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We discuss some existence theorems for partial differential inclusions, subject to
Dirichlet boundary conditions, of the form

Φ(Du(x)) ∈ {α, β} a.e. x ∈ Ω,

where Φ is a quasi-affine function and so, in particular, for Φ(Du) = det Du.
We then apply it to minimization problems of the form

inf
{∫

Ω
g(Φ(Du(x))) dx : u ∈ ϕ + W 1,∞

0 (Ω; R
m)

}
.

1. Introduction

In this article we discuss the existence of solutions for some first-order partial dif-
ferential equations and then apply these results to minimization problems of the
calculus of variations.

Let us first discuss the model case and introduce some notation (we will always
adopt those of [5]). For maps u : Ω ⊂ R

n → R
n, we denote its gradient by Du ∈

R
n×n and its determinant by detDu.
We also, given a matrix ξ ∈ R

n×n, define the singular values of ξ as the eigenvalues
of (ξξT)1/2 and we denote them by

0 � λ1(ξ) � λ2(ξ) � · · · � λn(ξ).

Our first theorem is the following.

Theorem 1.1. Let Ω ⊂ R
n be a bounded open set, α < β and 0 < γ2 � · · · � γn

be such that

γ2

n∏
i=2

γi > max{|α|, |β|}.

Let ϕ ∈ C1
piec(Ω̄; Rn) (the set of piecewise C1 maps) be such that, for almost every

x ∈ Ω,
α < det Dϕ(x) < β,

n∏
i=ν

λi(Dϕ(x)) <

n∏
i=ν

γi, ν = 2, . . . , n.
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908 B. Dacorogna and A. M. Ribeiro

Then there exists u ∈ ϕ + W 1,∞
0 (Ω; Rn) such that

det Du ∈ {α, β} a.e. in Ω,

λν(Du) = γν , ν = 2, . . . , n, a.e. in Ω.

Remark 1.2. This theorem generalizes a theorem of Dacorogna and Marcellini [5]
where β = −α > 0.

Remark 1.3. The theorem is also true if α = β �= 0 (the condition α < det Dϕ < β
being replaced by detDϕ = α), and therefore also generalizes a theorem of Dacor-
ogna and Tanteri [9].

We then apply this theorem (for details, see theorem 5.1) to the following mini-
mization problem:

inf
{∫

Ω

g(det Du(x)) dx : u ∈ ϕ + W 1,∞
0 (Ω; Rn)

}
. (P)

This problem is important for applications (see [2] and [3]).
It should immediately be pointed out that, even when g is convex, it is not clear

that (P) admits a minimizer (unless ϕ is affine, in which case u = ϕ is a minimizer).
It was proved in [2], and then extended in [6], that if Ω is smooth and ϕ is a C1,α,
0 < α < 1, diffeomorphism, then there exists a minimizer ū of (P) that also solves

det Dū =
1

|Ω|

∫
Ω

det Dϕ(y) dy in Ω,

ū = ϕ on ∂Ω.

The non-convex case was then investigated by Mascolo and Schianchi [10] for
non-affine ϕ and by Cellina and Zagatti [1] and Dacorogna and Marcellini [4] when
ϕ is affine. Theorem 1.1 allows us to give a new proof of the existence of minimizers
for (P) when g is non-convex.

We then discuss the case of quasi-affine functions. We recall that, for m = n = 2
(for the general case, m, n � 2 (see § 2)), a quasi-affine function is of the form

Φ(ξ) = Φ(0) + 〈µ1; ξ〉 + µ2 det ξ,

where µ1 ∈ R
2×2 and µ2 ∈ R.

We will then prove the following theorem, which is, in some aspects, more general
than theorem 1.1 (since we can allow general quasi-affine functions) and, in others,
weaker (since we cannot prescribe other equations such as λi(Du) = γi (for some
extensions, see [11])).

Theorem 1.4. Let Ω ⊂ R
n be a bounded open set, α < β, Φ : R

m×n → R a non-
constant quasi-affine function and ϕ ∈ C1

piec(Ω̄; Rm) such that, for almost every
x ∈ Ω,

α < Φ(Dϕ(x)) < β.

