiles and the real data are presented in
Section 5. We conclude with a discussion of our findings and their
implications in Section 6.

2 TH E O RY

This section includes theoretical background related to cluster-
galaxy weak lensing, modelling of cluster masses using lensing,
and the new statistic that we propose is optimal for cluster mass
estimation.

2.1 Standard lensing formalism

Cluster-galaxy weak lensing provides a simple way to probe the
connection between clusters and matter via their cross-correlation
function ξ cl,m(r), defined as

ξcl,m(r) = 〈δcl(x)δ∗
m(x + r)〉x, (1)

where δcl and δm are overdensities of clusters and matter, respec-
tively (δm = ρm/ρm − 1). This cross-correlation can be related to
the projected surface density

�(R) = ρ

∫
[1 + ξcl,m(

√
R2 + χ 2)]dχ, (2)

where ρ is the mean matter density, R is the transverse separation and
χ is the line-of-sight direction over which we are projecting. Here,
we ignore the line-of-sight window function, which is hundreds of
mega-parsec broad and not relevant at cluster scales. For this paper,
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we are primarily interested in the contribution to the cluster-matter
cross-correlation from the cluster halo density profile ρcl itself,
rather than from other structures, and hence

�(R) ≈
∫ ∞

−∞
ρcl(r =

√
χ 2 + R2) dχ. (3)

The surface density is then related to the observable quantity for
lensing, called the differential surface density,

��(R) = γt(R)�c = �(< R) − �(R), (4)

where γ t is the tangential shear (a weak but coherent distortion in
the shapes of background galaxies) and �c is a geometric factor,

�c = c2

4πG

DS

DLDLS(1 + zL)2
. (5)

Here DL, DS and DLS are (physical) angular diameter distances to
the lens, to the source and between the lens and source, respectively.
In the second relation in equation (4), �(< R) is the average value
of the surface density within some radius R,

�(< R) = 2

R2

∫ R

0
R′ �(R′) dR′. (6)

The second equality of equation (4) is true in the weak lensing limit,
for a matter distribution that is axisymmetric along the line of sight
(which is naturally achieved by the procedure of stacking many
clusters to determine their average lensing signal), or in the non-
axisymmetric case, provided that � is averaged azimuthally. For
individual cluster analyses, profiles can be fit either using average
shears in annuli or with full, 2D shear maps.

Unless otherwise noted, all computations assume a flat �CDM
universe with matter density relative to the critical density 
m =
0.25 and 
� = 0.75. Distances quoted for transverse lens-source
separation are comoving (rather than physical) h−1 Mpc, where the
Hubble constant H0 = 100 h km s−1 Mpc−1. Likewise, the differ-
ential surface density �� is computed in comoving coordinates,
equation (5), and the factor of (1 + zL)−2 arises due to our use of
comoving coordinates.

2.2 Theoretical challenges in cluster mass modelling

In this section, we discuss theoretical challenges in cluster mass
modelling. By ‘theoretical’ challenges, we refer to issues that cause
the underlying cluster density profile (surface density �) to be
unknown. This uncertainty in � at a given scale R is propagated
to larger scales in ��(R) because of its dependence on �(<R)
(equations 4 and 6).

2.2.1 Unknown density profile

When attempting to extract 3D enclosed masses from the projected
lensing data, the unknown density profile may lead to a biased mass
estimate. For example, even for the latest generation of simula-
tions, the concentration parameter (defined more precisely below)
of clusters remains somewhat uncertain, with differences at the level
of 20 per cent at the high-mass end (Dolag et al. 2004; Neto et al.
2007; Zhao et al. 2009). The concentration parameter at a given
mass is also affected by the assumed cosmological model, espe-
cially the amplitude of perturbations. For a given halo mass, the
differences between the profiles increase towards the inner parts of
the cluster, and if only those scales are used in parametric fits for
mass estimation, this can result in a significant error on the halo
mass. In this paper, we investigate bias due to unknown cluster

concentration extensively, including the use of parametric mass es-
timators with assumptions about the form of the profile, and the use
of non-parametric projected mass estimates that require an assump-
tion about the profile to get a 3D enclosed mass.

2.2.2 Baryonic effects

The effect of baryons on the cluster mass distribution is unclear,
but may be significant in the inner cluster regions (Blumenthal
et al. 1986; Gnedin et al. 2004; Naab et al. 2007; Rudd, Zentner
& Kravtsov 2008; Zentner, Rudd & Hu 2008; Barkana & Loeb
2010). Baryon cooling not only brings significant mass into the
inner regions of the cluster, but may also redistribute the dark matter
out to much larger scales than the scale of baryon cooling. These
works suggest that the effect of baryons is to change the cluster
matter profile in the inner regions in a way that roughly mimics a
change in the halo concentration; however, the extent of this effect
in reality, and the affected scales, is unknown.

2.2.3 Offsets from minimum of cluster potential

The cluster centre about which the lensing signal should be com-
puted can be determined using a variety of methods. The most
reliable approach is to use the peak in X-ray or Sunyaev–Zeldovich
flux. For optically identified clusters, the usual method is to find
the brightest cluster galaxy (BCG). The offsets from the true cluster
centre arise due to two effects: (1) BCGs may be slightly perturbed
from the minimum of the cluster potential well by some real physi-
cal effect, such as an infalling satellite, and (2) photometric redshift
errors and/or limitations in the cluster detection technique (when
detecting clusters using imaging data) may lead to the wrong galaxy
being chosen as the BCG. This latter effect might occur, for exam-
ple, with red-sequence cluster finding algorithms, in cases of BCGs
with bluer colours (estimated to be ∼25 per cent of the BCG popula-
tion in reality; Bildfell et al. 2008). As was discussed quantitatively
in Johnston et al. (2007), the effect of BCG offsets on stacked cluster
lensing data is to convolve the surface density �(R) with some BCG
offset distribution, which tends to suppress the lensing signal in the
inner regions (similar, qualitatively, to the effect of the previous two
systematic issues we have discussed). Consequently, fitted cluster
masses and concentrations will be reduced due to these centroiding
errors (Guzik & Seljak 2002; Yang et al. 2006). Note that while
cluster centroiding errors arise due to observational limitations, we
classify them as a theoretical issue because of their impact on �(R)
which leaks to larger scales in ��(R).

Studies comparing the BCG position to the cluster centre defined
by either the X-ray intensity or the average satellite velocity have
found that the typical displacement is about 2–3 per cent of the virial
radius when the BCG is properly identified (van den Bosch et al.
2005; Koester et al. 2007a,b; Bildfell et al. 2008). The last of these
studies finds that for about 10 per cent of BCGs, the displacement
is >10 per cent of the virial radius. Another study that includes red
galaxy photometric errors (i.e. both causes of offsets rather than just
the first) finds that the median displacement is 10 per cent of the
virial radius (Ho et al. 2009).

Because the real data we use as a test case uses the maxBCG lens
sample, we focus in more detail on the issue of BCG offsets for that
cluster catalogue. The maxBCG group uses mock catalogues to es-
timate the distribution of BCG offsets resulting from the use of their
algorithm (Johnston et al. 2007). The accuracy of the distribution
they find is quite sensitive to the details of how the simulations are
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populated with galaxies. In brief, their result includes a richness-
dependent fraction of misidentified BCGs (from 30 per cent at low
richness to 20 per cent at high richness), and those that are misiden-
tified have a Gaussian distribution of projected separation from the
true cluster centre, with a scale radius of 0.42 h−1 Mpc.

A full discussion of how these results from mocks compare with
observations can be found in Mandelbaum et al. (2008a). To sum-
marize, at high masses (more than a few times 1014 h−1 M
), a
comparison with X-rays (Koester et al. 2007b; Ho et al. 2009) sug-
gests that the mocks may overestimate the fraction of offsets greater
than 250 h−1 kpc. However, the true level of offsets for the majority
of the cluster catalogue is poorly constrained from the real data.

2.3 Observational challenges in cluster mass modelling

In this section, we discuss observational challenges in cluster mass
modelling. We define ‘observational’ challenges as those that result
in difficulty in properly measuring ��(R) for a given density profile
�(R).

2.3.1 Lensing signal calibration

The cluster-galaxy lensing signal overall calibration is an important
issue for cluster mass estimates. The signal may be miscalibrated
due to shape measurement systematics (e.g. Heymans et al. 2006;
Massey et al. 2007; Bridle et al. 2009), unknown lens and/or source
redshift distributions (e.g. Kleinheinrich et al. 2005; Mandelbaum
et al. 2008b) and contamination of the ‘source’ sample by stars.
The effect of miscalibration typically is to multiply the signal on
all scales by a single multiplicative factor. We will investigate the
effect of changes in lensing signal calibration on the estimated
masses when fitting both parametrically and non-parametrically.

2.3.2 Signal dilution due to cluster member galaxies

In principle, in the absence of intrinsic alignments, contamination of
the source sample by cluster member galaxies will dilute the cluster
lensing signal, since the cluster member galaxies are not lensed.
Thus, they suppress the cluster lensing signal, with the strongest
effect towards the cluster centre where the member galaxies are
most numerous. For stacked cluster lensing data, this effect may
be effectively removed by cross-correlating random points with the
source catalogue, and boosting the signal by the scale-dependent
ratio of the weighted number of sources around the real clusters to
that around the random points (Hirata et al. 2004; Sheldon et al.
2004; Mandelbaum et al. 2005a).

For measurements of individual cluster lenses, the best way
around this problem is to use some colour-based criterion that re-
moves the cluster member galaxies. Without multicolour imaging,
contamination of the lensing signal can be several tens of per cent
on a few hundred h−1 kpc scales (Broadhurst et al. 2005; Limousin
et al. 2007), and even with it, there may be residual dilution of the
signal of approximately 10 per cent on those scales (Hoekstra 2007;
Okabe et al. 2009). This scale-dependent suppression of the signal
results in underestimation of the cluster mass and concentration.

2.3.3 Intrinsic alignments

Intrinsic alignments of galaxy shapes with the local tidal field can
affect cluster lensing measurements when cluster member galaxies
that are treated as sources actually have some mean alignment of
their shapes radially towards the cluster centre. This effect, which

leads to a suppression of the lensing signal that is worse at smaller
transverse separations, has been detected observationally in several
contexts (Agustsson & Brainerd 2006; Mandelbaum et al. 2006a;
Faltenbacher et al. 2007; Hirata et al. 2007; Siverd, Ryden & Gaudi
2009). Its amplitude varies with cluster mass, member galaxy type
and separation from the cluster centre.

The best way to avoid this effect is to remove cluster member
galaxies from the source catalogue, but a perfect removal is often
not possible, as described in Section 2.3.2 and references therein.
When using a very large stacked sample, the amplitude of the effect
may be roughly estimated using the estimated shear from the sample
of galaxies that were chosen based on the colour–redshift relation
to be cluster member galaxies. This test, however, is only possible
with good colour information for the source galaxies. We defer a
detailed discussion of the effects of intrinsic alignments on weak
lensing cluster mass estimates to future work, but the sign is always
to lower the signal (and therefore mass) in a way that is worse at
smaller cluster-centric radius.

2.3.4 Non-weak shear and magnification effects

The measured weak lensing signal is not precisely the tangential
shear γ t, but rather the reduced shear g = γ t/(1 − κ), where κ =
�/�c is the convergence. For a typical cluster density profile, the
difference between g and γ t is of the order of unity at the critical
radius where κ = 1 (that depends on the redshift, but can be as
large as 100 h−1 kpc) reducing to a few per cent out to transverse
separations of ∼500 h−1 kpc, beyond which the assumption that g ≈
γ t is quite accurate. This distinction may be explicitly taken into
account using parametric mass models (Mandelbaum et al. 2006b),
but is typically ignored in non-parametric mass estimation (though
since those estimates usually do not rely on the shear on small
scales, this neglect is not necessarily a problem).

A related effect is magnification, which alters the source
galaxy population by changing the measured fluxes and sizes4

(Mandelbaum et al. 2005a; Schmidt et al. 2009). As a result, their
redshift distribution may change, and the number density of sources
near lens galaxies typically differs from that in the field. Further-
more, if a correction is made to the observed weak lensing sig-
nal for stacked clusters to account for the dilution due to cluster
member galaxies included in the source sample, as suggested in
Section 2.3.2, then this correction must be carried out by using the
observed source number densities relative to that around random
points. The boost factor is supposed to only correct for changes
in source number density due to clustering (which introduces un-
lensed galaxies into the source sample). Since the number density
of lensed galaxies may legitimately be altered by magnification,
magnification can lead to incorrect boost factors. This effect may
be accounted for using parametric mass modelling, provided that
the properties of the source sample at the flux and apparent size
limits is reasonably well understood (Mandelbaum et al. 2006b).

2.4 Summary of the challenges and how we model them

The challenges discussed in the previous two sections result in
three types of changes in the lensing signal. One type of change is

4 The change in apparent size may not be important for typical photometric
data, but weak lensing measurements require imposition of an apparent size
cut on the galaxies to ensure that they are well-resolved relative to the point
spread function (PSF).
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an elevation (suppression) of the lensing signal on small scales that
changes sign at some value of transverse separation to become a
suppression (elevation). For example, this change may result from
an unknown dark matter concentration and baryonic effects. The
second type of change is a uniform suppression or elevation of
the lensing signal in the inner cluster regions, such that the lens-
ing signal gradually reaches the expected value at and above some
value of transverse separation. This change may result from clus-
ter centroiding errors, dilution of the lensing signal due to cluster
member galaxies and/or intrinsic alignments, non-weak shear, and
magnification-induced errors in the source redshift distribution and
number density. The exact functional forms for and magnitudes of
these changes, and their characteristic scale radii, vary depending
on the situation. However, we will use two models, one for each
type of change. The final type of change in the lensing signal that
we consider is a uniform calibration offset.

The profiles we use for our test cases include pure NFW profiles,
and the cluster lensing signal observed in N-body simulations. We
modify the concentrations of these test profiles, apply a model for
the effects of cluster centroiding errors based on mock catalogues
(Johnston et al. 2007) and rescale them all to mimic calibration
offsets. However, we do not want to rely too much on our modelling
of these effects (as concentrations and a specific centroid error
model) being correct in detail. Thus, if cluster mass determination
is to be robust, we need estimators that are as insensitive to these
types of changes in cluster profile as possible. Note that a key feature
of all three types of changes in profile is that they affect the inner
cluster regions. This fact leads to the requirement that the small-
scale information is suppressed, which will motivate a new statistic
introduced in this paper.

