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INTRODUCTION

The classical treatment of stochastic models in non-life insurance is
to first derive the well-known Poisson distribution by considering the
question of how many claims take place during a definite period t. In
deriving this distribution the following three assumptions are made:

( I) The population studied is homogeneous.
( II) The occurrence of a claim is a rare event, viz. in an infinite-

simal time interval [t, t -\- At], the probability of more than
one occurrence must be of the order of magnitude o(A<).

(Ill) The occurrence of any later claim is not influenced by
previous ones (no contagion).

In my purely theoretical study [5] 1), the consequences of discarding
one or more of the above assumptions were considered. By so
generalizing the Poisson distribution, a great many stochastic
models can be built, although the results were not always successful.
The following study concentrates on some considerations based on
assumption (II). The theoretical formulation of the model will be
dealt with briefly and the author would first make reference to
the instructive article of Thyrion [7] which was unfortunately
unknown to him when he was preparing his already mentioned
paper. Ammeter [2] and Arfwedson [3] have also considered special
cases of this generalization. With the help of the statistics over
traffic accidents in the city of Zurich, I hope to throw some more
light on the practical aspects of the problem. To the Statistics Office
of this city I would express my thanks for kindly placing all docu-
ments at my disposal.

I . THE DISTRIBUTION OF MULTIPLE EVENTS

(CUMULATIVE DISTRIBUTION)

If we accept the three hypotheses mentioned in the introduction,

x) Figures in brackets relate to the list of references at the end of this
article.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100007832
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:01:39, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100007832
https:/www.cambridge.org/core


86 SOME ASPECTS OF CUMULATIVE RISK

the notions of event and claim cannot be distinguished, but the
situation changes as soon as (II) is not satisfied. We know from
experience that in many branches of insurance the element of
multiplicity of the event cannot be simply ignored. It is not neces-
sary to think only of damage from perils such as fire or hail, the
problem also arises in life insurance. The question of the total
effect on a company of claims arising from a common cause but
insured under multiple policies does not appear to have been
investigated yet. However, in this study we shall be concerned
only with the application to accident insurance, particularly to
damage sustained by persons.

An event (i.e. accident), other than one giving rise to purely
material damage, will cause injury to, say, /persons (J = I , 2, 3,. . .).
We denote the conditional probability of occurrence of an accident
with multiplicity j by Kj and the corresponding "cumulative distri-
bution" by {KA. The latter is therefore defined for j ^ 1, and is,
by its nature, discrete. From now on it will be assumed that this
distribution is independent of time.

Observed statistics of multiple events often show a markedly
skew form with a pronounced maximum for / = 1 and a fairly
rapid decrease thereafter. A representative example of this is given
by van Klinken [4] in respect of traffic accidents in Holland during
the year 1953 and reproduced in table 1.

Table 1

Number of
persons injured

i

2

3
4
5
6
7
8
9

1 0

more than 10

Total
Total of injured persons

Number of
accidents

19311
165

1 2

6
5
2

3
1

1

1

3

19 510
19 841
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SOME ASPECTS OF CUMULATIVE RISK 87

99 % of the accidents are in the class of one injured person, and
the conclusion might be drawn that in this case no great significance
attaches to the influence of multiplicity. In many examples, how-
ever, the disparity will be far less extreme.

The question can properly be asked which theoretical models
could be considered for representing a cumulative distribution.
Without attempting to give an exhaustive study, we would like
to give a selection of important possibilities.

Of the simple one-parametric distributions which could be
examined owing to their property of having a monotonously
decreasing trend, the following are selected:

(A) Poisson distribution.

To limit the interval of definition of {Kj} to / ^ i, the Poisson
distribution must be modified accordingly. This can be done either
through a simple translation

j = I, 2,

or by use of a truncation:

Kj = e " X - , / = i, 2, . . . . (2)

(B) Geometric distribution.

1 I a V

a\a +

(C) Logarithmic distribution.

, 7 = 1 , 2 , . . . . (3)

j= . ] Jl, ; = l , 2 , . . . . (4)
— log (i~p) 1

(D) Discrete Pareto distribution.