Then there exists u ∈ ϕ + W 1,∞
0 (Ω; Rm) satisfying

Φ(Du) ∈ {α, β} a.e. in Ω.
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Existence of solutions for some implicit PDEs 909

This theorem has a direct application to the minimization problem

inf
{∫

Ω

g(Φ(Du(x))) dx : u ∈ ϕ + W 1,∞
0 (Ω; Rm)

}

when g is non-convex, recovering a theorem already proved, by different means, by
Cellina and Zagatti [1].

2. Preliminaries

In this section we state the main abstract existence theorem that we will use in the
following sections. We also briefly define the notion of a quasi-affine function.

We start by recalling the notion of a rank-one convex hull of a given set (for more
details, see [5]).

Notation 2.1. For E ⊂ R
m×n, let

F̄E = {f : R
m×n → R̄ = R ∪ {+∞} and f |E � 0},

Rco E = {ξ ∈ R
m×n : f(ξ) � 0 for every rank-one convex f ∈ F̄E}.

We denote by Int Rco E the interior of the rank-one convex hull of E.

We start with the following definition introduced by Dacorogna and Marcellini
in [5], which is the key condition to get the existence of solutions.

Definition 2.2 (approximation property). Let E ⊂ K(E) ⊂ R
m×n. The sets E

and K(E) are said to have the approximation property if there exists a family of
closed sets Eδ and K(Eδ), δ > 0, such that the following hold.

(1) Eδ ⊂ K(Eδ) ⊂ IntK(E) for every δ > 0.

(2) For every ε > 0, there exists δ0 = δ0(ε) > 0 such that dist(η; E) � ε for every
η ∈ Eδ and δ ∈ [0, δ0].

(3) If η ∈ IntK(E), then η ∈ K(Eδ) for every δ > 0 sufficiently small.

The main abstract existence theorem that we use in our analysis is as follows
(cf. theorem 6.3 combined with theorem 6.14 in [5], or, for a slightly more general
version, that we use here, cf. theorem 7 in [7]).

Theorem 2.3. Let Ω ⊂ R
n be open. Let E ⊂ R

m×n be compact. Assume that
Rco E has the approximation property with K(Eδ) = Rco Eδ. Let ϕ ∈ C1

piec(Ω̄; Rm)
(where C1

piec denotes the set of piecewise C1 maps) be such that

Dϕ(x) ∈ E ∪ Int Rco E a.e. in Ω.

Then there exists (a dense set of) u ∈ ϕ + W 1,∞
0 (Ω; Rm) such that

Du(x) ∈ E a.e. in Ω.

Finally, we recall the notion of quasi-affine functions (for more details, see [3]).
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910 B. Dacorogna and A. M. Ribeiro

Definition 2.4. We say that Φ : R
m×n → R is quasi-affine if

Φ(ξ) = Φ(0) +
m∧n∑
k=1

〈Ak; adjk ξ〉,

where m ∧ n = min{n, m}, Ak ∈ R
σ(k), σ(k) =

(
m
k

)
×

(
n
k

)
, adjk ξ is the matrix of

the minors of ξ of order k and 〈·; ·〉 denotes the scalar product.
In an equivalent form, we can write

Φ(ξ) = Φ(0) +
m∧n∑
q=1

∑
1�i1<···<iq�m
1�j1<···<jq�n

µ
i1···iq

j1···jq
det

⎛
⎜⎜⎝

ξi1
j1

· · · ξi1
jq

...
...

ξ
iq

j1
· · · ξ

iq

jq

⎞
⎟⎟⎠

for some constants µ
i1···iq

j1···jq
∈ R, 1 � q � m ∧ n.

Moreover, we have the following result.

Proposition 2.5. Let Φ : R
m×n → R be quasi-affine and Ω ⊂ R

n be a bounded
open set. Then∫

Ω

Φ(Dv(x)) dx =
∫

Ω

Φ(Du(x)) dx ∀v ∈ u + W 1,∞
0 (Ω; Rm).

3. Rank-one convex hulls

In this section we compute the rank-one convex hull of sets E involving the condition

Φ(ξ) ∈ {α, β},

where Φ is a quasi-affine function. We start in § 3.1 with the case of the determinant
where extra conditions on the singular values are allowed. In § 3.2 we deal with
general quasi-affine functions.

3.1. The case of the determinant

We prove the following theorem.

Theorem 3.1. Let α � β, 0 < γ2 � · · · � γn be constants such that

γ2

n∏
i=2

γi � max{|α|, |β|}.

Let
E = {ξ ∈ R

n×n : det ξ ∈ {α, β}, λi(ξ) = γi, i = 2, . . . , n}.