In all cases, we use spherically symmetric profiles, as is appropri-
ate for stacked cluster lensing analyses. The observed lensing profile
is roughly equivalent to the spherical average of the underlying tri-
axial density profiles of the dark matter haloes, so that the cluster
masses can be recovered to few per cent accuracy with mass estima-
tion assuming spherical profiles (Mandelbaum et al. 2005b; Corless
& King 2009). For individual cluster lensing estimates, however,
there is an additional level of complication due to the assumption
of a spherical profile: individual deviations in the form of the pro-
file from the assumed form due to mergers, substructure (King,
Schneider & Springel 2001), and deviations from a spherical shape
(Clowe, De Lucia & King 2004; Corless & King 2007) can cause
tens of per cent uncertainties in cluster mass model parameters. We
do not attempt to estimate the uncertainties for individual cluster
lensing analyses due to these effects, relying instead on previous
work.

2.5 Signal due to other mass

The measured lensing signal is caused by the projected mass distri-
bution around the cluster, and consequently it includes some con-
tributions that are not part of the cluster halo, which will affect the
mass estimates. In the case of stacked cluster lensing analyses, the
average over these contributions from all clusters in the stack results
in the so-called halo–halo term, which can be modelled simply using
the cluster-matter cross-power spectrum as in, e.g., Seljak (2000)
and Mandelbaum et al. (2005b). This term becomes dominant on
several h−1 Mpc scales. While here we use scales where this term is
sub-dominant, we will consider the question of how the estimated
masses may be biased if this term is not explicitly modelled but is
instead neglected. This failure to model the halo–halo term should
tend to pull the mass estimates upwards, since mass that is not part

of the cluster mass distribution will be attributed to the cluster. Our
approach is to simply use the cluster lensing signal from simulations
without explicitly decomposing it into one- and halo–halo terms;
thus, mass that is not part of the cluster mass distribution itself is im-
plicitly included in our numerical predictions of the cluster lensing
signal.

For individual cluster lensing analyses, the effect of matter that
is not part of the cluster on the lensing signal is more complex,
because unlike for stacked analyses, no averaging process occurs
over the structures around many clusters. As a result, local non-
virialized structure (Metzler et al. 1999; Metzler, White & Loken
2001) and LSS (Hoekstra 2001, 2003; Dodelson 2004) can appear in
the cluster lensing signal on all scales, not just large scales, causing
both an average bias and significant scatter in the mass estimates. A
recent numerical study of LSS projection effects on weak lensing
cluster counts (Marian, Smith & Bernstein 2009) has shown that,
whilst there is scatter and bias in the M2D–M3D relation, the utility
for such data to constrain cosmological parameters through the mass
function is not impaired. Moreover, if one uses carefully constructed
aperture mass shear filters, then the bias arising from ‘correlated’
LSS can be reduced to the per cent level (Marian, Smith & Bernstein
2010). However, the impact of ‘chance’ projections along the line-
of-sight on the mass estimates is still relatively poorly quantified.
While we use simulations to assess the effect of the halo–halo term
on stacked cluster analyses that neglect it, a detailed treatment of
this issue for individual cluster lensing analyses is beyond the scope
of this paper.

2.6 Parametric modelling of cluster masses

In principle, we can model the cluster-galaxy weak lensing signal
as a sum of two terms, the first due to the BCG stellar component,
only important on scales below ∼100 h−1 kpc, and the second due
to the dark matter halo. Typically, the halo is modelled using the
broken power-law NFW density profile (Navarro, Frenk & White
1996):

ρ(r) = ρs

(r/rs) (1 + r/rs)
2 , (7)

where the scale radius rs is the scale at which the logarithmic slope,
d ln ρ/d ln r, is equal to −2. While this approach to cluster mass
estimation is fairly standard, recent work (Merritt et al. 2006; Gao
et al. 2008) suggests that the Einasto profile (Einasto 1965),

ρ(r) = ρse
(−2/α)[(r/rs)α−1], (8)

(where α has a weak mass dependence with a value around 0.15)
may better describe the dark matter halo profiles. We note here that
on the scales we use for modelling in this work, the two profiles
agree to within a few per cent. Thus, the NFW profile is sufficient
for our purposes.

It is convenient to parametrize the NFW profile by two param-
eters, the concentration c200b = r200b/rs and the virial mass M200b.
The virial radius r200b and ρs can be related to M200b via consistency
relations. The first is that the virial radius is defined such that the
average density within it is 200ρ:

M200b = 4π

3
r3

200b (200ρ) . (9)

The second relation, used to determine ρs from M200b and c200b,
is simply that the volume integral of the density profile out to the
virial radius must equal the virial mass (though when computing
the lensing signal, we do not truncate the profiles beyond r200b). The
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NFW concentration is a weakly decreasing function of halo mass,
with a typical dependence as

c200b = c0

1 + z

(
M

M0

)−β

, (10)

with β ∼ 0.1 (Bullock et al. 2001; Eke, Navarro & Steinmetz 2001;
Neto et al. 2007), making this profile a one-parameter family of
profiles. The normalization of equation (10) depends on the non-
linear mass (and hence cosmology), but for the typical range of
models, one expects c200b = 5–8 at M0 = 1014 h−1 M
. Some work
(Zhao et al. 2003, 2009; Neto et al. 2007) suggests that this mass
dependence levels off to a constant concentration above some high
value of mass. The precise value remains somewhat controversial,
with c200b ∼ 5–6 in Neto et al. (2007) and Zhao et al. (2009), but
some other analyses suggest a significantly higher value around
c200b ∼ 7–8 at z = 0 (J. Tinker, private communication). In addition,
if one applies the typical concentration–mass relation assumed in,
e.g., Hoekstra (2007) to very high mass clusters, one finds very small
concentration values, e.g., c200b ∼ 4 at M ∼ 1015 M
. In this paper,
we will assess the effect of assuming the wrong concentration value
in parametric mass estimates, taking c200b = 4–7 as the plausible
range given the current level of uncertainties.

While we demonstrate our cluster mass estimation procedure us-
ing stacked lensing data for which a spherical model is appropriate,
one can easily apply the same techniques using lensing data for
individual clusters. In that case, parametric profile fitting may use
a circular average of the shear profile, or a full shear map with the
inclusion of a projected ellipticity and position angle among the fit
parameters. Here, for simplicity, we assume the former.

There are two significant practical differences between stacked
survey data versus data for individual clusters: first, survey data are
typically available to large transverse separations, whereas data for
individual clusters are limited by the field of view (FOV) of the
telescope used for the observations. For typical cluster redshifts in
cluster lensing analyses, 2 h−1 Mpc is a typical maximum radius to
which the lensing signal can be measured. Secondly, stacked lensing
data typically yield a concentration that is around the mean concen-
tration of the sample used for the stacking (Mandelbaum et al.
2005b). As a result, the main uncertainty in what concentration
to assume for parametric mass estimation comes from differences
between the published concentration–mass relations from N-body
simulations, the uncertainty in cosmological parameters and the un-
certainty about how baryonic cooling may have changed the halo
concentration. In contrast, for individual cluster data the concen-
tration is likely to vary significantly from cluster to cluster due
to the intrinsic lognormal concentration distribution at fixed mass;
this variation of ∼0.15 dex (Bullock et al. 2001) is non-negligible
compared to the sources of systematic uncertainty about halo con-
centration.

In this paper, when studying the effects of parametric models
on fits for the mass, we choose to fix the halo concentration as
in some individual analyses, such as Hoekstra (2007), and some
stacked analyses, such as Reyes et al. (2008). Other works have fit
simultaneously for a concentration and a mass (e.g. Mandelbaum
et al. 2008a; Okabe et al. 2009). In the latter case, there is no
concern about biases in the mass due to assumption of the wrong
concentration, but small biases may remain due to deviations of
the profile from NFW, and there is a loss of statistical power so
that the mass estimates become noisier. Furthermore, if there are
systematic errors in the data (such as centroiding errors or intrinsic
alignments) that do not perfectly mimic a change in concentration,
those analyses may still find a biased result for the mass. For the

most part, we wish to characterize systematic biases that can occur
when the concentration is fixed, but we will mention the effects of
allowing it to vary.

Finally, we note that parametric mass estimation lends itself eas-
ily to corrections for effects such as non-weak shear and magnifica-
tion bias (Mandelbaum et al. 2006b). These effects can simply be
incorporated into the model before comparing with the data.

2.7 Non-parametric modelling of cluster masses

Another common approach to cluster mass estimation is the non-
parametric aperture mass statistic. In this work, we present tests
of the ζ c statistic (Clowe et al. 1998), which is related to the ζ

statistic of Fahlman et al. (1994). ζ c has been used in several recent
cluster modelling papers, including Hoekstra (2007) and Okabe
et al. (2009). This statistic is defined using three radii: the first, R1,
is the transverse separation within which we wish to estimate the
projected mass and the second and third, Ro1 and Ro2, define an
outer annulus. ζ c is equal to the mean surface density within R1

relative to that in the outer annulus:

ζc(R1) = κ(R < R1) − κ(Ro1 < R < Ro2), (11)

where κ is the scaled surface density or convergence, κ = �/�c.
The aperture mass statistic can be measured using the observed
shear γ t(R) using

ζc(R1) = 2
∫ Ro1

R1

d ln R γt(R)

+ 2

1 − (Ro1/Ro2)2

∫ Ro2

Ro1

d ln R γt(R). (12)

The 2D (projected or cylindrical) mass M2D(R1) within R1 can be
estimated from ζ c by

M2D(R1) = πR2
1 �c ζc(R1). (13)

Typically, R1 is chosen to be either a fixed physical scale or a
spherical overdensity radius (determined either using a parametric
model to estimate the appropriate radius or iteratively using the
aperture mass estimate from the data). Various approaches are taken
to the second term in equation (12), which should ideally be sub-
dominant to the first, given the scaling of shear with radius. For
example, Hoekstra (2007) use the parametric fits to an NFW profile
with fixed concentration parameter to estimate the amplitude of
the second term. In contrast, Okabe et al. (2009) neglect it, after
choosing Ro1 to be 10–15 arcmin, depending on where in the cluster
field there appeared to be significant structures that they wished to
avoid.5 For their typical cluster redshifts, this choice corresponds
to roughly 2–2.5 comoving h−1 Mpc in transverse separation. We
will consider the effect of both approaches in our tests below.

The aperture mass statistic is often used because of its insensitiv-
ity to the details of the cluster mass profile. Furthermore, because it
estimates the mass within R1 using the shear on scales larger than
R1, it is not very sensitive to systematics that affect the signal in
the inner parts, such as contamination by cluster member galaxies,
intrinsic alignments and centroiding errors. This decreased sensitiv-
ity to systematics comes at a price, however: as shown in equation
(12), the determination of ζ c requires integration over the measured
shear profile in logarithmic annular bins, which can often be quite

5 M. Takada, private communication.
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noisy. Our tests will help quantify the extent to which this noisi-
ness increases the statistical error on the mass estimates relative to
parametric modelling.

An additional disadvantage to the use of the aperture mass statis-
tic and the derived M2D is that cosmological analyses using the
mass function, and any comparison against X-ray-derived masses,
requires the use of a 3D (enclosed) mass, M3D. The conversion
from M2D to M3D requires the assumption of a profile, such as NFW
(for which a concentration parameter must either be assumed or be
derived from parametric fits). This conversion factor may be de-
rived analytically from expressions for the enclosed M2D and M3D

as in Wright & Brainerd (2000). Okabe et al. (2009) show that the
conversion factor only weakly depends on the concentration, but
for analyses that seek to determine the mass to 10 per cent, this
dependence on concentration is still important. A way of avoiding
this necessity would be to determine the mass function in terms of
projected masses in the simulations, rather than the typical practise
of using M3D within some spherical overdensity; however, given
that this has not yet been done, we also test the effect of this M2D

to M3D conversion.

2.8 New statistic for mass estimation

As noted previously, one complication in parametric modelling of
the lensing signal ��(R) is the sensitivity to the mass profile on
small scales, which is particularly prone to theoretical and obser-
vational uncertainty. We wish to avoid sensitivity to small scales,
which comes from the first term on the right-hand side of equa-
tion (4), via �(< R) (defined in equation 6).

Thus, we must turn the lower limit of integration in equation (6)
from R = 0 to some larger scale that is not strongly affected by
small-scale systematics such as intrinsic alignments and centroiding
errors. We refer to this new minimum scale as R0, and achieve our
goal by defining the annular differential surface density (ADSD)

ϒ(R; R0) = ��(R) − ��(R0)

(
R0

R

)2

= 2

R2

∫ R

R0

�(R′)R′ dR′ − �(R) + �(R0)

(
R0

R

)2

.

(14)

As shown in equation (14), by subtracting off ��(R0) (R0/R)2

from the observed lensing signal, we achieve our goal of remov-
ing the sensitivity to scales below R0. The resulting robustness of
the analysis to systematic errors comes at the expense of introduc-
ing slight (∼10 per cent level) anti-correlations between the signal
around R0 and the signal at larger scales, plus increased statistical
errors.

For some of this paper, we model theoretical and observational
uncertainties in �� as changes in the NFW concentration parame-
ter. However, as already discussed, some systematics are manifested
in different ways (e.g. centroiding errors) that must be modelled
rather differently. If one truly believes that unknown concentration
is the dominant systematic uncertainty, then the simplest solution
would be to fit �� to an NFW profile and then marginalize over
the concentration. Since we do not believe that this procedure is
adequate for all theoretical and observational systematics, paramet-
ric modelling of ϒ(R; R0) to remove all small-scale information is
a better solution that will give more accurate mass estimates. For
some systematics, we will see in Section 5 that we do not, in gen-
eral, have to select R0 to be completely above the affected scales,
because the errors in ϒ(R; R0) change sign and thus nearly cancel

out of the mass estimation, despite contributing to ��(R) with the
same sign at all scales.

In practice, to use the ADSD ϒ(R; R0) we must estimate ��(R0)
from the data themselves. In this work, we have tried two methods
of doing so based on fits to the following functional form for ��

in the neighbourhood of R0:

��(R) = ��(R0)

(
R

R0

)p+q(R/R0)

. (15)

In the simpler method, q = 0, whereas in the more complex method
it is a free parameter in the fit (which generally allows for a better
fit to broken power-law profiles such as NFW, but also increases
the statistical errors on the mass). We primarily present results of
the latter procedure, but discuss the trade-offs between the two in
Section 5.