00

where £ (8) = \ -g is the Riemann Zeta-function.
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00 SOME ASPECTS OF CUMULATIVE RISK

One parameter functions are however not always adequate for
practical requirements as their lack of flexibility prevents adequate
representation of observed data. It then becomes necessary to use
a two parameter distribution of which the following are considered:

(E) Negative binomial distribution.

^ 7 2 )
(7)

analogous to the forms (i) and (2).
If, as shown by table 1, the single claim frequency is dominant

it appears valuable to use a device similar to that applied by
Aitchison [1].

We first attach a discrete probability 0 to the point 7 = 1, and
for 7 ^ 2 the distribution is expressed by one of the ordinary, one-
parametric distribution laws {Kj}- We then have the form

m H £-•>&/-* 3.... (8)

For examples we shall use distributions (B) and (C) which are
then written as follows:

(in the geometric distribution translation and truncation at the
point / = 2 are identical)

1 - 1- 1 -b1'
and Kj = —=— 4-— , j = 2, 3 (10)

— log (1 — p) 1 — 1
respectively

2. THE DISTRIBUTION OF THE NUMBER OF CLAIMS
(CLAIM DISTRIBUTION)

In the practical section we shall consider the cumulative distri-
bution only, but nevertheless the theoretical aspects of the claim
distribution will be briefly discussed.
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SOME ASPECTS OF CUMULATIVE RISK 89

The occurrence of the events as well as the number of claims at
each event is of stochastic origin and follows, say, the distribution
law {Pv(t)}. The expression Pv(t) gives therefore the probability
of occurrence of v accidents during the interval t, where these
quantities are to be dealt with as in § i. {Kj} and {Pv(t)} can be
combined to give the distribution of all the persons injured. This
leads to the claim distribution and its expression is, assuming
independence between the corresponding stochastic variables:

Wffl = J | Pv{t) K*v (12)

where regard must be paid to the fact that the number of persons
who sustain injury is at least equal to the number of accidents.
K*' means the w-fold convolution of the distribution {Kj}:

while Kj" = 0 as soon as D > /,
and we also have:

' (o for ] 7^ o

There is a simple connection between the generating functions
of the three distributions. If they are denoted, in order, by EK{Z),

Ep(z, t) and E\y{z, t), where by definition

EK{z) =

it is easy to show that

Ew{z, t) = EP [EK{z), t] (13)

while the corresponding moments are related by the formulas:
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90 SOME ASPECTS OF CUMULATIVE RISK

The classical theory assumes that the events being studied occur
according to a Poisson process and therefore that

(14)
vl

The claim distribution arising from this assumption is a so-called
generalized Poisson distribution and with the help of the examples
introduced in § i for Kj, the following representations of the process
are derived. It is of advantage on occasion to make use of the
generating functions.

(A) The two alternatives for Kj give two different sets of proba-
bilities, viz.:

and "-0 (15)

The type of this distribution can be better understood if use is
made of the generating function. Thus for the second equation we
get with the help oi

<M TEK(z) = £ _ J
& 1

Ew(z, t) = exp
i — e

A

which represents a Neyman type A distribution.

(B) Using the geometric distribution we can derive the formula:

which can be alternatively written as:

W0(t) = e~At

1 / a V' [ . At
a \a -\- 1/ I a > 1 ^ 1 (17)
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SOME ASPECTS OF CUMULATIVE RISK 91

where 1F1 is the confluent hypergeometric function of Kummer
defined by the series:

F fa- S- x) - V r ( a + V)

This distribution is a so-called Polya/Aeppli distribution.

(C) The generating function

gives for the claim distribution

j ,A.>\ At

Ew(z, t) = _ ClVosa-p) (18)
\ i —/)/

and this, we know, is a negative binomial distribution. With the
abbreviation

= a > o, it takes the form:
log (1 — p)

(D) In the case of the discrete Pareto distribution the represen-
tation of the generating function

cannot be simplified and the claim distribution is complicated.

(E) This can be looked upon as a generalization of (B). We find:

and

respectively.