Then

Rco E =
{

ξ ∈ R
n×n : det ξ ∈ [α, β],

n∏
i=ν

λi(ξ) �
n∏

i=ν

γi, ν = 2, . . . , n

}
.
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Existence of solutions for some implicit PDEs 911

Moreover, if α < β, then

Int Rco E =
{

ξ ∈ R
n×n : det ξ ∈ (α, β),

n∏
i=ν

λi(ξ) <

n∏
i=ν

γi, ν = 2, . . . , n},

and if α = β, then

Int Rco E =
{

ξ ∈ R
n×n : det ξ = α,

n∏
i=ν

λi(ξ) <

n∏
i=ν

γi, ν = 2, . . . , n

}
,

where the interior is to be understood relative to the manifold {det ξ = α}.

Remark 3.2. The theorem extends [8] and [5] if β = −α > 0 and [9] if α = β. In
particular, note that if we let, when β = −α > 0,

γ1 = β

( n∏
i=2

γi

)−1

,

then

E = {ξ ∈ R
n×n : det ξ ∈ {−β, β}, λi(ξ) = γi, i = 2, . . . , n}

= {ξ ∈ R
n×n : λ1(ξ) = γ1, λi(ξ) = γi, i = 2, . . . , n}.

Proof. We divide the proof into two parts. In the first one, we obtain the charac-
terization of Rco E, and in the second a characterization of its interior.

Part 1. Let

X =
{

ξ ∈ R
n×n : det ξ ∈ [α, β],

n∏
i=ν

λi(ξ) �
n∏

i=ν

γi, ν = 2, . . . , n

}
.

We want to show that X = Rco E.

Step 1 (Rco E ⊂ X). This is the easy implication. Indeed, observe that E ⊂ X
and that the functions

ξ → ± det ξ, ξ →
n∏

i=ν

λi(ξ), ν = 2, . . . , n,

are rank-one convex (see [5]). We therefore have that the set X is rank-one convex
and thus the desired inclusion.

Step 2 (X ⊂ Rco E). Since the set X is compact (the function ξ → λn(ξ) being a
norm), it is enough to show that ∂X ⊂ Rco E. So we let ξ ∈ ∂X and we want to
prove that ξ ∈ Rco E. Note that ∂X = Xα ∪ Xβ ∪ X2 ∪ · · · ∪ Xn, where

Xα = {ξ ∈ X : det ξ = α},

Xβ = {ξ ∈ X : det ξ = β},

Xν =
{

ξ ∈ X :
n∏

i=ν

λi(ξ) =
n∏

i=ν

γi

}

for ν = 2, . . . , n.
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912 B. Dacorogna and A. M. Ribeiro

Since all the functions involved in the definition of X are right and left SO(n)
invariant, there is no loss of generality in assuming that ξ is diagonal,

ξ = diag(x1, x2, . . . , xn),

with 0 � |x1| � x2 � · · · � xn. We therefore have λ1(ξ) = |x1|, λi(ξ) = xi,
i = 2, . . . , n. We will now proceed by induction on the dimension n; when n = 1
the result is trivial.

Several possibilities can then happen, bearing in mind that ξ ∈ ∂X.

Case 1. ξ ∈ Xν̄ for a certain ν̄ = 2, . . . , n, i.e.

n∏
i=ν̄

xi =
n∏

i=ν̄

γi.

We write ξ ∈ R
n×n as two blocks, one in R

(ν̄−1)×(ν̄−1) and one in R
(n−ν̄+1)×(n−ν̄+1),

in the following way: ξ = diag(ξν̄−1, ξn−ν̄+1), where ξν̄−1 = diag(x1, . . . , xν̄−1) and
ξn−ν̄+1 = diag(xν̄ , . . . , xn).