Finally, we note that the ADSD ϒ(R; R0) is well-suited not only
to estimating cluster masses, but also to cosmological studies, where
the choice of R0 to be outside of the host dark matter halo virial
radius allows contributions to the lensing signal from small-scale
information to be suppressed (Baldauf et al. 2010).

3 SI M U L AT I O N S

To obtain realistic cluster lensing profiles for our tests of mass
inference methods, we use the ‘zHORIZON’ simulations, a suite
of 30 pure dissipationless dark matter simulations of the �CDM
cosmology (Smith 2009). Each simulation models the dark matter
density field in a box of length L = 1500 h−1 Mpc, using Np = 7503

dark matter particles with a mass of Mdm = 5.55 × 1011 h−1 M
.
The cosmological parameters for the simulations in Table 1 are in-
spired by the results of the WMAP cosmic microwave background
experiment (Spergel et al. 2003, 2007). For this work, we use eight
of the 30 simulations, and probe a volume of 27 h−3 Gpc3 at red-
shift z = 0.23. The initial conditions were set up at redshift z =
50 using the 2LPT code (Scoccimarro 1998). The evolution of the
Np equal-mass particles under gravity was then followed using the
publicly available N-body code GADGET-II (Springel 2005). Finally,
gravitationally bound structures were identified in each simulation
snapshot using a Friends-of-Friends (FoF; Davis et al. 1985) al-
gorithm with linking length of 0.2 times the mean inter-particle
spacing. We rejected haloes containing fewer than 20 particles, and
identified the potential minimum of the particle distribution asso-
ciated with the halo as the halo centre. We note that using the FoF
halo finder might cause some problems with the halo profile, since
FoF tends to link together nearby haloes. In total, we identify haloes
in the mass range 1.1 × 1013 h−1 M
 ≤ M200b ≤ 4 × 1015 h−1 M
.

Table 1. Cosmological parameters adopted for
the simulations: matter density relative to the
critical density, dark energy density param-
eter, dimensionless Hubble parameter, mat-
ter power spectrum normalization, primordial
power spectrum slope and dark energy equa-
tion of state p = wρ.


m 
� h σ 8 ns w

0.25 0.75 0.7 0.8 1.0 −1
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3.1 Calculation of the signal

We calculate the spherically averaged correlation function in the
simulations using direct counts of mass particles in spherical shells
about the halo centres of the cluster stack, Ncl,m(ri). Our estimator
for the correlation function is

ξcl,m(ri) = Ncl,m(ri)

N
(rand)
cl,m (ri)

− 1, (16)

where N(rand)
cl,m (ri) = NclNmVshell/Vbox is the expected number of pairs

for a purely random sample (for Ncl and Nm defined as the total
number of clusters and matter particles in the box, respectively),
and Vshell = 4π (r3

i+1 − r3
i )/3 is the volume of the spherical shell at

ri. To reduce the computational cost of this calculation, we dilute
the dark matter density field by a factor of 24, using only 20 × 106

dark matter particles. We have confirmed the convergence of this
procedure.

3.2 Correction for resolution effects

Despite the large dynamical range of our simulations, our resolution
is still limited on small scales. The force softening length was set to
70 h−1 kpc, so our results may not be reliable for r � 200 h−1 kpc.
This resolution problem limits our ability to predict the excess
surface mass density ��(R) on small scales, since this quantity
is affected by the average over the correlation function on even
smaller scales. Therefore, to correct for this problem, we continue
the profile towards small scales using the NFW profile as follows:

1 + ξ
(stitch)
cl,m (r) =

{
ρ

(NFW)
cl,m (r)/ρ̄, for r < rstitch

ρ
(sim)
cl,m (r)/ρ̄, for r ≥ rstitch.

(17)

We used the combinations (rstitch = 0.2 h−1 Mpc, c200b = 5) and
(rstitch = 1.0 h−1 Mpc, c200b = 7).

Virial radii and masses are calculated by imposing the constraint

3

r3
200bδ

∫ rvir

0
(r ′)2 dr ′[1 + ξcl,m(r ′)] = 3M200b

4πr3
200bρ̄δ

= 1. (18)

The overdensity of haloes is assumed to be δ = 200 times the
background density. The profile is then spline fitted and integrated
along the line of sight over separations −50 ≤ χ ≤ 50 h−1 Mpc
from the cluster.

4 DATA

The SDSS (York et al. 2000) imaged roughly π steradians of the
sky, and followed up approximately one million of the detected ob-
jects spectroscopically (Eisenstein et al. 2001; Richards et al. 2002;
Strauss et al. 2002). The imaging was carried out by drift-scanning
the sky in photometric conditions (Hogg et al. 2001; Ivezić et al.
2004), in five bands (ugriz) (Fukugita et al. 1996; Smith et al. 2002)
using a specially designed wide-field camera (Gunn et al. 1998).
These imaging data were used to create the cluster and source cat-
alogues that we use in this paper. All of the data were processed
by completely automated pipelines that detect and measure photo-
metric properties of objects, and astrometrically calibrate the data
(Lupton et al. 2001; Pier et al. 2003; Tucker et al. 2006). The SDSS
was completed with its seventh data release (Stoughton et al. 2002;
Abazajian et al. 2003, 2004, 2005; Finkbeiner et al. 2004; Adelman-
McCarthy et al. 2006, 2007, 2008; Abazajian et al. 2009).

In this paper, the only data that we use are the maxBCG cluster
lensing data previously analysed in Mandelbaum et al. (2008a).

Because the data were described there in detail, here we simply
give a brief summary.

The parent sample from which our lens samples were derived
consists of 13 823 MaxBCG clusters (Koester et al. 2007a,b), iden-
tified by the concentration of galaxies in colour-position space using
the well-known red galaxy colour–redshift relation (Gladders & Yee
2000). The sample is based on 7500 deg2 of imaging data in SDSS.
There is a tight mass–richness relation that has been established
using dynamical information (Becker et al. 2007) and weak lens-
ing (Johnston et al. 2007; Mandelbaum et al. 2008a; Reyes et al.
2008) across a broad range of halo mass. The redshift range of the
maxBCG sample is 0.1 < z < 0.3; within these redshift limits, the
sample is approximately volume-limited with a number density of
3 × 10−5 (h/ Mpc)3, except for a tendency towards higher number
density at the lower end of this redshift range (Reyes et al. 2008).
In this paper, we use scaled richness in red galaxies above 0.4L∗
within R200, known as N200, as a primary tracer of halo mass. For
the data in Mandelbaum et al. (2008a) that we use here, the richness
range is 12 ≤ N200 ≤ 79 divided into six bins (12 ≤ N200 ≤ 13, 14 ≤
N200 ≤ 19, 20 ≤ N200 ≤ 28, 29 ≤ N200 ≤ 39, 40 ≤ N200 ≤ 54, and
55 ≤ N200 ≤ 79).

The source sample with estimates of galaxy shapes is the same
as that originally described in Mandelbaum et al. (2005a). This
source sample has over 30 million galaxies from the SDSS imaging
data with r-band model magnitude brighter than 21.8, with shape
measurements obtained using the REGLENS pipeline, including
PSF correction done via re-Gaussianization (Hirata & Seljak 2003)
and with cuts designed to avoid various shear calibration biases. The
overall calibration uncertainty due to all systematics was originally
estimated to be eight per cent (Mandelbaum et al. 2005a), though the
redshift calibration component of this systematic error budget has
recently been decreased due to the availability of more spectroscopic
data (Mandelbaum et al. 2008b). The absolute mass calibration is
not a critical issue for this paper, in which we study the changes
in estimated mass for a given observed signal when using different
estimation procedures.

5 R ESULTS

5.1 Purely analytical profiles

In this section, we add realistic levels of noise to pure NFW profiles
to create simplified mock cluster density profiles. The profiles that
we use have log10[hM200b/M
] = 14.0 and 14.8, with c200b = 4 and
c200b = 7 (see properties of these profiles listed in Table 2). Using
these profiles, we can test the dependence of parametric and non-
parametric modelling on assumptions about the NFW concentration
parameter. We caution that these profiles cannot be used to test for
the effects of deviations from an NFW profile on the extracted
masses when fitting assuming NFW profiles, or for the effects of
LSS contributions to the lensing signal. These are discussed in the
next section.

These values of concentration were selected as the extremes of
the variation allowed with cosmology, and with the various de-
terminations of the concentration–mass relation in the literature,
including results suggesting that the concentration stops decreasing
with mass at the high-mass end (Zhao et al. 2003, 2009; Neto et al.
2007). In addition, we consider that baryonic effects may increase
the concentration of the dark matter profile (for an extreme example,
see Rudd et al. 2008). Furthermore, for individual cluster lensing
analyses, we must consider the fact that dark matter haloes exhibit
a large scatter in concentration (0.15 dex; Bullock et al. 2001), so
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Table 2. Properties of cluster lensing profiles, both analytical (pure NFW) and those from N-body simulations. We show the mean
number density of the sample for the mass-selected samples from N-body simulations; the virial mass and radius M200b and r200b

(exact value for the pure NFW profiles, and the ensemble mean for the samples from N-body simulations); the analytical profiles
used for resolution corrections of the N-body simulations and the best-fitting NFW profiles when fitting the simulation lensing signals
��(R) for scales 0.2 ≤ R ≤ 2 h−1 Mpc.

Best-fitting NFW parameters
n M200b r200b Stitching M200b c200b

[10−6 (h/Mpc)3] [1014 h−1 M
] [ h−1 Mpc] [1014 h−1 M
]

Pure NFW profiles, c200b = 4 and 7

- 1.0 1.2 - - -
- 6.3 2.2 - - -

N-body simulation profiles

0.25 7.9 2.4 c200b = 7 at 1 h−1 Mpc 7.9 6.6
0.25 7.5 2.3 c200b = 5 at 0.2 h−1 Mpc 7.8 4.6

2 4.2 1.9 c200b = 7 at 1 h−1 Mpc 4.2 6.6
2 4.0 1.9 c200b = 5 at 0.2 h−1 Mpc 4.3 4.6
16 1.6 1.4 c200b = 7 at 1 h−1 Mpc 1.7 6.5
16 1.6 1.4 c200b = 5 at 0.2 h−1 Mpc 1.7 4.5

the variation we have used is not as extreme in this case as it may
be for a stacked cluster analysis. The change in concentration from
4 to 7 is less than 2σ of this intrinsic scatter.

To generate the profiles, we begin with the cluster halo density
profile ρcl(r), which is defined in very narrow logarithmic (3D)
radial bins. We then numerically integrate this profile along the
line-of-sight, for comoving line-of-sight separations |χ | ≤ r200b, to
define �(R) in very narrow logarithmic bins in transverse separation
R. We calculate �(< R) by converting the integral in equation
(6) to a summation. ��(R) can then be computed directly from
�(<R) − �.

To make this theoretical signal, defined in very narrow bins with-
out any noise, look like an observed signal, we then do the following.
First, we use a spline to determine the values of �� at the centre of
the bins in R used to calculate the real signal for maxBCG clusters in
Mandelbaum et al. (2008a). Secondly, we choose a cluster richness
subsample from that paper with roughly comparable mass to the
theoretical signal we are using. We estimate a power-law function
for the (bootstrap-determined) errors as a function of radius from
our selected cluster subsample to avoid the influence of any noise
in the determination of the covariances. We use this power law to
assign a variance to the theoretical signal as a function of transverse
separation. Finally, since the signal in the different radial bins was
found to be nearly uncorrelated for all scales used in that paper, we
add noise to our theoretical signals using a Gaussian distribution
with a diagonal covariance matrix. This procedure was performed
1000 times to generate 1000 realizations of the lensing data. For
context, the input level of noise is typically sufficient to achieve
∼20 per cent statistical uncertainty on the best-fitting masses at the
1σ level, when using �� with R < 4 h−1 Mpc to fit for the mass.

The input lensing signals ��(R) and ϒ(R; R0) (before the ad-
dition of noise) with several R0 values are shown in Fig. 1 for the
higher mass value, log10[hM200b/M
] = 14.8. Since we will also
test the effect of centroiding errors, which were discussed in de-
tail in Section 2.2, we apply the offset model from Johnston et al.
(2007). For offset fractions, we have chosen 20 per cent for this
mass scale; for log10[hM200b/M
] = 14.0, we will use 35 per cent
(roughly in accordance with the trends with richness in that paper).

As expected, ��(R) for c200b = 7 is higher than that for c200b = 4
on small scales; the radius at which they cross over is relatively large

because ��(R) includes information from �(R) for small R. For the
3D ρ(r), the cross-over radius is within the virial radius by necessity,
since the masses are the same. As we increase R0 in ϒ(R; R0), the
trend going from c200b = 4 to c200b = 7 gets less pronounced, because
even though ��(R) is larger on small scales for c200b = 7, that also
means the value that is subtracted off to obtain ϒ(R; R0) is larger.
Thus, by the time we reach R0 = 1 h−1 Mpc, ϒ(R; R0) is actually
higher for c200b = 4 than for c200b = 7 for all R > R0.

As shown in the bottom panel, the effect of centroiding errors is
quite pronounced on ��(R). The characteristic scale of the offsets
is 0.42 h−1 Mpc, and the signal is noticeably suppressed out to three
times this scale. The use of ϒ(R; R0) ameliorates this effect, and it
even gets reversed for larger R0, similar to what happens with the
different concentration values. While for ��(R), the offsets cause
suppression of the signal for all affected scales, for ϒ(R; R0), the
signal is suppressed on smaller scales and elevated on larger scales,
which suggests that biases in parametric mass modelling due to
these offsets may be smaller because the small- and large-scale
changes in sign may cancel out.

5.1.1 Parametric modelling

In this section, we begin by fitting the pure NFW lensing signals for
log10[hM200b/M
] = 14.8 to pure NFW profiles. This procedure
allows us to assess the systematic uncertainty due to the assumption
of a fixed concentration when using various parametric fit proce-
dures. For each noise realization, we attempted to determine a mass
using several fitting procedures:

(i) Assuming an NFW profile with c200b = 4 and c200b = 7.
(ii) Using ��(R) with minimum fit radii (Rmin) values rang-

ing from 0.1 to 2 h−1 Mpc, maximum fit radii of Rmax = 1, 2 and
4 h−1 Mpc.