7" %{^ A.)"
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92 SOME ASPECTS OF CUMULATIVE RISK

It is perhaps not immediately apparent how we can get (16) from
(21) when a = 1.

For 7 ^ 1 , we first deduce:

Wtf) - At e-W-* Pii-pr1 ^ (/ + 1; 2; -J— At) (22)

Next making use of the Kummer transformation

^ ( o e j p ; * ) = ^ ^ ( p — « ; p ; —*)

as well as of the parametric substitution p = , (22) is trans-
formed to (17). a + 1

(F) It will be sufficient to give here the generating function which
is in general

Ew(z, t) = exp - A* i — *6 — (i-6) EE (z) (23)

In the special case (9) this can be written as follows:

Ew(z, t) = exp < — At 1 — zQ — —L 1
a(i — z)\)

The probabilities and moments of the distribution can then be
derived from these formulas in the usual way.

Whilst the use of the Poisson process to describe the occurrence
of damage has been widely studied, many attempts have also
been made to generalize the model. These efforts have been con-
centrated mostly on the negative binomial distribution for the
reason that this distribution can readily be adapted to many
different assumptions. From (19) it already follows that if hypo-
thesis (II) of page 85 were to be neglected, a negative binomial
distribution could be derived. It is also of interest to note that the
same result follows for (I) or for (III), so that it is undoubtedly
convenient to substitute the negative binomial for the Poisson law.
We can suppose for instance that our population is heterogeneous;
it then follows that

- /

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100007832
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:01:39, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100007832
https:/www.cambridge.org/core


SOME ASPECTS OF CUMULATIVE RISK 93

where a Gamma distribution

is to be chosen for the structural function.

The process (14) is now replaced by

Some examples will be given to illustrate this generalization
(using the same letters as before):

(A) For the truncated form we have now the generating function

and the probabilities

wi{t)=^+-td—\mx-y(-d+v~T

\ i —e~V ? ! ^ - J \ «

(B) The geometric distribution leads to
^ + t,_i\/y_i\/ td

+i)

which, with the help of the hypergeometric function

(K^ + p) r ("2 + ») r(B)(* « • B- x\ -
v) v!'

• - 0

can be expressed as

/ x \W
WM) = —

oV; \td + i

-/ , -+i;2; —.
td + i) a\a + ij \ hd^ td + 1 a)'
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94 SOME ASPECTS OF CUMULATIVE RISK

The distribution takes a somewhat simpler form in the special
case h = d, i.e. when (24) becomes a geometric distribution with
the parameter td.

It is then:

1
Wj(t) =

td

Jxr rj. I 1 \2 td I a V J • td i \ . ^ . ..
Wjlt) = — \ F 1 — 7 , 2 5 2 ; — , 1 > 1 (28)

Now using the formula

F(—n, a; a; — x) = (1 + x)n

(28) is changed after some easy calculations into

td J [ ft* (« + 1) + a f
[Wit) =

«+!) (a
If the expression in brackets is called B(t), we get:

This distribution is of type (8), but with the discrete probability
6 eliminated at point 0.

(C) Equation (18) now becomes:

td
Ew{z, t) = log

log(i —

a distribution which could also be derived from heterogeneity
supposition (cf. [5]).

3. THE CUMULATIVE DISTRIBUTION IN THE

LIGHT OF STATISTICS

The documents put at our disposal include extracts from reports
on every kind of traffic accident which occurred in the city of
Zurich. The persons involved in these accidents belonged to all
classes of road-users, car-drivers or passengers, motor cyclists or
bicycle riders, pedestrians or public transport users. The statistics
distinguish three main kinds of accidents:
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SOME ASPECTS OF CUMULATIVE RISK 95

(a) Accidents in which persons suffered damage, for the present
paper of special interest.

(b) Accidents, in which only material damage occurred.

(c) Petty cases, i.e. accidents where the value of damage is not
more than Frs. 200.—.