We then apply the hypothesis of induction on ξν̄−1 and ξn−ν̄+1 (we will check
that we can do so below) and we deduce that ξ ∈ Rco E. Let us now see that we
can apply the hypothesis of induction first for ξν̄−1. We have (when ν̄ = 2 or ν̄ = n,
terms such as

∏ν̄−1
i=2 or

∏n
i=ν̄+1 should be replaced by 1)

γ2

ν̄−1∏
i=2

γi = γ2

n∏
i=2

γi

( n∏
i=ν̄

γi

)−1

� max
{

|α|
γν̄ · · · γn

,
|β|

γν̄ · · · γn

}
,

det ξν̄−1 =
ν̄−1∏
i=1

xi =
n∏

i=1

xi

( n∏
i=ν̄

xi

)−1

=
n∏

i=1

xi

( n∏
i=ν̄

γi

)−1

= det ξ

( n∏
i=ν̄

γi

)−1

∈
[

α

γν̄ . . . γn
,

β

γν̄ . . . γn

]
,

ν̄−1∏
i=ν

λi(ξν̄−1) =
n∏

i=ν

xi

( n∏
i=ν̄

xi

)−1

=
n∏

i=ν

xi

( n∏
i=ν̄

γi

)−1

�
ν̄−1∏
i=ν

γi, ν = 2, . . . , ν̄ − 1,

and thus the result.
Similarly, for ξn−ν̄+1, since (here, the role of α and β is played, for both, by∏n
i=ν̄ γi)

γν̄+1

n∏
i=ν̄+1

γi �
n∏

i=ν̄

γi,

det ξn−ν̄+1 =
n∏

i=ν̄

xi =
n∏

i=ν̄

γi,

n−ν̄+1∏
i=ν−ν̄+1

λi(ξn−ν̄+1) =
n∏

i=ν

xi �
n∏

i=ν

γi, ν = ν̄ + 1, . . . , n,

we have the claim.
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Existence of solutions for some implicit PDEs 913

Case 2. ξ ∈ Xα (similarly for the case ξ ∈ Xβ). We can also assume that ξ /∈ Xν ,
ν = 2, . . . , n, otherwise we apply case 1. So we can assume that

ξ ∈ IntXα =
{

η ∈ R
n×n : det η = α,

n∏
i=ν

λi(η) <

n∏
i=ν

γi, ν = 2, . . . , n

}
.

This is clearly an open set (relative to the manifold {det η = α}).
Recall that

ξ = diag(x1, . . . , xn) =

⎛
⎜⎝

x1
. . .

xn

⎞
⎟⎠ .

We then set, for t ∈ R,

ξt =

⎛
⎜⎜⎜⎝

x1
. . .

xn−1 t

0 xn

⎞
⎟⎟⎟⎠

and observe that det ξt = det ξ = α. Since Xα is bounded, we can find t1 < 0 < t2
such that ξt1 , ξt2 ∈ ∂Xα, which means that ξti

∈ Xνi
, i = 1, 2, for a certain

νi = 2, . . . , n, and therefore, by case 1, we have ξti
∈ Rco E, and thus, since

rank(ξt1 − ξt2) = 1, we deduce that ξ ∈ Rco E, as required.

This concludes the first part of the theorem.

Part 2. The representation formula for Int RcoE is easy and its proof is very
similar to the ones in [5] or [8] and we skip the details.

3.2. The case of a quasi-affine function

We will need, prior to the main theorem, two elementary lemmas, but we postpone
their proofs to the end of the present subsection. The first one will be used to assert
that condition (3.1) below can be fulfilled by some ci

j > 0 and will also be used in
theorem 1.4. Lemma 3.4 will be used in the proof of theorem 3.5.

Lemma 3.3. Let Φ : R
m×n → R be a non-constant quasi-affine function and

M, N > 0. Then there exist ci
j > N , i = 1, . . . , m, j = 1, . . . , n, such that

inf{|Φ(ξ)| : |ξi
j | = ci

j} > M.

Lemma 3.4. Let Φ : R
m×n → R be a non-constant quasi-affine function. Then Φ

has no local extremum.

We can now state the main theorem.

Theorem 3.5. Let Φ : R
m×n → R be a non-constant quasi-affine function, α < β,

ci
j > 0 satisfying

inf{|Φ(ξ)| : |ξi
j | = ci

j} > max{|α|, |β|}. (3.1)
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914 B. Dacorogna and A. M. Ribeiro

Let

E = {ξ ∈ R
m×n : Φ(ξ) ∈ {α, β}, |ξi

j | � ci
j , i = 1, . . . , m, j = 1, . . . , n}.

Then

Rco E = {ξ ∈ R
m×n : Φ(ξ) ∈ [α, β], |ξi

j | � ci
j , i = 1, . . . , m, j = 1, . . . , n},

Int Rco E = {ξ ∈ R
m×n : Φ(ξ) ∈ (α, β), |ξi

j | < ci
j , i = 1, . . . , m, j = 1, . . . , n}.