(iii) Using ϒ(R; R0) with R0 = 0.25, 0.5 and 1 h−1 Mpc, again
with a variety of Rmin values (always with Rmin > R0). The value
of ��(R0) was determined on each noisy realization rather than
from the well-determined mean over those scenarios, consistent
with a real measurement for which we only have one observation of
the lensing signal for a given sample. The estimation was done by
fitting the data to the three-parameter functional form in equation
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Figure 1. Top panel: from top to bottom, we show ��(R) and ϒ(R; R0) with R0 = 0.25, 0.5 and 1 h−1 Mpc. The solid lines are for c200b = 4 and the dashed
lines are for c200b = 7; in both cases, log10[hM200b/M
] = 14.8. Middle panel: without inclusion of centroid offsets, we show the ratio of these four quantities
for c200b = 4 versus c200b = 7, where the line types indicate which quantity is used to construct the ratio, and the horizontal dotted line indicates a ratio of 1.
Bottom panel: assuming c200b = 7, we show the ratio of these four quantities when including centroiding offsets versus not, with the same line styles as in the
middle panel.

(15) from 0.1 < R < 0.5, 0.3 < R < 1, and 0.7 < R < 1.3 h−1 Mpc
for R0 = 0.25, 0.5 and 1 h−1 Mpc, respectively.

In detail, the fits to ��(R) are performed via χ 2 minimization
in comparison with theoretical signals that were generated via the
procedure described at the start of Section 5.1. Thus, for each of
the lensing signal realizations j, denoted by ��

(data)
j (Ri) (for bins

in transverse separation with index i such that Rmin ≤ Ri ≤ Rmax)
with noise variance σ 2(��j(Ri)), we use the Levenberg–Marquardt
algorithm (Levenberg 1944; Marquardt 1963; Press et al. 1992) to
find the NFW profile mass that minimizes

χ 2
j =

∑
i

[
��

(data)
j (Ri) − ��(model)(Ri |M200b, c200b)

]2

σ 2(��j (Ri))
(19)

at fixed c200b.
The fits to ϒ(R; R0) require an additional step: the conversion

of both the theoretical signals [��(model), defined without noise in
very narrow bins in R] and the mock data [��(data), defined in
realistically broad bins with added noise] from ��(R) to ϒ(R; R0).
In practice, the theoretical signal is defined such that we can very
accurately interpolate to determine the value of ��(R0), which is
then used to construct ϒ(R; R0) directly using equation (14). For the
noisy mock data, we must use a different procedure. We fit to ��(R)
to estimate ��(R0) using equation (15), so that ϒ(R; R0) can be
constructed. We will shortly discuss more details of this procedure,

because we find that the exact way of getting ��(R0) is important:
some methods introduce a bias on the mass, others add extra noise,
neither of which is desirable. Once ϒ(R; R0) is determined for the
mock signals, we then determine its covariance matrix using the
distribution of values for all data sets. Finally, we minimize the χ 2

function for each mock realization using equation (19) with ϒ(R;
R0) in place of ��(R).

We then examined the distribution of best-fitting masses for the
1000 noise realizations to find the mass at the 16th, 50th (me-
dian) and 84th percentile. We define the spread in the masses, σ M,
as being half the difference between the 84th and 16th percentile
(which would be the standard deviation for a Gaussian distribution).
The mass distributions are sufficiently close to Gaussian that using
the mean rather than the median, and using the standard deviation
directly, would not change the plots substantially. The median best-
fitting mass M200b,est relative to the input mass M200b,true and the
spread in the best-fitting masses are shown for both input profiles
and each fit method as a function of Rmin in Fig. 2. The criterion
that we apply when selecting a robust mass estimator is that the
ratio M200b,est/M200b,true should not depend strongly on the input or
output c200b(though a systematic offset independent of input and
output c200b is acceptable, since simulations can be used to correct
for it).

We begin by considering the trends in the ratio M200b,est/M200b,true

with fitting method. When assuming c200b = 4 while fitting to the
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Figure 2. Results of parametric mass fits on noisy realizations of pure NFW profiles, with input log10[hM200b/M
] = 14.8 and c200b = 7, but c200b = 4
assumed in the fits. The top and bottom rows show the ratio M200b,est/M200b,true and the statistical error σ (M200b,est)/M200b,true, respectively. The latter is
shown normalized to the minimum value of σ (M200b,est)/M200b,true ∼ 0.2, which is obtained for the fit using the maximum information, ��(R) with Rmin =
0.1 and Rmax = 4 h−1 Mpc. The results are shown for various fitting methods (indicated with various line and point types shown on the plot) as a function of
the minimum fit radius Rmin. From left to right, the panels show increasing Rmax values of 1, 2 and 4 h−1 Mpc. On the upper rightmost panel, the thin (blue)
lines and points show the corresponding results for the log10[hM200b/M
] = 14.0 profile.

profile with true c200b = 7, as shown in Fig. 2, the fits to �� in
the upper right panel with Rmax = 4 h−1 Mpc give ∼25 per cent
overestimation of the mass for Rmin ≤ 0.5 h−1 Mpc, improving to
3 per cent with Rmin = 2 h−1 Mpc (with, however, a doubling of
the statistical error). The mass is overestimated in this case because
for the majority of the radial range used for the fitting, the lensing
signal for c200b = 4 for this mass is below that for c200b = 7 (Fig. 1),
so the fitting routine compensates for the discrepancy by returning
a higher mass. This trend of overestimated masses is decreased and
eventually even reversed in sign for ϒ(R; R0) as we increase R0, for
reasons that are clear from Fig. 1. The reverse situation, with input
c200b = 4 and assumed c200b = 7, leads to biases M200b,est/M200b,true

that are the inverse of the biases shown in Fig. 2, so we do not show
this case in the figures. As shown, when using ϒ(R; R0) with Rmin =
R0, the statistical error increases over the minimum possible value
from the ��(R) fits by factors of 1.14, 1.32 and 2.25 when using
R0 = 0.25, 0.5 and 1 h−1 Mpc, respectively.

When fitting ϒ(R; R0) for all R0 and Rmin, if we use a power
law to fit for ��(R0) (i.e. q = 0 in equation 15), then M200b,est

is consistently ∼3–5 per cent above M200b,true even if the correct
concentration is assumed in the fit. This overestimation of the mass
occurs because the data are not consistent with a power law. Due

to the trend of the signal with radius, the power-law fit tends to
underestimate ��(R0), thus overestimating ϒ(R; R0) and therefore
M200b,est. However, we find that a full three-parameter fit signifi-
cantly increases the noise, so we instead use a two-step procedure:
we first fit with fixed q = 0 in equation (15) to get a mass, then we
use the best-fitting signal to estimate q at R0, and use that fixed q
value for a second two-parameter fit for ��(R0) which is used for
a second fit to ϒ(R; R0) to get the mass. For the remainder of this
work, we present results using that fitting procedure in order to best
estimate the mass without increasing the noise too much.

Our criterion for a robust mass estimator on stacked cluster lens-
ing data is that it should have systematic error that is relatively
independent of the input c200b or the assumed c200b for the fit, at
least when compared to the size of the statistical error. However,
this robustness should not be achieved at the expense of too large an
increase in the statistical error. As shown, the fits to ��(R) do not
satisfy our robustness criterion, because assuming the wrong con-
centration can lead to a systematic error that is tens of per cent for
reasonable Rmin. ϒ(R; R0) with R0 = 0.25 h−1 Mpc improves some-
what on ��(R) in this regard, and for Rmin = 1 h−1 Mpc achieves a
good combination of low systematic error and only a small increase
in statistical error. ϒ(R; R0) with R0 = 0.5 h−1 Mpc satisfies our
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criterion for robustness when using Rmin = R0 while increasing the
error by about 20 per cent. A value of R0 = 1 h−1 Mpc erases too
much information and doubles the statistical errors. For individual
cluster lensing, the criterion for a robust mass estimator may dif-
fer, since if one adds many more clusters then the statistical error
may further decrease below the systematic error, so an even smaller
systematic error is required.

The systematic errors shown here may be overly pessimistic for
stacked data, given the wide variation in concentration that was
allowed relative to what is seen in N-body simulations. However,
several other systematics discussed in Sections 2.2 and 2.3 can
mimic a change in concentration, such as baryonic effects. Thus,
it is only reasonable that we should consider a broader range of
concentrations than in the N-body simulations. When considering
a narrower range, such as 4 < c200b < 5, the biases in the masses
when fitting to �� with a fixed concentration are typically of the
order of 10 per cent, or �2 per cent when fitting to ϒ(R; R0). For
individual cluster lensing data, given the large lognormal scatter
in concentration seen in simulations, these systematic errors we
quote are not overly pessimistic. Furthermore, at this level of S/N,
the fit χ 2 values are perfectly acceptable even for the wrong value
of concentration, so goodness-of-fit cannot be used to tell whether
there is a systematic error.

In the upper right panel of Fig. 2, there are thin (blue) lines
corresponding to a lower mass model that can be used to assess the
mass-dependence of these systematic biases. As shown, the mass
overestimation when fitting to ��(R) is not as severe for the lower
mass cluster as for the higher mass cluster at fixed Rmin (because
the strongly concentration-dependent part of the inner profile has
moved to smaller radii). The virial radius for this mass is about
1.85 smaller than for the higher mass model, suggesting that the
choice of R0 should be mass-dependent, with the optimal value of
15–25 per cent of the virial radius. In practice, this relation between
the virial radius and R0 could be achieved iteratively by choosing
some default value of R0, fitting with that value of R0 and then using
the resulting best-fitting mass to choose a more appropriate value
of R0 via

R0 = (0.25h−1 Mpc)

(
M200b

1014 h−1 M


)1/3

. (20)

Here, we have assumed 
m = 0.25 and a spherical overdensity of
200ρ̄, and use comoving coordinations.

We also note that the fitted masses are weakly cosmology-
dependent. For a fixed density profile, the mass that we estimate
depends on the assumed 
m, with M200b ∝ 
−0.25

m (we confirmed
this scaling for the limited range of 0.2 ≤ 
m ≤ 0.3). The 
m

dependence has two sources: first, we rescale the transverse sepa-
ration and signal amplitude to account for the 
m dependence of
the distance measures used to convert θ and γ t to R and ��, and
second (and more significantly), the halo mass definition changes
since we use a spherical overdensity of 200ρ. Thus, for higher 
m,
the overdensity we use is larger, which reduces the mass and virial
radius, also decreasing the concentration c200b since the scale radius
is held fixed.

While stacked cluster lensing analyses from large surveys can
provide cluster lensing data to tens of h−1 Mpc, individual cluster
lensing analyses that are not survey based typically have a limit of
Rmax = 1–2 h−1 Mpc depending on the cluster redshift and telescope
FOV. Consequently, we also explore the dependence of our results
on the maximum scale used for the fits. Based on Fig. 1, we expect
that the biases will be even higher in this case, since when restricting

to smaller scales the differences between the lensing profiles ��(R)
are more pronounced for the different values of c200b.

The results of this test are shown only for the
log10[hM200b/M
] = 14.8 and c200b = 7 profile, with assumed
c200b = 4, in the different columns of Fig. 2. As expected, when we
decrease Rmax (moving right to left across the figure), the systematic
errors increase fairly drastically. For Rmax = 1 h−1 Mpc, the best we
can achieve for the fitting methods tested here is with ϒ(R; R0) with
R0 = 0.5 h−1 Mpc, and even that method has a 25 per cent system-
atic error. For Rmax = 2 h−1 Mpc, ϒ(R; R0) with R0 = 0.5 h−1 Mpc
gives several per cent systematic errors for both Rmin = 0.5 and
1 h−1 Mpc. It is clear that the existence of data to Rmax = 4 h−1 Mpc
(≈ 2r200b) is very helpful in decreasing the systematic and statistical
errors.

These results suggest that the choice of mass estimator may de-
pend on the maximum scale to which the lensing data can be mea-
sured for a given data set. If 1 h−1 Mpc is the maximum scale for
which data are available, then truly robust parametric measures of
mass may be difficult to find; in the next section, we explore whether
non-parametric measures may be better than parametric ones in this
case. For larger values of Rmax, ϒ(R; R0) with R0 = 0.5 h−1 Mpc
seems adequate from the perspective of minimizing the combination
of systematic and statistical error.

We next consider the effect of cluster centroiding errors, which
were discussed in detail in Section 2.2. Note that our results here
are more general than that particular systematic error, since several
observational systematics in Section 2.3 have a similar form. We use
the signals with c200b = 4 and 7 for both log10[hM200b/M
] = 14.0
and 14.8, and apply the offset model from Johnston et al. (2007)
as described in the beginning of Section 5.1. It is important to note
that this is only one example of how photometric errors in imaging
data can cause centroiding errors for the cluster catalogue.

In Fig. 3, we show the results of the NFW mass fits to the profiles,
with this offset distribution imposed on the data but ignored in the fit.
Because Fig. 2 suggested that using ϒ(R; R0) with R0 = 1 h−1 Mpc
degrades the S/N unacceptably, we have only shown results for fits to
��(R) and for ϒ(R; R0) with R0 = 0.25 and 0.5 h−1 Mpc. As shown,
for the higher mass model, for the input c200b = 4 models, even when
the correct c200b is assumed in the fit to ��, the best-fitting masses
are reduced by 5–25 per cent (lower mass) and by up to 7 per cent
(higher mass) depending on Rmin. For the higher mass model, we find
that ϒ(R; R0) with R0 = Rmin = 0.5 h−1 Mpc gives fairly consistent
results regardless of the input and assumed concentration. For the
lower mass model, ϒ(R; R0) with R0 = Rmin = 0.25 h−1 Mpc gives
the most consistent results regardless of assumed Rmin. Moving to
the right-hand column of this figure, for input c200b = 7, we see that
even with the correct assumed c200b, fitting with ��(R) can lead to
underestimated masses by up to 30 per cent (lower mass) or 10 per
cent (higher mass) depending on Rmin. As for the input c200b = 4
model, we find that the fitting technique and minimum scale that is
most independent of assumed c200b is ϒ(R; R0) with R0 = Rmin =
0.5 h−1 Mpc and 0.25 h−1 Mpc for higher and lower mass scales,
respectively. The ability of ϒ(R; R0) to robustly estimate masses
even with these centroiding errors is a consequence of what we
have noted in the bottom panel of Fig. 1, that the centroiding errors
lead to biases in ϒ(R; R0) that change sign at some intermediate
scale, so their effects approximately cancel out.