It is perhaps not surprising that in a city district the greatest
part of the accidents are of category (b). The two others are roughly
of the same order of magnitude. For the past two years, the actual
numbers were:

Table 2

a) Damage to persons
b) Damage to objects
c) Petty cases

Total

1961

2446
3 975
2318

8 739

1962

2 206
4298
2 180

8 684

It is noteworthy to mention that the accidents recorded here
are of course only those reported to the police. Having regard to
the relatively small numbers conclusions must be drawn with
considerable caution and must not be overstressed. The number
of accidents causing injury to persons includes also cases where
death has occurred to one or more of those involved in the accident.
It would be valuable to make a closer study of the cumulative
distribution relating to fatal accidents. The numbers are, however,
too small (1962: 56 accidents with 57 dead persons), and this kind
of accident is therefore not separated from the others. Serious
accidents are rather the exception in a town as a result of the
generally slow speed of vehicles.

We have assumed on page 86 that the cumulative distribution
is independent of time. Is this assumption really sound ?

To study this question, we have first analysed all the statistical
documents on accidents which occurred during the past few years,
from June to September. The results are presented in the table 3:
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96 SOME ASPECTS OF CUMULATIVE RISK

Table 3

Number of
persons injured

1
2
3
4
5
6
7
8
9

10
11

Total number
of accidents

Total number of
persons injured

emp. means x}:

emp. variances s,":

Number of accidents

1955

889
no

21

6

1026

1196

1.166

0.214

1956

841
112

15
4
4

976

1146

1.174

0.249

1957

900

99
16

2
1
1
1
1

1021

1180

1.156

0.276

1958

800
104

1 1

4
2

1

922

1078

1.169

0.314

1959

781
84

8
1

1

875

982

1.122

0.147

i960

842
76
16

4
1

939

1063

1.132

0.187

1961

• 852
96
10

958

1074

1.121

0.127

1962

734
96

8
4
2
2

846

988

1.168

0.263

At a first glance we may reveal considerable fluctuations in the
number of accidents, and there appears to be, rather surprisingly,
a downward trend. (In that respect, it must not be overlooked that,
during the same period, the number of material damages has
markedly increased.) It is of interest to make a comparison with
some other figures, although the connection is very loose:

Table 4

Inhabitants
Motor-cars
Motor-cycles
Bicycles

1955

418 588
36951
19767

108 847

1959

436 475
55 551
21 102

94 531

* day

1962/1

440 784
66961*
17 027*
88 937*

of compu

Incre-
ment

from 195;
in

5-3
81.2

tation: 30

Decre-
ment

to 1962/1
0/

/o

1 3 9
18.3

9.1961
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In order to be able to compare the cumulative distributions of
the different years, the figures of table 3 have been standardised
to a total of 1000 accidents. We then obtain the following picture:

Table 5

Number of
persons injured

1
2
3
4
5 and more

Number of accidents

1955

867
107

20
6

1956

862
115
15
4

!957

881
97
16

4

1958

868
" 3

12

4
3

1959

893
96
9
i
1

i960

897
81
17
4
1

1961

889
100

11

1962

868
" 3

9
5
5

The run of these figures suggests that dependence of time may
not simply be rejected, the increase of one-claim accidents during
the years 1959/61 is a little striking. To make, if possible, a more
precise statement, we consider the eight columns as independent
random samples out of the same population and examine the
significance of the means. To test the hypothesis that the means
are random sample values we need the test quantity:

(30)

where K = number of samples Xj, Sj as given in table 3.
K K

Nj = sample sizes x = — \ Xj,N = y N,-

1-1

For large sample sizes this quantity is, independent of the basic
distribution, distributed approximately as F with (K — 1, N — K)
degrees of freedom (see e.g. [6]). The precision, however, improves
with approach to normality and equality of the variances.

Substituting the numerical values in (30), we obtain:

F = 2.09
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98 SOME ASPECTS OF CUMULATIVE RISK

From a table of the F-distribution we find as significance levels
for (7, oo) degrees of freedom:

99 % = 2.64
-F95 % = 2-OI

These figures do not allow to conclude that a significant differ-
ence exists between the means of the different samples.

The opportunity is here taken to mention two other forms of
dependence in connection with the cumulative distribution, although
these will not be studied in detail.