Proof.

Part 1. We let

X = {ξ ∈ R
m×n : Φ(ξ) ∈ [α, β], |ξi

j | � ci
j , i = 1, . . . , m, j = 1, . . . , n}

and we show that X = Rco E. The inclusion RcoE ⊂ X follows from the combina-
tion of the facts that E ⊂ X and that the set X is rank-one convex (the functions
Φ, −Φ and | · | being rank-one convex).

We therefore have to show only that X ⊂ Rco E. So we let ξ ∈ X and we assume
that α < Φ(ξ) < β, otherwise the result is trivial. We observe that (3.1) implies
that, for every ξ ∈ X, there exists (i, j) such that |ξi

j | < ci
j . So, for t ∈ R, let

ξt = ξ + tei ⊗ ej

and observe that, by compactness, there exist t1 < 0 < t2 such that ξtν ∈ ∂X,
ν = 1, 2, which implies that either Φ(ξtν ) ∈ {α, β} or |(ξtν )i

j | = ci
j , ν = 1, 2. If the

first possibility happens, then we are done. If, however, the second case holds, then
we restart the process with a different (i, j), since, by (3.1), it is not possible that
|(ξtν )i

j | = ci
j for every (i, j).

Part 2. We now define

Y = {ξ ∈ R
m×n : Φ(ξ) ∈ (α, β), |ξi

j | < ci
j , i = 1, . . . , m, j = 1, . . . , n}

and observe that, since Y ⊂ Rco E and Y is open, then Y ⊂ Int Rco E. So let us
show the reverse inclusion and choose ξ ∈ Int Rco E. Clearly, such a ξ must have
|ξi

j | < ci
j . Lemma 3.4 shows also that ξ should be such that α < Φ(ξ) < β. These

observations imply the result.

We now prove lemma 3.3.

Proof. Since Φ is quasi-affine, we can write

Φ(ξ) = Φ(0) +
m∧n∑
q=1

∑
1�i1<···<iq�m
1�j1<···<jq�n

µ
i1···iq

j1···jq
det

⎛
⎜⎜⎝

ξi1
j1

· · · ξi1
jq

...
...

ξ
iq

j1
· · · ξ

iq

jq

⎞
⎟⎟⎠ .

Since Φ is not constant, we can find 1 � s � m ∧ n, 1 � i1 < · · · < is � m and
1 � j1 < · · · < js � n such that

µi1···is
j1···js

�= 0 and µ
i1···iq

j1···jq
= 0 ∀q > s.
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Existence of solutions for some implicit PDEs 915

Assume, without loss of generality, that

µ1···s
1···s �= 0. (3.2)

Let us define the set

Θ = {θ ∈ R
m×n : θi

j ∈ {±1}}

and the product A � B ∈ R
m×n, for two given matrices A, B ∈ R

m×n, as

(A � B)i
j = Ai

j · Bi
j .

We want to find a matrix C ∈ R
m×n such that ci

j > N and

ξ = C � θ, θ ∈ Θ ⇒ |Φ(ξ)| > M.

In fact, we will prove that the matrix can be chosen of the form C = τA, where
τ > 0 and, for t > 0,

Ai
j =

{
t if 1 � i = j � s,

1 otherwise (i.e. if i �= j or if i = j � s + 1).

We observe that

Φ(ξ) = Φ(C � θ)

= Φ(0) +
s∑

q=1

τ q
∑

1�i1<···<iq�m
1�j1<···<jq�n

µ
i1···iq

j1···jq
det

⎛
⎜⎜⎝

Ai1
j1

θi1
j1

· · · Ai1
jq

θi1
jq

...
...

A
iq

j1
θ

iq

j1
· · · A

iq

jq
θ

iq

jq

⎞
⎟⎟⎠ ,

and that, for τ and t sufficiently large, it is possible to find γ > 0 such that

|Φ(ξ)| � γτsts.

Choosing τ and t sufficiently large, we have, indeed, found ci
j > N and |Φ(ξ)| > M

as required.

We now prove lemma 3.4.

Proof. We prove that if Φ has a local extremum, then it must be constant. We
proceed in two steps.

Step 1. We first show that if ξ is a local extremum point of Φ, then Φ is constant
in a neighbourhood of ξ.