One important point raised by Fig. 3 is that the mass estimates
using c200b = 4 (assumed) are less affected by centroid offsets. This
finding results from the fact that with a low concentration, the model
already includes a relatively low level of mass in the inner cluster
regions, and therefore is less affected than a higher concentration
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Figure 3. Here, we show the ratio M200b,est/M200b,true for the pure c200b = 4 (left column) and c200b = 7 (right column) NFW models with log10[hM200b/M
] =
14.0 (bottom row) and 14.8 (top row) after including effects of centroiding errors in the mock data. Results for the various fitting methods are shown as a
function of the minimum fit radius Rmin, for fixed Rmax = 4 h−1 Mpc. The different point styles and colours as indicated on the plot show what type of fitting
was done [��(R) or ϒ(R; R0) with various R0 values]; the different line types (solid versus dashed) indicate which value of c200b was assumed. The dotted
horizontal lines indicate a ratio of 1, the ideal unbiased case.

halo. Thus, it may be advantageous to assume a concentration at the
low end of the expected range when fittings to ϒ(R; R0) in scenarios
involving possibly substantial offsets of the chosen BCG from the
true cluster centre.

5.1.2 Non-parametric modelling

In this section, we use the same noisy realizations of theoretical
cluster profiles as in the previous section, but we estimate masses
using the aperture mass statistic ζ c. In this case, we begin with the
NFW profile with log10[hM200b/M
] = 14.8 and c200b = 7. We try
various options for the different aspects of this analysis:

(i) Varying R1 (the radius below which we are trying to estimate
the enclosed mass, using the shear above that radius) between three
values: 0.275, 0.5 and 1.1 h−1 Mpc.

(ii) Varying Ro1 between two values: 1.1 and 2.0 h−1 Mpc.
(iii) Varying Ro2 between two values: 2 and 4 h−1 Mpc (main-

taining at all times the strict hierarchy R1 < Ro1 < Ro2).
(iv) Neglecting the second term in equation (12) as in Okabe

et al. (2009), and estimating it using the best-fitting NFW profile
with some assumed concentration, as in Hoekstra (2007). We do
not test the case in which the integral from Ro1 to Ro2 may be done
analytically, because often for individual cluster lensing studies this
is not even possible since Ro2 is outside the FOV. With survey data

or mosaic telescope data, the signal may indeed be measured to Ro2,
but it is typically quite noisy on those large scales, so this procedure
would introduce even more noise into the estimated masses.

(v) Assuming c200b = 4 and 7 whenever a profile assumption is
necessary: for the estimate of the second term in equation (12), and
for the conversion from M2D(< R1) to the 3D M200b.

The procedure is as follows. We use the (noisy) realizations of the
lensing signal for pure NFW profiles in logarithmic annular bins to
estimate ζ c using a given set of radii (R1, Ro1, Ro2). Thus, we use the
signal for R1 < R < Ro1 to calculate the first term in equation (12)
via direct summation over the noisy mock data in broad logarithmic
bins in R. We also estimate the second term using the fits to ��(R)
for R1 < R < 4 h−1 Mpc for the assumed value of c200b. To do so,
we use the lensing profile for the best-fitting M200b, determined to
high precision as in the start of Section 5.1, and estimate the second
term using direct summation over the numerically determined (non-
noisy) profile in narrow logarithmic bins in R. Given ζ c estimated
with and without the second term, we then use our assumed c200b to
convert the M2D(< R1) to a 3D virial radius M200b, which (at fixed
c200b) is a simple one-to-one mapping that can be determined via
numerical integration.

In Table 3, we present the following, first without the correc-
tion term for the outer annulus and then with it: the accuracy in
recovering M2D(< R1), the accuracy in recovering M200b and the
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Table 3. Results of tests of NFW mass recovery for log10[hM200b/M
] = 14.8 and c200b = 7 when using the aperture mass statistic ζ c.

R1 Ro1 Ro2 M2D/M2D,true M200b/M200b,true σ
(ζc)
M /σ

(fit)
M M2D/M2D,true M200b/M200b,true σ

(ζc)
M /σ

(fit)
M

h−1 Mpc h−1 Mpc h−1 Mpc Neglect second term Estimate second term

Assume c200b = 7

0.275 1.1 2 0.83 0.74 1.18 1.00 1.00 1.40
0.275 1.1 4 0.83 0.74 1.18 1.00 1.00 1.46
0.275 2 4 0.95 0.90 1.43 1.00 1.00 1.54
0.5 1.1 2 0.66 0.58 0.87 1.00 1.00 1.20
0.5 1.1 4 0.66 0.58 0.87 1.00 1.00 1.24
0.5 2 4 0.90 0.86 1.12 1.00 1.00 1.17
1.1 2 4 0.62 0.55 0.71 1.00 1.00 1.01

Assume c200b = 4

0.275 1.1 2 0.83 1.26 1.60 1.01 1.75 1.95
0.275 1.1 4 0.83 1.26 1.60 1.02 1.80 2.00
0.275 2 4 0.95 1.62 2.01 1.02 1.81 2.24
0.5 1.1 2 0.66 0.74 0.95 1.01 1.35 1.37
0.5 1.1 4 0.66 0.74 0.95 1.02 1.48 1.44
0.5 2 4 0.90 1.21 1.15 1.02 1.50 1.40
1.1 2 4 0.62 0.72 0.68 1.04 1.19 1.08

statistical error on the recovered M200b relative to that from the fit
to ��(R) using R1 < R < 4 h−1 Mpc. These results are shown for
both assumed concentration values, c200b = 4 and 7, given the true
profile with log10[hM200b/M
] = 14.8 and c200b = 7.

There are a few conclusions that can be drawn from this table.
First, we begin with the idealized case in the top section of the
table, where the assumed c200b is the same as the true one. In this
case, we see that depending on the configuration of the three radii
used to estimate ζ c, the projected mass may be underestimated
by 5–40 per cent if the second term in equation (12) is ignored.
This underestimate is propagated into an underestimate of the 3D
M200b that ranges from 10 to 45 per cent. This underestimate due to
ignoring the mass in the outer annulus is less important for Ro1 �
R1 as it is for cases where the two radii are relatively close to each
other. We also see that the statistical error on the inferred M200b

from the aperture mass is typically comparable to that for the fits to
�� using R1 < R < 4 h−1 Mpc.

In this ideal case with the correct assumed c200b, correcting for
the second term in ζ c using the best-fitting profile to ��(R) for
R1 < R < 4 h−1 Mpc leads to unbiased recovery of both M2D(< R1)
and M200b; however, the statistical errors on M200b are larger than
when fitting to ��(R) by typically tens of per cent. This higher
level of noise is due to the noisy profile used to estimate the second
term in ζ c.

Next, we consider the lower half of the table, in which we use
a profile with c200b = 7, and assume c200b = 4. First, when we do
not include the second term in equation (12), the projected masses
are underestimated, as before. Second, when we include the second
term in equation (12), the projected masses are all slightly overesti-
mated (by several per cent), and the 3D M200b are overestimated by
20–80 per cent (depending on R1, with smaller R1 leading to larger
biases). We can explain the slight overestimation of the M2D when
including the second term in ζ c by the fact that we do the correction
using profiles with a low c200b, which give too much mass in the
outer regions from which the second term is derived. The significant
overestimation of M200b arises because, when we assume too low
a concentration, then we anticipate a profile with a low amount of
mass on small scales, so the conversion factor from M2D(< R1) to
M200b is a large number. This effect will be worse for small R1, since

the difference between the lensing profiles for different concentra-
tions is most significant there. If we allow a smaller variation, such
as true c200b = 5 and assumed c200b = 4, then we find a 10–20 per
cent effect on the 3D virial masses.

In general, the results for an input profile with c200b = 4 can be
understood as the inverse of the results given in Table 3. However,
for a less concentrated profile, the bias in M2D due to neglect of
mass in the outer annulus is more significant. For a lower mass halo
and fixed transverse separation, the mass in the outer annulus is less
important.

We next consider the effect of centroiding errors on the aperture
mass. When using the two mass models, we find that the projected
masses M2D are systematically suppressed by 10–14 per cent due to
centroiding errors. The exact level of suppression depends slightly
but not very strongly on the value of R1 in the range we have con-
sidered, and this suppression is then propagated into a suppression
of M200b.

Because of the definition of ζ c, biases in the lensing signal cal-
ibration that can be expressed as a single scale-dependent factor
enter linearly into the estimated masses in projection, M2D ∝ ��.
However, when using some model for the spherical density profile to
estimate the mass within some radius defined in terms of a spherical
overdensity, such as M200b, the mass will scale even more strongly
with ��, because as the signal increases, the spherical overdensity
radius moves outwards, thus including more mass in the total. The
exact scaling of the enclosed mass within some spherical overden-
sity depends on the model used to define the appropriate radius,
and on which overdensity is used, but typically the inferred M200b

∝ ��1.5.
One important point regarding the bias given in Table 3 due to the

wrong assumed concentration [for converting M2D(< R1) to M200b]
is that it has the same sign as the bias due to assumption of the wrong
concentration when fitting to ��(R). Consequently, consistency of
the M200b from the aperture mass calculation and the NFW fits
to ��(R) does not tell us whether the assumed concentration is
correct.

In summary, we have found that the aperture mass statistic ζ c

has a strong dependence on the assumed c200b when converting
the extracted projected masses to 3D M200b. An additional problem
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is that a (much less concentration-dependent) correction must be
used to properly correct for the term from the outer annulus Ro1 <

R < Ro2; otherwise, the projected masses can be underestimated by
tens of per cent, an effect that is worse for more massive clusters.
While less affected by centroiding errors than fits to ��(R) that
use scales below 0.5 h−1 Mpc, the aperture mass statistic can still
be suppressed by roughly 10 per cent due to centroiding errors (or
any of the other errors from Section 2.3 that have a similar form).
Finally, it can be substantially noisier, typically by 50 per cent, than
fits to ��(R) using the same scales [which means that it is noisier
than fits to ϒ(R; R0)].

In principle, these biases due to the concentration-dependence
of the 2D to 3D conversion may be removed if the conversion
from M2D(< R1) to M200b is carried out using the best-fitting NFW
profile from fits to both c200b and M200b, as in Okabe et al. (2009).
However, as will be shown in the next section, these fits tend to be
substantially noisier due to the additional fit parameter, which will
further amplify the noise on the recovered mass from ζ c. Thus, this
approach is not very advantageous relative to the fits to ϒ(R; R0),
which are similarly insensitive to the assumed concentration but are
only slightly noisier than fits to ��(R).

5.2 Profiles from N-body simulations

In this section, we present the results of tests of mass estimation
using cluster profiles measured from the simulations described in
Section 3. The properties of these simulated cluster samples are
summarized in Table 2. We use the signal from simulations for mass
threshold samples selected by taking all clusters above some M200b

such that n = 0.25, 2 and 16 × 10−6 (h/ Mpc)3, with the first of
these samples shown in Fig. 4. The samples have mean masses
〈 M200b〉 = 7.36, 3.95 and 1.55 × 1014 h−1 M
, though the stitching
to NFW profiles below certain scales as described in Section 3
increases the mass by several per cent. All comparisons between
estimated M200b,est and true M200b,true take this small increase into
account. The error bars shown in Fig. 4, which include cosmic

Figure 4. Top: lensing signal R ��(R) from simulations for the higher
mass (lower number density) threshold sample described in the text. The
solid lines with error bars show the signal stitched to an NFW profile with
c200b = 5 for r < 0.2 h−1 Mpc (to remove resolution effects). Bottom: ratio
of the signal for the best-fitting NFW profile to the true simulation signal.

variance, are estimated by dividing the eight simulation boxes each
into 20 sub-volumes comparable in size to that of the maxBCG
cluster sample, and finding the variance of the signal between the
160 total sub-volumes. We have only shown the case of stitching
to NFW profiles with c200b = 5 at 0.2 h−1 Mpc in Fig. 4; when
stitching to an NFW profile with c200b = 7 at 1 h−1 Mpc, the signal
on smaller scales is steeper. In the former case, this resolution
correction increases the mass by 1.5 per cent compared to the mass
in the simulations; in the latter case, the correction is 6 per cent.

In the bottom panel of Fig. 4, we compare ��(R) from the
simulations to that for the best-fitting NFW profile (determined by
varying both M200b and c200b and fitting using 0.2 < R < 2 h−1 Mpc).
As shown, for most of the scales of interest, the deviations are less
than 5 per cent. We see that the NFW profile overestimates the signal
on ∼3–8 h−1 Mpc scales. This result is consistent with that from
Clowe et al. (2004), who also find that on large scales the density
profiles fall off faster than NFW. The effect is more significant when
expressed in terms of the density profile ρ(r). On the largest scales
shown here, as R approaches 10 h−1 Mpc, the NFW profile signal
starts to be too low, because the simulation includes contributions
from LSS [again, this effect is more pronounced in ρ(r) and appears
at lower radii].

For the sections that follow, we have added realistic levels of
shape noise to the signal, based on calculations of the lensing signal
using the maxBCG cluster catalogue with similar number density
samples.

5.2.1 Parametric modelling

We begin by showing the effects of parametric modelling of the
lensing profiles from simulations. We use the three aforementioned
mass threshold samples, with the two methods of connecting to
NFW profiles (Section 3) to correct for resolution effects: c200b = 5
at r = 0.2 h−1 Mpc, and c200b = 7 at r = 1 h−1 Mpc. We then fit to
��(R) and ϒ(R; R0) with R0 = 0.25 and 0.5 h−1 Mpc, with varying
Rmin and Rmax, for our two extreme concentration values of c200b =
4 and c200b = 7. The fitting procedure is the same as for the analytic
profiles in Section 5.1.1. Fig. 5 shows the results of these fits for the
highest and lowest of the mass threshold samples.