It is generally known that the frequency of accidents markedly
increases during the summer half year, owing to heavy traffic. The
question arises therefore, whether this phenomenon could influence
the distribution of multiple accidents in the sense that during the
summer months a deplacement occurs towards cumulative cases.
Quarterly statistics for 1962 are given in table 6:

Table 6

Number of
persons injured

1
2
3
4
5
6

1 1

Total number
of accidents
Total number of
persons injured
means

Number of accidents

1st quarter

377
44
5
2
1

429

493

I-I49

2nd quarter

57i
66
8
3
1

1

650

755

1.162

3rd quarter

533
73
7
4
2
2

621

738

1.188

4th quarter

45i
39
13

506

580

1.146

This result tends to support the supposition but further studies
would be necessary to be satisfied of its reality.
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SOME ASPECTS OF CUMULATIVE RISK 99

The second remark concerns the place of the accident. It is clear
that the conditions prevailing on a highway are different from those
in a town where, practically all over, speed limits are prescribed.
The cumulative accidents should be much more numerous on a

Table ya

Number of
persons injured

i

2

3
4
5
6

II

Total number
of accidents
Total number of
persons injured
means

Number of accidents

Outer districts

1961

784
91

19

3

2

899

1047

1.165

1962

744
86
I4
9
3

1

857

1020

1.190

Centre districts

1961

944
73
1 1

3
1

1032

1140

1.105

1962

826
86
12

1

1

2

928

i°55

1137

Table yb

(standardized)

Number of
persons injured

1

2

3
4
5 and more

Number of accidents

Outer districts

1961

872
IOI

21

4
2

1962

868
100

16
1 1

5

Centre districts

1961

915
71

10

3
1

1962

890
93
13

1

3
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100 SOME ASPECTS OF CUMULATIVE RISK

highway than on a town street, but even between districts of the
same town, some differences can be noted. The city of Zurich is
divided into n districts and the number of accidents is given
separately for every district. In the preceding tables ya. and yb we
have grouped together and then compared those four districts
which have the most important roads leading out of the town and
four others which include, for the most part, the city centre.

It is immediately apparent that multiple accidents occur much
more often in the outer districts, an unlikely result from random
flunctuations. This will, however, not be closer investigated.

Having now considered more or less closely some of the problems
which arise in connection with the cumulative distribution we now
approach our main task which is to find a theoretical distribution
function which suits our needs. We examine the distributions
mentioned in § i, leaving out, however, the more complicated
ones, especially (5) and (7).

To estimate the parameters we make use of the method of
moments, which is identical with the principle of maximum likeli-
hood for (A)— (C). We then have:

(AJ X = x — 1

(A2) X / ( i _ * " * ) = * o r i - A + A ! - . . . . = =

(B) d = x — i

(E) The moments of the distribution (6) are:

a = a I ~ ^ > + i a2 = a * ~~~ ^
P P%

Hence it follows

^ s2 s2 — (i — i)

(F) In general we get for the moments of (8)

,=fl + (i—I
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SOME ASPECTS OF CUMULATIVE RISK IOI

and as for (9)

P(K) = a + 2> a\~K) = « (« + 1),

the estimations of the parameters in (8) and (9) can be expressed by:

~ 2 ( 1 — x)2

2 \x -

(F') In addition to this last estimate there is a further one which
can be directly obtained from the observations at the point / = 1.
For the three distributions (9), (10) and (11) we have

n 1 —

x . 4> x — 1
and

n ' (p — i) log (i — p) i — 6
7,2 ~% ft

^ ^- = . ^ respectively

To obtain a larger amount of data we have taken the combined
statistics of the years 1961 and 1962. The total number of accidents
2446 + 2206 = 4652 is spread over the different classes according
to column 1 of the following table 8a. The calculation of the
observed moments gives:

x = 1.1468 and s2 = 0.2324

Using these figures we get

(Ad
(A2)
(B)
(Q
(E^
(F)
(F'i)
(F>)
(F')

X
X
a

?
%
e
e
e

= 0.1468

= 0.2805

= 0.1468

= 0.2351

= 0.6317,

= 0.8925,

= 0.8859,

= 0.8859,

= 0.8859,

a
a
a

V~

= 0.2518

= 0.3650

= 0.2866

= 0.3840

= 0.3146
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102 SOME ASPECTS OF CUMULATIVE RISK