Assume that ξ is a local minimum point of Φ (the case of a local maximizer being
handled similarly). We therefore have that there exists ε > 0 such that

Φ(ξ) � Φ(ξ + v) for every v ∈ R
m×n such that |vi

j | � ε. (3.3)

We show that this implies that

Φ(ξ) = Φ(ξ + v) for every v ∈ R
m×n such that |vi

j | � ε. (3.4)
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916 B. Dacorogna and A. M. Ribeiro

We write
v =

∑
1�i�m
1�j�n

vi
je

i ⊗ ej

and observe that, since Φ is quasi-affine,

Φ(ξ) = 1
2Φ(ξ + v1

1e1 ⊗ e1) + 1
2Φ(ξ − v1

1e1 ⊗ e1),

and since (3.3) is satisfied, we deduce that

Φ(ξ ± v1
1e1 ⊗ e1) = Φ(ξ), |v1

1 | � ε. (3.5)

We next write, using again the fact that Φ is quasi-affine,

Φ(ξ + v1
1e1 ⊗ e1) = 1

2Φ(ξ + v1
1e1 ⊗ e1 + v1

2e1 ⊗ e2) + 1
2Φ(ξ + v1

1e1 ⊗ e1 − v1
2e1 ⊗ e2),

and since (3.3) and (3.5) hold, we deduce that

Φ(ξ + v1
1e1 ⊗ e1 ± v1

2e1 ⊗ e2) = Φ(ξ + v1
1e1 ⊗ e1) = Φ(ξ), |v1

1 |, |v1
2 | � ε.

Iterating the procedure, we have indeed established (3.4).

Step 2. We now show that if Φ is locally constant around a point ξ ∈ R
m×n, then Φ

is constant everywhere, establishing the result. So assume that

Φ(ξ + v) = Φ(ξ) ∀v ∈ R
m×n, with |vi

j | � ε, (3.6)

and let us show that
Φ(ξ + w) = Φ(ξ) ∀w ∈ R

m×n. (3.7)

The procedure is similar to that of step 1 and we start to show that, for all w1
1 ∈ R

and |vi
j | � ε, we have

Φ

(
ξ + w1

1e
1 ⊗ e1 +

∑
(i,j) �=(1,1)

vi
je

i ⊗ ej

)
= Φ(ξ + w1

1e
1 ⊗ e1) = Φ(ξ). (3.8)

Indeed, if |w1
1| � ε, this is nothing else than (3.6), so we may assume that |w1

1| > ε
and use the fact that Φ is quasi-affine to deduce that

Φ

(
ξ + ε

w1
1

|w1
1|

e1 ⊗ e1 +
∑

(i,j) �=(1,1)

vi
je

i ⊗ ej

)

=
ε

|w1
1|

Φ

(
ξ + w1

1e
1 ⊗ e1 +

∑
(i,j) �=(1,1)

vi
je

i ⊗ ej

)

+
(

1 − ε

|w1
1|

)
Φ

(
ξ +

∑
(i,j) �=(1,1)

vi
je

i ⊗ ej

)
.

Therefore, appealing to (3.6) and to the preceding identity, we have indeed estab-
lished (3.8). Proceeding iteratively in a similar manner with the other components
(w1

2, w
1
3, . . . ), we have obtained (3.7) and thus the proof of the lemma is com-

plete.
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4. Existence of solutions

We discuss the proofs of the two main theorems of § 1.

4.1. The case of the determinant

We recall theorem 1.1.

Theorem 1.1. Let Ω ⊂ R
n be a bounded open set, α < β and 0 < γ2 � · · · � γn

be such that

γ2

n∏
i=2

γi > max{|α|, |β|}.

Let ϕ ∈ C1
piec(Ω̄; Rn) (the set of piecewise C1 maps) be such that, for almost every

x ∈ Ω,

α < det Dϕ(x) < β,
n∏

i=ν

λi(Dϕ(x)) <

n∏
i=ν

γi, ν = 2, . . . , n.

Then there exists u ∈ ϕ + W 1,∞
0 (Ω; Rn) such that

det Du ∈ {α, β} a.e. in Ω,

λν(Du) = γν , ν = 2, . . . , n, a.e. in Ω.

Proof. We now show that the result follows from the combination of theorems 2.3
and 3.1. From theorem 3.1, we have

E = {ξ ∈ R
n×n : det ξ ∈ {α, β}, λi(ξ) = γi, i = 2, . . . , n},

Rco E =
{

ξ ∈ R
n×n : det ξ ∈ [α, β],

n∏
i=ν

λi(ξ) �
n∏

i=ν

γi, ν = 2, . . . , n

}
.