The important point to consider in this plot is that we would like
the output mass from a given estimator to be relatively insensitive
to the form of the inner profile (represented by the two different
connections to NFW profiles on small scales) and to the assumed
concentration. Furthermore, we would like it to be only weakly de-
pendent on the mass, assuming that corrections for systematic bias
will be derived from simulations, but that strong mass dependence
may be difficult to calibrate out correctly. Consequently, what we
hope to see in an optimal estimator of cluster mass is that all the
lines on a given panel (representing the results with different in-
put profiles, assumed concentrations and masses) give very similar
results; we do not want to use an estimator that has large scatter
between the lines. So, for example, the lower left panel shows, as
we already saw with pure NFW profiles in Section 5.1, that fitting
��(R) to NFW profiles with Rmax = 1 h−1 Mpc and a fixed con-
centration leads to very large systematic uncertainties, more than
a factor of 2 total range in the best-fitting masses. As we increase
Rmax, we become less sensitive to the inner details of the profile, so
the scatter between the lines becomes less significant, but for Rmin ≤
1 h−1 Mpc they still cover a range of ∼40 per cent in mass even for
Rmax = 4 h−1 Mpc, well outside the virial radius. For Rmin = 2 and
Rmax = 4 h−1 Mpc, the systematic uncertainty is only ∼10 per cent;
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Higher, lower mass

Figure 5. Results for M200b,est/M200b,true as a function of the minimum fit radius, Rmin, from parametric fits to the lensing signal from simulations, for seven
different combinations of observable [��(R) or ϒ(R; R0)] and Rmax shown separately in each panel. As indicated in the legend, line colours and types are
used to indicate the mass scale, whereas point styles are used to indicate the input signal (which NFW profile was used to correct for resolution effects) and
assumed concentration in the fits, either c200b = 4 or 7. The horizontal dotted line on each panel shows the ideal unbiased result. The vertical axis is the same
for all panels in the left column, and spans a smaller range for all panels in the right column so that the details will be more visible.

however, the statistical error on the mass (not shown on this plot)
has roughly doubled relative to the results with Rmin ≤ 0.5 h−1 Mpc.

In contrast, we see that ϒ(R; R0 = 0.25 and 0.5 h−1 Mpc), in the
right-hand panels in Fig. 5, performs quite well. The difference
between the two mass threshold samples suggests that a larger R0 ∼
Rmin is preferable for samples with larger halo masses, with minimal
profile-related systematics for R0 = 0.5 h−1 Mpc for the sample
with a mass above 7 × 1014 h−1 M
, and R0 = 0.25 h−1 Mpc for
the sample with a mass around 1.6 × 1014 h−1 M
 (and therefore
smaller scale and virial radii). While the cluster mass is not known
a priori, a preliminary fit with one choice of R0 could be used to
estimate an approximate mass, and then a new R0 could be chosen
to be around 1/4 to 1/5 of the virial radius, provided that this
scale is reliable from the perspective of small-scale systematics
(Section 2.3).

In all cases, ϒ(R; R0) does not converge to the true mean mass,
for two reasons: (1) the lensing signal includes a small but non-
negligible contribution due to LSS on the scales we have used,
leading to an overestimation of M200b,est; and (2), even on scales
where LSS is not important, the simulation profiles fall off faster
than the NFW model, which somewhat counteracts the previous
effect. Fortunately, since it is relatively insensitive to the inner de-
tails of the profile, the assumed concentration and the mass, this

systematic positive bias in the masses can be calibrated out using
simulations, whereas systematic uncertainty in ��(R)-based mass
estimates due to concentration assumptions and small-scale effects
cannot be calibrated out in this way.

Some differences in these results from Section 5.1 can be at-
tributed to the LSS in the simulations that was not put into the
pure NFW profiles, and to the fact that the simulation profiles are
not strictly NFW profiles. So, for example, in Fig. 2, the results
for fitting to ��(R) converge to the true mass on large scales if
the right concentration is assumed, whereas the fitting to ��(R) in
simulations converges to a mass that is too high by 5 to 10 per cent
when using the largest scales only.

As in Section 5.1, we point out that for a stacked cluster sam-
ple, the level of variation we have allowed in the assumed c200b is
likely excessive from the standpoint of N-body simulations. How-
ever, given the systematic profile changes that may occur due to
baryonic effects, centroiding errors and intrinsic alignments, the
variation we have assumed is not entirely unreasonable. For fits
to individual cluster lensing data, the variation we have assumed
is quite reasonable, and possibly even an underestimate of the true
variation, given the large lognormal scatter in cluster concentrations
in N-body simulation plus these other systematics that change the
profile on small scales.
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We also estimate the effects of centroiding errors on the paramet-
ric mass recovery. As for the theoretical profiles, we use the model
for centroiding errors given in Johnston et al. (2007), with offset
fractions of 20 and 25 per cent for the lower and higher abundance
thresholds, respectively.

Here, we describe how centroiding errors modify the curves that
were shown in Fig. 5. As we have seen before, the offsets suppress
masses estimated directly from ��(R), with larger biases when
restricting to smaller scales. Furthermore, the profiles with more
mass in the inner regions are more strongly affected. For example,
the simulation signal stitched to NFW with c200b = 7 at 1 h−1 Mpc
is more strongly affected than the signal stitched to c200b = 5 at
0.2 h−1 Mpc. Given that the former resulted in mass estimates that
were above the masses estimated from the latter when fitting to
��(R) (without offsets, Fig. 5) by up to tens of per cent depend-
ing on the value of Rmax, the net effect of offsets is to lower all
estimated masses while also reducing the difference between the
curves, since those with the two stitched profiles now tend to agree
more closely. For example, when using Rmax = 1 h−1 Mpc, the val-
ues of M200b,est/M200b,true without including centroiding errors in the
modelling range from 0.6 to 1.9 (a factor of 3). Centroiding errors
in the input data reduce the range of M200b,est/M200b,true to 0.4 to
0.9 (a factor of 2), where the main cause of this variation is the
assumed value of c200b rather than the input profile. For Rmin = 0.5
and Rmax = 4 h−1 Mpc, M200b,est/M200b,true ranges from 0.9 to 1.25
when we do not include centroiding errors, whereas when we in-
clude them, it ranges from 0.8 to 1. As we have seen before when
using pure NFW profiles, ϒ(R; R0) with Rmin = R0 = 0.5 h−1 Mpc
is almost completely insensitive to this model for centroiding errors
when using Rmax = 4 h−1 Mpc (masses are suppressed at the 10 per
cent level with Rmax = 2 h−1 Mpc). This insensitivity to such sys-
tematics makes the ADSD statistic ϒ(R; R0) the optimum choice for
parametric mass fitting on stacked clusters selected from imaging
data, which is prone to centroiding errors of this variety.

In principle, explicit modelling of the offset distribution, as in
Johnston et al. (2007), can remove its effects when fitting to ��(R).
However, the exact results may be sensitive to the details of the cen-
troiding model used and its accuracy when compared to the true
distribution, which is not typically well known. For example, that
paper uses mock simulations to estimate the centroiding error distri-
bution, which means that this model is quite sensitive to the realism
of the model for populating the simulation dark matter haloes with
galaxies. Furthermore, the other systematic uncertainties associated
with using ��(R) (e.g. sensitivity to baryonic effects and intrinsic
alignments) remain, whereas their influence on ϒ(R; R0) is much
smaller.

Another issue we consider is the effect of overall lensing signal
calibration biases on the estimated masses. As a test, we use the
signals from simulations multiplied by factors of 0.9 and 1.1, and
refit for the masses. The results are used to estimate a power-law
relation M200b ∝ ��η, and η is determined for the different mass
scales, stitched signals, assumed concentrations, fit method [��(R)
or ϒ(R; R0)], and minimum and maximum fit radii. Note that η

is also dependent on the spherical overdensity used to define the
profile, though we do not explore this effect in detail. A naive
scaling of surface mass density with mass predicts η = 1.5, but
other effects will modify this. The results of this test are shown in
Fig. 6.

As shown, η is a decreasing function of Rmin and Rmax. When
fitting to ��(R), η does not depend on the details of the inner
profile, and is larger for higher masses and lower assumed c200b, with
the dependence on c200b being the more significant dependence. For

example, when fitting to ��(R) for the lower mass sample from
simulations stitched to an NFW profile with c200b = 5 at 0.2 h−1 Mpc,
using 0.5 < R < 4 h−1 Mpc for the fits, we find that M200b ∝ ��1.42.
In contrast, when fitting to ϒ(R; R0) with R0 = 0.5 h−1 Mpc, the
trends in the fitting mass with calibration are stronger for a given
combination of (Rmin, Rmax). Here, we see that there is minimal
dependence on mass, and some small dependence on the details
of the profile and the assumed concentration. For the same case
considered when fitting to ��(R), we find η = 1.75, an increase
of 23 per cent. Consequently, systematic errors in ϒ(R; R0) due to
miscalibration of the lensing signal are larger than systematic errors
in ��(R) (assuming that other aspects of the fit, such as Rmin and
Rmax, are similar).

Next, we briefly discuss the effects of allowing both c200b and
M200b to vary, rather than fixing c200b, as in Okabe et al. (2009).
While this procedure has the disadvantage of increasing the statis-
tical errors on the mass, it does allow for improved mass recovery.
Our results suggest that with NFW fits to ��(R) with 0.5 < R <

4 h−1 Mpc, the degeneracy between M200b and c200b is such that
M200b ∝ c−1/3

200b . This result explains the magnitude of the deviations
from the true mass when the concentration is fixed to a value that
is not consistent with the best-fitting concentration (though, again,
the deviations in concentration we have tested are not sufficiently
bad that the fit χ 2 values reveal a clear discrepancy). In contrast,
the exponent on that scaling between M200b and c200b is far closer
to zero when fitting to ϒ(R; R0) with R0 = 0.5 h−1 Mpc using the
same scales: M200b ∝ c0.05

200b. This degeneracy becomes more striking
when the fits are restricted to smaller scales, e.g. M200b ∝ c−1

200b when
fitting to ��(R) using 0.1 < R < 1 h−1 Mpc.

When fitting the simulation signals with both M200b and c200b

as free parameters, we find that even when centroiding errors are
included in the data, the fits are able to recover the masses for
both mass scales and inner profiles, for several types of fits that we
attempted [using ��(R) from 0.5 < R < 4 h−1 Mpc, from 0.1 <

R < 1 h−1 Mpc, and using ϒ(R; R0) with R0 = 0.5 and 0.5 < R <

4 h−1 Mpc]. When using data from 0.5 < R < 4 h−1 Mpc, the de-
viations of the signal in simulations from an NFW profile led to
best-fitting masses that are 5 per cent higher than the true masses;
when fitting from 0.1 < R < 1 h−1 Mpc, the best-fitting masses
are only ∼2 per cent higher than the true ones, because the devi-
ations from NFW are not as striking on those scales, and the LSS
term is also more negligible. The mass estimates tend to be noisier
in this case, and the concentrations that are recovered are highly
suppressed relative to the true concentrations when centroiding er-
rors are included (e.g. from best-fitting c200b ∼ 5 and ∼6.5 without
centroiding errors, down to 3 and 3.5 with centroiding errors). We
find that these two-parameter fits for mass and concentration lead
to statistical errors in the masses that are larger than the errors in
one-parameter fits by approximately 45 per cent. This increase is
larger than the increase when fitting to ϒ(R; R0) (14 or 32 per cent,
for R0 = 0.25 or 0.5 h−1 Mpc), and ϒ(R; R0) has the additional ad-
vantage of removing the impact of small-scale systematics, which
would still be present when fitting ��(R) to the two-parameter
model.

Finally, when fitting with free M200b and c200b, the dependence of
the best-fitting masses on the lensing signal calibration is reduced.
For example, when fitting to ��(R) using 0.5 < R < 4 h−1 Mpc
and fixed concentration, we had found previously that M200b ∝
��1.42. When the concentration is allowed to vary, that exponent
becomes η = 1.25. This change results from the fact that if the signal
increases, the assumed mass and therefore r200b increase as well, so
for a fixed scale radius determined from the data, the concentration
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Figure 6. Results for η, the scaling of the estimated M200b with the lensing signal calibration, as a function of the minimum fit radius, Rmin, from parametric
fits to the lensing signal from simulations, for five different combinations of observable [��(R) or ϒ(R; R0)] and Rmax shown separately in each panel. We
only show η for the highest and lowest mass threshold sample.

would naturally tend to increase. When fitting to ϒ(R; R0), η is not
affected by whether or not the concentration is fixed.

In summary, we have found that ϒ(R; R0) is the optimal statistic
for parametric mass modelling given its insensitivity to the profile
at small scales, with R0 = 0.25–0.5 h−1 Mpc for the cluster masses
used here, giving a reasonable compromise in reducing systematic
error while retaining reasonable S/N on the recovered masses for
the case discussed here, but in general the choice of R0 will depend
on the specific application one has in mind and on the scales to
which the data can be considered relatively systematics-free. This
statistic tends to slightly overestimate the mass due to the combi-
nation of two competing effects: the profile deviation from NFW
on large scales and the neglected LSS contribution to the lensing
signal. However, these effects are only very weakly dependent on
the details of the profile, the mass and the cosmology, making them
easy to calibrate out at the few per cent level using N-body simu-
lations. This result is in stark contrast to the effect of small-scale
systematics on the masses estimated from ��(R) (e.g. varying con-
centrations, and deviations from NFW due to intrinsic alignments
and baryonic effects), which lead to larger systematic uncertainties
in the recovered masses. These conclusions hold in cases where
the NFW concentration is fixed. If it is allowed to vary, then the
statistical errors will increase more than when using ϒ(R; R0) with
a reasonable R0, but systematic errors decrease, provided that the
systematic errors in the lensing signal appear reasonably similar to

a change in NFW concentration, which is not the case for several
of the small-scale systematics in Section 2.3.

5.3 Example application with data

Here, we consider the maxBCG cluster lensing data in six scaled
richness bins (12 ≤ N200 ≤ 79), which was previously used in
Mandelbaum et al. (2008a) for joint estimation of the concentration–
mass relation and the mass–richness relation. Here, we use several
examples of fixed concentration–mass relations and several of the
fitting methods considered in the previous sections to estimate the
mass–richness relation, always with 
m = 0.25. This estimation as
follows:

(i) We generate 200 bootstrap-resampled data sets to estimate the
noise in the data. For this bootstrap procedure, the data are divided
into 200 regions on the sky which are bootstrapped (rather than
bootstrapping the individual lenses). More details on this procedure
is given in Mandelbaum et al. (2008a).