Table 8a

Number of
persons injured

i

2

3
4
5
6

I I

Total
X2

degrees of freedom

Recorded
accidents

4121
43°
7i
19
6
4

1

Expected theoretical number of
accidents according to

(A)
4016.8

589.7
43-3

"}

415.0
2

4030.0
565-2

52.9

..,}
0.2 )

4°52
215-3

2

(£)

4O56-5
519-3
66.5

8 ^

59-2
2

(C)

4080.7
479-7

75-2
13-3

3-i

28.4
3

Table 86

Number of
persons injured

1
2
3
4
5
6 and more

Total
Xa

degrees of freedom

Expected theoretical number of
accidents according to

(£1)

4H3-9
3843

88.6
24-5

7-3
3-4

H-3
3

(F)

4I5I-9
366.4
98.0
26.2

7.0

2-5

23-3
3

(F'i)

4121.2
412.6

91.9
20.4
4.6^
i-3 >

4652
10.0

2

4121.2
420.7

80.8
20.7

5-9
2.7

3-5
3

(K)

4121.2
4J5-9

87.2
20.6
5-2 j

5-8
2

What conclusions can be drawn from the above ?

Considering the tabulated figures, we can first say that a trun-
cation of (A) gives a better result than a translation. This fact is,
however, not general, as a comparison between columns (F't) and
(Ft) will show. Out of all the one-parametric distributions we have
studied, the logarithmic one (C) appears to best represent the data.
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But all these functions have the drawback that the decrease for
j 5; 4 is too rapid. The tail can be lifted by the introduction of a
second parameter, but the result is not always much better, cf.
e.g. example (F).

To provide a statistical test of the various models we have used
the /2-test, grouping those classes with smaller frequency than
2 with the first preceding one. For 2 and 3 degrees of freedom the
usual significance limits of the ^-distribution are:

/ = 2: xV % = 5-99 X299 % = 9-21
/ = 3: X295 % = 7-82 x299 % = 11.34

None of the one-parametric distribution functions are satis-
factory judged by this test.

Among the two-parameter processes, hypothesis (Ej) turns out
to be only slightly significant. On the other hand, our observations
are well represented by (F't), even better than by (F'3), although
there is little to choose between them. A comparison with (Fj)
again shows the advantage of using the logarithmic distribution
to represent the cumulative risk.

The next step would be to study the effects of the various
models on the practical representation of the claim distribution.
It is of particular interest to know, when and to what extent the
influence of the cumulative distribution may be neglected. However,
this must be left for the moment, not without hoping for an in-
vestigation of this interesting matter at some future date.

LIST OF REFERENCES

[1] AITCHISON, J.: On the distribution of a positive random variable having
a discrete probability mass at the origin. J. Amer. Stat. Assoc. 50 (1955).

[2] AMMETER, H.: Die Ermittlung der Risikogewinne im Versicherungs-
wesen auf risikotheoretischer Grundlage. Mitt. Schweiz. Vers. Math.
57 (1957)-

[3] ARFWEDSON, G.: Research in collective risk theory. Skand. Aktuarie-
tidskrift 38 (i955)-

[4] KLINKEN, J. VAN: Statistical methods to inquire if the risk of accidents
has changed. Het Verzekerings-Archief, Actuar. Bijv. XXXIV (1957).

[5] KUPPER, J.: Wahrscheinlichkeitstheoretische Modelle in der Schaden-
versicherung, Teil I: Die Schadenzahl. Blatter der Deutschen Gesellschaft
fur Versicherungsmathematik 5 (1962).

[6] PFANZAGL, J.: Allgemeine Methodenlehre der Statistik II; Sammlung
Goschen, Walter de Gruyter & Co., Berlin 1962.

[7] THYRION, P.: Note sur les distributions "par grappes". Bull. Ass. Roy.
Actuaires Beiges 60 (i960).

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100007832
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:01:39, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100007832
https:/www.cambridge.org/core