Since ϕ ∈ C1
piec(Ω̄; Rn) and Dϕ ∈ Int Rco E, we only need to verify that E and

Rco E have the approximation property.
For δ > 0 such that γ2 − δ > 0 and α + δ < β − δ, let

Eδ = {ξ ∈ R
n×n : det ξ ∈ {α + δ, β − δ}, λi(ξ) = γi − δ, i = 2, . . . , n}.

For a sufficiently small δ, we have

(γ2 − δ)
n∏

i=2

(γi − δ) � max{|α + δ|, |β − δ|},

and thus theorem 3.1 ensures that

Rco Eδ =
{

ξ ∈ R
n×n : det ξ ∈ [α + δ, β − δ],

n∏
i=ν

λi(ξ) �
n∏

i=ν

(γi − δ), ν = 2, . . . , n

}
.

We have to verify the three conditions of definition 2.2. The first one is obvious.
We next verify the second condition. Since η ∈ Eδ, we assume that det η = α + δ,
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918 B. Dacorogna and A. M. Ribeiro

the case det η = β − δ being handled in an analogous way. The set Eδ being left
and right SO(n) invariant, we can assume that

η = diag
(

α + δ

(γ2 − δ) · · · (γn − δ)
, γ2 − δ, . . . , γn − δ

)
.

If we let

ξ = diag
(

α

γ2 · · · γn
, γ2, . . . , γn

)
,

we have ξ ∈ E and

dist(η; E) � max
{∣∣∣∣ α + δ

(γ2 − δ) · · · (γn − δ)
− α

γ2 · · · γn

∣∣∣∣, δ
}

→ 0 as δ → 0.

The second condition of definition 2.2 then follows.
The third condition of the approximation property follows from the continuity of

the functions involved in the definition of RcoEδ. We may then apply theorem 2.3
to get the result.

4.2. The case of a quasi-affine function

We recall theorem 1.4.

Theorem 1.4. Let Ω ⊂ R
n be a bounded open set, α < β, Φ : R

m×n → R a non-
constant quasi-affine function and ϕ ∈ C1

piec(Ω̄; Rm) such that, for almost every
x ∈ Ω,

α < Φ(Dϕ(x)) < β.

Then there exists u ∈ ϕ + W 1,∞
0 (Ω; Rm) satisfying

Φ(Du) ∈ {α, β} a.e. in Ω.

Remark 4.1. The theorem is, in fact, slightly more precise and asserts also that if
ci
j , i = 1, . . . , m, j = 1, . . . , n, are constants such that |Djϕ

i(x)| < ci
j and

|Φ(ξ)| > max{|α|, |β|} ∀ξ ∈ R
m×n, |ξi

j | = ci
j , i = 1, . . . , m, j = 1, . . . , n,

then the solutions also verify

|Dju
i(x)| � ci

j ∀(i, j).

Proof. As ϕ ∈ C1
piec(Ω̄; Rm), by lemma 3.3, we can find constants ci

j such that
|Djϕ

i(x)| < ci
j and

|Φ(ξ)| > max{|α|, |β|} ∀ξ ∈ R
m×n, |ξi

j | = ci
j , i = 1, . . . , m, j = 1, . . . , n.

(4.1)
We then define

E = {ξ ∈ R
m×n : Φ(ξ) ∈ {α, β}, |ξi

j | � ci
j , i = 1, . . . , m, j = 1, . . . , n}.

As before, we only need to verify that the sets E and Rco E have the approximation
property.
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Let

Eδ = {ξ ∈ R
m×n : Φ(ξ) ∈ {α + δ, β − δ}, |ξi

j | � ci
j − δ, i = 1, . . . , m, j = 1, . . . , n}.

We first observe that, by continuity, it follows from (4.1) that

|Φ(ξ)| > max{|α + δ|, |β − δ|} ∀ξ ∈ R
m×n, |ξi

j | = ci
j − δ ∀(i, j).

We can then apply theorem 3.5 to find

Rco Eδ = {ξ ∈ R
m×n : Φ(ξ) ∈ [α+δ, β−δ], |ξi

j | � ci
j−δ, i = 1, . . . , m, j = 1, . . . , n}.