(ii) For each data set, we separately fit the data in each richness
bin for M200b assuming some c200b(M200b) relation and fit method,
for each richness bin. The choice of fit method includes specifying
the statistic to fit and the range of transverse separations to use.
Thus, given logarithmic bins in transverse separation denoted by
i (Ri), data set j, richness bin k, statistic for a given fit method �
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[denoted by � for � = �� or ϒ(R; R0)] and c200b(M200b) relation m,
we use the Levenberg–Marquardt algorithm to separately minimize
the j × k × � × m values of χ 2 defined as follows:

χ 2
jk�m =

∑
i

(
�

(data)
jk� (Ri) − �

(model)
�m (Ri)

)2

σ 2(�k�(Ri))
(21)

where we use i such that Rmin,� ≤ Ri ≤ Rmax,�. The result of this
procedure is a matrix with j × k × � × m values of M200b, where in
practice we use j = 200, k = 6, � = 3 and m = 3. The fit methods
and concentration–mass relations are described in detail below.

(iii) The set of k M200b values for a given data set (j), fit method (�)
and concentration–mass relation (m) are used to fit for a power-law
relation between scaled richness and halo mass:

M
(model)
200b = [(

M200b,20 × 1014
)

h−1 M

] (

N200

20

)γ

. (22)

This fit has two parameters: an amplitude M200b,20 that is the mass
at our pivot richness of N200 = 20 in units of 1014 h−1 M
, and an
exponent γ . We find the best-fitting values of M200b,20 and γ for
each (j, �, m) by minimizing

χ 2
j�m =

∑
k

(
M

(data)
200b,jk�m − M

(model)
200b (N200,k)

)2

σ 2(M200b,�m)
. (23)

The result is a matrix with j × � × m values of M200b,20 and γ .
(iv) We use the list of j power-law fits for each bootstrap-

resampled data set to estimate the mean and variance of M200b,20 and
γ for a given combination of fit method � and concentration–mass
relation m.

We include m = 3 concentration–mass relations in our tests: a
power law with

c200b = 5

(
M200b

1014 h−1 M


)−0.1

, (24)

consistent with Mandelbaum et al. (2008a); a constant c200b = 4
and a constant c200b = 7. We examine the results for � = 3 fit
methods: an extreme one assuming a small aperture for the cluster
data, using ��(R) from 0.1 to 1 h−1 Mpc; using ��(R) from 0.5 to
4 h−1 Mpc and using ϒ(R; R0) with R0 = 0.5 h−1 Mpc from 0.5 to
4 h−1 Mpc, given its good performance on theoretical profiles and
simulations in the previous sections. We consider the fit results first
without and then with correction factors derived from Fig. 5. While
we only have simulation-based correction factors for samples with
three mean masses (which are threshold samples, not discrete mass
bins as in this example) and two concentrations, we interpolate those
results to derive approximate corrections for all the fits done in this
section.

The final type of correction that we apply is a calibration fac-
tor that reduces the lensing signal calibration from Mandelbaum
et al. (2008a) and Reyes et al. (2008) by 6 per cent. The reason
for this correction is that for 30 per cent of the spectroscopic train-
ing set presented in Mandelbaum et al. (2008b) for calibration of
photometric redshifts that are used to estimate the lensing signal,
an incorrect photometric calibration was used when computing the
photometric redshifts. We emphasize that this incorrect calibration
was only used for the KPHOTOZ photometric redshifts, not for any
other photometric redshift sample, and thus the lensing signal cal-
ibrations that are quoted for other photometric redshift methods in
that paper are correct. As a result of this error, the calibrations from
KPHOTOZ which were used for the data in Mandelbaum et al. (2008a)
and Reyes et al. (2008) that we analyse here were 6 per cent too

high, so we now apply a correction to the signal. We then present the
results for the best-fitting masses after application of both the signal
calibration correction and the simulation-based correction factors
due to the mass estimation method.

Fig. 7 shows the observed signal for the lowest and highest rich-
ness bins for 0.1 < R < 4 h−1 Mpc, and the theoretical signal from
the fits. This theoretical signal is derived by taking the best-fitting
mass–richness relation, evaluating it at the mean richness of the
bins that are shown, and using the resulting mass and assumed con-
centration to define the theoretical signal. The fits did not only use
the data shown on the plot, because the requirement of a power-
law mass–richness relation means that the theoretical signal at the
richness bins shown was also influenced by the data in all other
bins.

For reference, given a best-fitting mass–richness relation from
equation (22) with M200b,20 = 1.55 and γ = 1.15 (which is a typical
value given the scatter between the results in Table 4), the combi-
nation with equation (24) gives a concentration–richness relation
of

c200b = 4.78

(
N200

20

)−0.115

(25)

Thus, within our richness range of 12 ≤ N200 ≤ 79, the concentra-
tions vary from 5 to 4 as we move from the lowest to the highest
richnesses. When we instead fix c200b = 4 independent of mass, we
lower the concentrations at the low N200 end of the sample by 20
per cent, without changing the concentrations at the very high mass
end. When we fix c200b = 7, then we raise all the concentrations by
a very significant amount, from ∼40 per cent increases at the low
mass end to 75 per cent at the high-mass end. The results for the
three concentration–mass relations and fitting methods are given in
Table 4.

We begin by discussing the first fit method, using ��(R) from
0.1 < R < 1 h−1 Mpc. As we have noticed in previous examples
with the theoretical profiles and simulations, the results using these
scales are highly sensitive to the assumed concentration–mass re-
lation. We see that changing the assumed concentration among
our three options leads to 50 per cent variation of the amplitude
M200b,20, significantly larger than the statistical errors on this pa-
rameter, when we do not impose corrections from the simulations.
The exponent γ undergoes 20 per cent changes, which are roughly
consistent with the size of the 1σ statistical errors. The changes
in this exponent can be easily understood as follows. First, if we
change from the power-law concentration–mass relation in equation
(24) to fixed c200b = 4, then we are lowering the assumed concen-
tration for all but the highest mass haloes. This means that, due to
the typical concentration–mass anti-correlation when fitting ��,
the best-fitting masses should increase at the lower mass end. As
a result, the best-fitting mass–richness relation becomes less steep.
When we change to use a higher concentration c200b = 7, then due
to this concentration–mass anti-correlation, the best-fitting masses
are significantly suppressed (which explains the large change in
M200b,20). Furthermore, this suppression is stronger at the higher
mass end, where the difference between c200b = 7 and equation (24)
is most pronounced. This trend will tend to suppress γ , as is seen
in the table.

When we impose corrections from the simulations to the results
from the first fit method, we find that the variation in M200b,20 and γ

when we change the assumed concentration is significantly reduced.
However, there is still 30 per cent level variation, which may be as-
cribed to the fact that the scales that are used in this fit are quite prone
to systematics such as intrinsic alignments and centroiding errors,
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Figure 7. Observed lensing signal from Mandelbaum et al. (2008a) for stacked maxBCG clusters, presented as ��(R) and ϒ(R; R0) with R0 = 0.5 h−1 Mpc
in the top and bottom panels, respectively. We show the lowest (left) and highest (right) richness bins out of the six used for the analysis. In addition to the data
with bootstrap error bars, we also show four theoretical signals labelled on the plot. Two of them were derived by fitting ��(R) using Rmin = 0.1 and Rmax =
1 h−1 Mpc with different assumed concentrations; the other two, by fitting ϒ(R; R0) with R0 = Rmin = 0.5 and Rmax = 4 h−1 Mpc. The 6 per cent calibration
correction described in the text has been applied. Because we required a power-law relationship between mass and richness, the best-fitting signals shown for
these two bins were influenced by the data in the other richness bins (not shown).

Table 4. Results of power-law fits for a mass–richness relation using stacked maxBCG cluster lensing data, using three fit methods and three concentration–
mass relations. First present the best-fitting masses; then, include corrections for the bias on the mass estimation from simulations (Fig. 5); finally, with both
the simulation corrections and a 6 per cent decrease of the amplitude on the lensing signal, as described in the text.

Fit method c200b(M200b) M200b,20 γ M200b,20 γ M200b,20 γ

No correction Simulation correction Sim. and photo-z corrections

��(R), equation (24) 1.64 ± 0.20 1.24 ± 0.35 1.31 1.10 1.19 ± 0.10 1.10 ± 0.28
0.1 < R < 1 h−1 Mpc c200b = 4 1.58 ± 0.15 1.07 ± 0.26 1.14 1.01 1.04 ± 0.09 1.01 ± 0.24

c200b = 7 1.01 ± 0.08 0.93 ± 0.22 1.16 0.98 1.06 ± 0.09 0.98 ± 0.24

��(R), equation (24) 1.72 ± 0.13 1.18 ± 0.18 1.56 1.14 1.44 ± 0.10 1.14 ± 0.17
0.5 < R < 4 h−1 Mpc c200b = 4 1.70 ± 0.12 1.14 ± 0.16 1.51 1.11 1.40 ± 0.10 1.10 ± 0.16

c200b = 7 1.52 ± 0.10 1.06 ± 0.15 1.46 1.11 1.35 ± 0.09 1.11 ± 0.16

ϒ(R; R0), equation (24) 1.79 ± 0.18 1.20 ± 0.24 1.67 1.20 1.50 ± 0.16 1.21 ± 0.24
R0 = 0.5 h−1 Mpc, c200b = 4 1.81 ± 0.18 1.18 ± 0.23 1.75 1.16 1.56 ± 0.16 1.17 ± 0.23

0.5 < R < 4 h−1 Mpc c200b = 7 2.02 ± 0.19 1.11 ± 0.21 1.73 1.17 1.56 ± 0.16 1.17 ± 0.23

which will affect the fits with different assumed concentrations in
different ways. The simulation corrections can only correct for the
fitting methods’ different responses to a theoretical cluster lensing
profile, not for their different responses to additional systematics
that may be present in the data.

When we fit using ��(R) from 0.5 < R < 4 h−1 Mpc, we find
smaller variations in the (uncorrected) amplitude M200b,20 of the
mass–richness relation when we change the concentration–mass

relation, at most 13 per cent, which is still problematic since it is
close to twice the 1σ statistical error. (However, note that the fit χ 2

are not sufficiently different to rule out any of these three models; the
lensing data only weakly constrain the concentration.) The trends in
γ with c200b(M200b) have the same sign as when fitting using ��(R)
from 0.1 < R < 1 h−1 Mpc, but are less pronounced (11 per cent
variation, slightly smaller than the 1σ statistical error). Because of
the longer range in transverse separation, the statistical errors on the
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fit parameters have become smaller, though we do not fully benefit
from this fact due to the systematic uncertainties. We also note that
for a given concentration–mass relation, such as equation (24), the
amplitude M200b,20 is increased by 4 per cent relative to the previous
results. This increase may be due to systematics that decrease the
signal on scales below 0.5 h−1 Mpc, such as intrinsic alignments
or centroiding errors. The fact that γ has decreased relative to the
0.1 < R < 1 h−1 Mpc results suggests that the change in masses is
more significant at lower richness than at higher richness.

When we impose corrections from the simulations in Fig. 5 to
the results of this second fit, we find that the total range of M200b,20

and γ values is quite small, roughly 7 and 3 per cent, respectively.
This finding is encouraging: it suggests that we may be converging
to a result that is more robust to small-scale systematics. Since the
typical corrected mass from this fit method is 25 per cent higher
than that for the fits using 0.1 < R < 1 h−1 Mpc, we conclude that
the fits that use those smaller scales may be significantly influenced
by small-scale systematics.

Finally, we consider the results of fits to ϒ(R; R0) with R0 = 0.5
using 0.5 < R < 4 h−1 Mpc. First, we see that the statistical errors on
fit parameters are larger than when using ��(R) for the same scales
[50 per cent larger, comparable to or smaller than the errors when
using ��(R) from 0.1 < R < 1 h−1 Mpc]. This trend in the errors
may seem inconsistent with the results in the simulations, which
suggested ∼30 per cent increase in mass estimation statistical errors.
However, the 50 per cent increase is for the power-law amplitude
that comes from using six mass bins. On each individual mass
bin, the mass uncertainties increase by 30 per cent when using
ϒ(R; R0) with R0 = Rmin = 0.5 and Rmax = 4 h−1 Mpc relative to
��(R) with Rmin = 0.5 and Rmax = 4 h−1 Mpc. Thus, the mass
increase we see here for individual mass bins is consistent with
that in the simulation. Second, the variation in the uncorrected
M200b,20 when we change the concentration–mass relation is 11 per
cent, comparable to the 1σ errors, though we emphasize again that
the variations in concentration that we have allowed are relatively
extreme compared to what is seen in simulations. The variation in γ

is 7 per cent, more than a factor of 2 smaller than the statistical error.
The sense of the change in M200b,20 when changing c200b(M200b) is
the opposite as when fitting to ��(R), as we have seen before in
the simulations.

When we use the simulation results to correct these final fits that
use ϒ(R; R0), we see that the corrections again reduce the spread
in the best-fitting M200b,20 and γ values when we use different
concentration–mass relations. The residual 4 per cent variation in
both fit parameters is well below the statistical error. We note that the
typical mass M200b,20 at richness N200 = 20 has increased by 10 per
cent relative to the fits using ��(R) on the same exact scales, even
after the imposition of the correction from simulations in Fig. 5.
We suggest that this change may result from low-level residual con-
tamination of ��(R) due to systematics such as centroiding errors
even for R > Rmin = 0.5 h−1 Mpc. Such contamination can, as we
have shown, bias fits to ��(R) while not affecting fits to ϒ(R; R0).
Thus, we adopt our mass normalization at the pivot richness N200 =
20 as M200b,20/(1014 h−1 M
) = 1.54 ± 0.16 (stat.) ± 0.06 (sys.),
the mean of the values from the fits to ϒ(R; R0) with the different
concentration–mass relations. This systematic error results from an
uncertainty of 0.03 due to uncertainties in the mass estimation due
to both the assumed and true profile, added in quadrature with the
lensing signal calibration uncertainty of 0.05.

We now compare these results against the M200b(N200) relations
determined in several previous papers. First, we compare against
that from Mandelbaum et al. (2008a), which used these data to fit

for a concentration–mass and mass–richness relation. Given that
the best-fitting concentration–mass relation in that paper was quite
similar to our equation (24), and that the fits in that paper used
��(R) from 0.5 < R < 3 h−1 Mpc, we expect quite similar results
to the results in this paper using c200b(M200b) from equation (24)
and ��(R) from 0.5 < R < 4 h−1 Mpc. In that paper, we found
M200b,20 = 1.55 and γ = 1.14. The mass normalization is quite
similar to what we quote here, because (a) in Mandelbaum et al.
(2008a) the masses were reduced by approximately 10 per cent
due to small-scale systematics [from the use of ��(R) rather than
ϒ(R; R0)], but (b) the lensing signal amplitude was too high by 6
per cent, as explained above, which raised the best-fitting mass by
1.061.4, a 9 per cent difference.

Reyes et al. (2008) used the maxBCG cluster lensing data to esti-
mate a mass–richness relation. That work used fits to ��(R) from
0.5 to 4 h−1 Mpc assuming equation (24) for the concentration–
mass relation, with the same source shape measurements, shear
calibration and source redshift distribution calibration as in this pa-
per. However, the richness range used in that paper was slightly
different, since it used the entire public catalogue from the mini-
mum N200 = 10 to the maximum-scaled richness. Furthermore, the
binning into richness bins within the range that is shared by this
work and that one was different. Finally, as for Mandelbaum et al.
(2008a), they explicitly modelled the halo–halo term using the same
halo model formalism and assumed mass–bias relation. Their result
was a best-fitting mass-richness power-law with M200b,20 = 1.42 and
γ = 1.16. Thus, the calibration is 8 per cent lower than the value
we have adopted here, but this could be attributed to differences in
richness ranges.

Finally, we compare against the fits to the maxBCG catalogue
cluster lensing signal in Johnston et al. (2007). The differences in
procedure compared to this paper are numerous. First, the richness
range is different, because they use a non-public version of the
catalogue that extends down to N200 = 3. They fit to ��(R) using
0.05 ≤ R ≤ 30 h−1 Mpc, and allow the halo concentration and the
amplitude of the LSS term to vary. They also use a model for
BCG centroiding errors based on mock catalogues, and incorporate
this model into their fitting routine to correct for the tendency of
centroid errors to suppress the estimated masses. They explicitly
include lognormal scatter on the mass–richness relation (with a
strong prior in the fits). Finally, while they use the same galaxy shape
measurements, they use different photometric redshifts, which we
have shown in Mandelbaum et al. (2008b) leads to a calibration
bias in the lensing signal of −15 per cent. Since we have found that
the fitted masses when assuming an NFW profile scale like ��1.4,
this bias in �� corresponds to a 20 per cent suppression of the
masses. Thus, while they find M200b,20 = 1.2 and γ = 1.3 (for a
spherical overdensity of 180ρ, which should only differ from our
definition by several per cent), we compare against a corrected value
of M200b,20 = 1.5. This result is within a few per cent of our value
of M200b,20 = 1.54 that we have adopted here. Given the different
richness range (which also contributes to the different value of γ )
and the many other differences in fit procedure, the three per cent
discrepancy is not of concern, and is comparable to our quoted
systematic uncertainty.

6 C O N C L U S I O N S

In this paper, we have assessed the degree to which certain system-
atic errors in lensing measurement and methods of mass estimation
can bias weak lensing cluster mass estimates. In brief, the challenges
we considered included the following.
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(i) Lensing calibration bias, which leads to changes in the mass
∝ ��η for η typically in the range 1.4–2 depending on the radial
range and fit method used for the parametric NFW mass fits [lower
for ��(R) than for ϒ(R; R0)], or ∝ �� for the non-parametric
mass estimates within a fixed physical aperture (or a steeper scaling
when estimated the mass within some spherical overdensity radius)
using ζ c (Sections 2.3.1, 5.1.2 and 5.2.1).

(ii) Offsets of the identified BCG from the minimum of the cluster
potential well (Section 2.2.3) were incorporated into the lensing
profiles using a model from mock catalogues presented in Johnston
et al. (2007). This model includes the effects of photometric errors
in selecting the wrong BCG, and is therefore an overly conservative
estimate in cases where the BCG can be unambiguously identified
for all clusters or where X-ray data can precisely locate the cluster
centre.

(iii) The effect of differences between an assumed NFW con-
centration and the true NFW concentration were studied using pure
NFW lensing signals.

(iv) Differences in the halo profile relative to a pure NFW profile
were studied using fits to density profiles from N-body simulations.

(v) The effects of mass from structures other than the cluster itself
on the lensing signal were also studied using the signal from simu-
lations, since we have not included only the mass that is virialized
when computing �� in the simulations.

(vi) Contamination of the source sample by cluster member
galaxies, intrinsic alignments of those member galaxies and bary-
onic effects on the halo density profile were considered to be in-
cluded among the previous tests, namely changes in NFW concen-
tration (in Section 5.1), changes in the inner region of the profile
using variations of the N-body simulation outputs (in Section 5.2)
and centroid offsets that modify the signal only in the inner regions
of the cluster.

When fitting a parametric model (in our case, the NFW profile)
to ��(R), with fixed concentration, we find that the uncertain-
ties due to unknown true concentration plus changes in the lensing
profile due to small-scale systematics yield systematic errors that
range from a factor of 2 in mass (when only using small scales in
the fits, e.g. 0.1–1 h−1 Mpc) to tens of per cent (when using R >

0.5 h−1 Mpc) to several per cent (for R > 2 h−1 Mpc, which yields
stable mass estimates but large statistical errors, and which may not
be available for individual cluster lensing analyses due to limited
telescope FOV). This level of systematic error occurred when al-
lowing a relatively broad variation in concentration (4 < c200b < 7),
given the disagreement between simulations on the concentration–
mass relation at high masses, the large lognormal scatter in this
relation and other systematics such as baryonic effects discussed
in Sections 2.2, 2.3 and 2.6. When using a narrower range in con-
centration, the systematic errors decreased comparably, but are still
unacceptably large relative to what is needed for precise cosmolog-
ical parameter constraints.

The addition of centroiding errors to the list of systematics we
considered led to uniform suppression of the mass estimates of the
order of tens of per cent (for Rmin = 0.1 h−1 Mpc). To completely
avoid this suppression while fitting to ��(R) and ignoring the
possibility of centroiding errors, we found it necessary to restrict
the fits to Rmin > 1 h−1 Mpc. Generally, the addition of larger scales,
out to ∼2r200b, is useful in minimizing the effects of small-scale
systematics; going beyond that can lead to excessive contribution
from LSS, which will bias the mass estimates if it is not modelled
accurately. Allowing a variation in concentration in the fits is another
way to reduce systematic error, at the expense of statistical errors

that are increased by 45 per cent, but this scheme is not helpful
when dealing with systematics that have a radial profile that does
not mimic a change in concentration. ϒ(R; R0) is still more reliable
at removing the impact of small-scale systematics on the lensing
signal.

The aperture mass statistic ζ c led to accurate estimates of pro-
jected masses, provided that either (a) the mass in the outer annulus
was estimated rather than ignored, or (b) the mass in the outer an-
nulus was ignored, but Ro1 � R1 (i.e. a large range of transverse
separations was included in the first integral in equation 12). For
many applications, such as the halo mass function, the quantity of
interest is the 3D virial mass, for which a density profile must be
assumed to do the conversion from the 2D projected mass within R1.
We found that uncertainty in the true density profile led to tens of per
cent level biases in the 3D virial masses. The effect of centroiding
errors was to uniformly suppress the aperture masses by ∼10–20
per cent depending on the halo mass, degree of centroiding errors
and transverse separations used for the analysis; these biases were
then propagated into the 3D enclosed mass estimates. The aperture
mass-based estimates of the cluster virial mass were substantially
noisier than fits to ��(R) using the same range of scales.

Finally, the new statistic we introduce here, ϒ(R; R0), removes
the effect of small scales from the lensing signal, and gave superior
performance over ��(R) when fitting an NFW profile to the cluster
lensing signal. This statement is true not just for the basic tests
with pure NFW profiles and profiles from simulations, but also
when including the effects of centroiding errors. The increases in
statistical error on the mass can be ∼40 per cent relative to fitting to
��(R) over the same scales. The residual systematic uncertainties
after removal of an overall offset in the masses is of the order
of several per cent, when fitting from 0.5 < R < 4 h−1 Mpc, as
demonstrated using SDSS maxBCG data. The effects of ϒ(R; R0)
in decreasing systematic error are less dramatic when only small
scales (≤2 h−1 Mpc) are used for the mass estimates; however, the
residual systematics of the order of 10 per cent are still at least a
factor of 2 smaller than when fitting to ��(R).

These conclusions also apply for individual cluster lensing anal-
yses; however, we caution that in that case, we expect additional
uncertainties in the true halo profile due to contamination by cluster
member galaxies, the lognormal scatter in concentration at fixed
mass, mergers, substructure, triaxiality and projection effects (Sec-
tions 2.2 and 2.3), so the systematic errors will tend to be larger
than for stacked analyses using the same mass estimation method.

Next, we will briefly discuss the implications of our findings
about mass estimation methods for several previously published
cluster lensing studies. We begin with Okabe et al. (2009), which
contains an analysis of circularly averaged cluster lensing data for
30 individual clusters by comparison with spherical models. They
begin with direct fitting of the tangential shear profile to parametric
models, including the NFW profile. These fits allow all model pa-
rameters to vary; for example, the NFW fits have two parameters,
a mass and a concentration, unlike the cases we have considered
here with a fixed concentration. Consequently, the estimated masses
from the NFW model fits are unlikely to be strongly biased due to
modelling assumptions, since the concentration is not fixed. How-
ever, they may still have some systematic bias due to the NFW
profile not describing cluster profiles well, due to deviations in in-
dividual cluster profiles due to substructure, mergers and triaxiality,
and possibly significant biases due to small-scale systematics such
as contamination by cluster member galaxies and centroiding errors.

Okabe et al. (2009) also use the aperture mass statistic ζ c to
estimate M2D, while neglecting the second term in equation (12)
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and choosing the outer annulus such that it does not contain any
significant structures. As we have seen here, the aperture mass
statistic when including both terms properly leads to quite accurate
projected mass estimates, or can yield results that are accurate at
the several per cent level even without the second term provided
that R1 � Ro1. Given the scales that are accessible with the Subaru
Suprime-Cam, and the typical cluster redshifts, we should compare
against the top portion of Table 3, the rows with (R1, Ro1, Ro2) =
(0.275, 1.1, 2) and (0.5, 1.1, 2) h−1 Mpc. Those results suggest that
for the most massive clusters, neglect of the second term may cause
15–20 per cent suppression of the projected masses. We find that
the suppression is reduced to 5–10 per cent for more typical cluster
masses of 1014 h−1 M
. Furthermore, as we have already seen,
effects that suppress the signal in the inner cluster regions, such as
centroiding errors and contamination by cluster member galaxies,
can suppress the aperture masses at the ∼10 per cent level.

Hoekstra (2007) contains an analysis of cluster weak lensing data
for 20 individual clusters. This work utilizes parametric mass esti-
mates from the tangential shear distortion averaged in annuli, fitting
to an NFW profile with fixed concentration–mass relation from N-
body simulations using 0.25 < R < 1.5 h−1 Mpc. In this case, we
can assess systematic uncertainties as being somewhere between the
results for (Rmin, Rmax) = (0.25, 1) and (0.25, 2) h−1 Mpc in Fig. 5.
The figure suggests that uncertainties due to differences between
the assumed and the true profile lead to ∼50 per cent variations
in the estimated cluster halo masses. This variation may be mani-
fested as significant noisiness in the mass estimates for a given true
mass, as well as a mean bias if the true profiles (with the imposition
of systematics such as contamination by cluster member galaxies)
differ from the NFW profile with that assumed concentration–mass
relation. This problem is in addition to other uncertainties in indi-
vidual cluster mass estimates noted previously, such as LSS (for
which they explicitly increase their error bars) and triaxiality.

Hoekstra (2007) also use the aperture mass statistic to estimate
projected masses, M2D, while estimating the second term in equa-
tion (12) due to the outer annulus using the best-fitting NFW model.
In that case, we note that while Hoekstra (2007) do not miss mass
by excluding the second term in the aperture mass calculation,
their conversion from M2D(< R1) to virial radii using spherical
overdensities that can define the mass function will be strongly
concentration-dependent. While Hoekstra (2007) claim that the fact
that the masses from the fits to ��(R) and from the aperture mass
calculation are consistent shows that their fitting procedure is unbi-
ased, as discussed in Section 5.1.2 this claim is not true. The fact
that Vikhlinin et al. (2009) use the cluster mass estimates from this
work to calibrate their mass function constraints is therefore of con-
cern, because of the possible biases due to these systematics in the
signal and the large systematic scatter that we have found.

In summary, we believe that weak lensing is the best observational
technique to robustly estimate cluster virial masses (regardless of
their dynamical state) at the level required for precision cosmol-
ogy. Given the small statistical errors of recent cluster abundance
analyses, the cosmological constraints are already dominated by the
systematic precision of the cluster mass determination (Vikhlinin
et al. 2009). As we argue in this paper, current methods are inade-
quate for this purpose because they rely on the information from the
inner parts of the cluster, which can be contaminated or modified
due to a variety of effects discussed in this paper, and because they
do not use numerical N-body simulations to calibrate their results.
Our results suggest eliminating lensing information from scales be-
low R0 (for which we suggest the range 0.2 < R0 < 0.5 h−1 Mpc
or about 15–25 per cent of the virial radius, as determined via an

iterative procedure). Our proposed statistic for parametric estimates
of cluster mass, the ADSD ϒ(R; R0), achieves this by construc-
tion, and is consequently more robust to many different systematics
and to the details of the model to which the data are fitted, all of
which are more problematic in the inner parts of the cluster. Use of
ϒ(R; R0) to estimate cluster masses allows systematic errors to be
reduced to the several per cent level, which is up to a factor of 10
smaller than when fitting to the lensing signal ��(R) itself, sug-
gesting that for current and future data sets, ϒ(R; R0) should be the
statistic of choice for parametric mass fitting to cluster weak lens-
ing data. While we have focused on clusters in this paper, similar
concerns about accurately determining the halo mass would arise
also for smaller haloes. For these, the stellar component from the
galaxy (and possibly the associated redistribution of the dark mat-
ter) would modify the mass distribution relative to predictions from
pure N-body simulations in the inner parts, suggesting that elimi-
nating the inner halo information by using ϒ(R; R0) could lead to
more accurate mass determination of group and galaxy-type haloes
as well.
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