It immediately follows that the first and third conditions of definition 2.2 are veri-
fied. It therefore remains to check the second one.

We proceed by contradiction and assume that there exist ε > 0 and a sequence
ηn ∈ E1/n with dist(ηn, E) > ε. Since |(ηn)i

j | � ci
j , we can extract a convergent

subsequence, still denoted ηn, and η ∈ E such that ηn → η, which is at odds with
dist(ηn, E) > ε.

We can therefore invoke theorem 2.3 to conclude the proof.

5. Existence of minimizers

We consider in this section the minimization problem

inf
{∫

Ω

g(Φ(Du(x))) dx : u ∈ ϕ + W 1,∞
0 (Ω; Rm)

}
, (P)

where Ω is a bounded open set of R
n, ϕ ∈ W 1,∞(Ω; Rm) and

(i) g : R → R̄ = R ∪ {+∞} is a lower-semicontinuous non-convex function;

(ii) Φ : R
m×n → R is quasi-affine and non-constant.

We recall that, in particular, we can have, when m = n, Φ(ξ) = det ξ.
The existence result that we give for problem (P) is based on the assumption

that the relaxed problem

inf
{∫

Ω

Cg(Φ(Du(x))) dx : u ∈ ϕ + W 1,∞
0 (Ω; Rm)

}
, (QP)

where Cg is the convex envelope of g, has piecewise C1 solutions. If ϕ is affine, this
is trivial, since ū = ϕ is then a solution of (QP). When ϕ is not affine, the only
result available is [6], valid for m = n and Φ(ξ) = det ξ.

The existence result is the following.

Theorem 5.1. Let Ω ⊂ R
n be a bounded open set, g : R → R̄ = R ∪ {+∞} a

lower-semicontinuous function such that

lim
|t|→+∞

g(t)
|t| = +∞ (5.1)

and ϕ ∈ W 1,∞(Ω; Rm). If (QP) has a solution u0 ∈ C1
piec(Ω̄; Rm), then there exists

ū ∈ ϕ + W 1,∞
0 (Ω; Rm), a solution of (P).
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Proof. Let
K = {t ∈ R : Cg(t) < g(t)}.

The assumptions on g ensure that K is open and that it can be written as a
countable union of disjoint bounded intervals,

K =
⋃
j∈N

(αj , βj).

Moreover, on every [αj , βj ], the function Cg is affine, i.e.

Cg(t) = aj + bjt, t ∈ [αj , βj ]. (5.2)

We then let

Ω0 = {x ∈ Ω : g(Φ(Du0(x))) = Cg(Φ(Du0(x)))},

Ωj = {x ∈ Ω : Φ(Du0(x)) ∈ (αj , βj)}, j = 1, 2, . . .

Since u0 is piecewise C1, we find that the sets Ωj , j = 1, 2, . . . , are open.
For every j = 1, 2, . . . such that Ωj �= ∅, we apply theorem 1.4, with ϕ = u0 ∈

C1
piec(Ω̄j ; Rm). In this way, we obtain the existence of uj ∈ u0 + W 1,∞

0 (Ωj ; Rm) such
that

Φ(Duj) ∈ {αj , βj} a.e. in Ωj .

If we define

ū =

{
u0 in Ω0,

uj in Ωj , j ∈ N,

we have
g(Φ(Dū)) = Cg(Φ(Dū)) a.e. in Ω. (5.3)

We claim that ū is a solution of (P). Indeed, we have ū ∈ ϕ + W 1,∞
0 (Ω; Rm).

Moreover, appealing to (5.2), (5.3) and proposition 2.5, we obtain∫
Ω

g(Φ(Dū(x))) dx =
∫

Ω

Cg(Φ(Dū(x))) dx

=
∞∑

j=0

∫
Ωj

Cg(Φ(Duj(x))) dx

=
∫

Ω0

Cg(Φ(Du0(x))) dx +
∞∑

j=1

∫
Ωj

(aj + bjΦ(Duj(x))) dx

=
∫

Ω0

Cg(Φ(Du0(x))) dx +
∞∑

j=1

∫
Ωj

(aj + bjΦ(Du0(x))) dx

=
∫

Ω

Cg(Φ(Du0(x))) dx.

Finally, using the fact that u0 is a solution of (QP) and inf(QP ) � inf(P ), we
obtain that ū is a solution of (P).
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