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Editor’s key points

† Oxygen supplementation
is a key therapy in
anaesthesia and intensive
care, but recent evidence
points to detrimental
effects.

† Hyperoxia enhances
oxidative injury by
increasing reactive
oxygen metabolites, with
effects on the pulmonary,
cardiovascular, immune,
and nervous systems.

† The potentially
detrimental effects of
hyperoxia are more
pronounced at the
extremes of age.

Enormous interest has emerged in the perioperative use of high concentrations of inspired
oxygen in an attempt to increase tissue oxygenation and thereby improve postoperative
outcome. An extensive debate has arisen regarding the risk/benefit ratio of oxygen therapy,
with some researchers advocating the benefits of perioperative hyperoxia, particularly with
regard to surgical site infection, whereas others emphasize its detrimental consequences
on multiple organs, particularly the lungs and the brain. As one aspect of this debate, there
is increased awareness of effects of reactive oxygen metabolites, a feature that contributes
to the complexity of achieving consensus regarding optimum oxygen concentration in
the perioperative period. Many reviews have discussed the pros and cons in the use of
perioperative oxygen supplementation, but the potential importance of age-related factors in
hyperoxia has not been addressed. The present narrative review provides a comprehensive
overview of the physiological mechanisms and clinical outcomes across the age range from
neonates to the elderly. Risks greatly outweigh the benefits of hyperoxia both in the very
young, where growth and development are the hallmarks, and in the elderly, where ageing
increases sensitivity to oxidative stress. Conversely, in middle age, benefits of short-term
administration of perioperative oxygen therapy exceed potential adverse change effects,
and thus, oxygen supplementation can be considered an important therapy to improve
anaesthesia management.
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After its initial discovery as a ‘fire air’ in 1771 by Carl Wilhelm
Scheele, and the activities of Antoine Lavoisier leading to
worldwide recognition of its value,1 the use of oxygen (O2) in
medical practice spread throughout the 19th century. Today,
not a single anaesthetic procedure is performed without con-
sideration of O2 as an important component of management.
The usefulness and benefits of O2 administration remained
unchallenged until a few decades ago when our understanding
of oxidative stress and O2 toxicity became more comprehen-
sive, and a more balanced and pragmatic application of O2

therapy was proposed. In recent years, a growing debate has
emerged regarding the benefits and risks involved in the peri-
operative use of high concentrations of inspired O2, with physiol-
ogists and pharmacologists emphasizing the toxicity of this gas,
whileanaesthetistsand intensivistsratherstressthe importance
of O2 in improving patient care through decreasing morbidity.

A number of systematic reviews and meta-analyses provide
evidence of the risks/benefits of O2 at various concentrations
and for different durations of administration, but the lack of

clear-cut conclusions leads to confusion and the absence of
evidence-based guidelines for use in routine anaesthesia prac-
tice. This discrepancy in the scientific literature is mainly attrib-
utable to the multifactorial facets of perioperative care, with O2

being one limb of the highly complex decision-making network
for individualized anaesthesia management of patients who
demonstrate enormous inter-individual differences. Accord-
ingly, anaesthetists require a critical appraisal of the results
of recent studies, describing factors that affect the efficacy
of O2 therapy. Such factors are either patient-related (age,
genetics, gender, environment, etc.) or depend on the type
and context of the procedure and on the perioperative
management by the anaesthetist. The present unsystematic
narrative review highlights recent advances in the periopera-
tive use of O2 with a critical analysis of its advantages and
disadvantages, and attempts to define the use of O2 at differ-
ent concentrations, based on the dual characteristics of O2

during anaesthesia. A thorough and comprehensive literature
search in medical databases (PubMed, Web of Science, and
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Google Scholar) was performed with stepwise changes in rele-
vant keywords focusing on each topic of interest addressed in
the current review. A critical literature review was made with
an objective of providing a balanced evaluation of all aspects
of the topic discussed. Nevertheless, as a result of the extreme-
ly broad spectrum of publications related to perioperative
oxygen use, unintentional bias caused by omission of poten-
tially relevant articles cannot be fully excluded. However,
recommendations are based on the most recent original re-
search and meta-analyses currently available.

Oxygen as a carrier gas in anaesthesia
practice
The use of O2 as a vehicle for volatile anaesthetic agents goes
back to nitrous oxide (N2O) inhalation anaesthesia by Edmund
Andrews in 1868 and the use of ether-based anaesthesia by
Arno Luckhardt in 1918.1 In these pioneering achievements,
O2 concentration was kept in the range of that in room air.
Subsequent more thorough understanding of the adverse con-
sequences of anaesthesia and surgical procedures on pulmon-
ary physiology and awareness of difficult airway management
with the potential risk of hypoxaemia led to the recognition
that elevated inspired O2 concentration is beneficial in main-
taining optimum gas exchange. Accordingly, early guidelines
for anaesthesia practice emphasized the important role of
pre-oxygenation with 100% O2 before i.v. induction, with the
subsequent maintenance of relatively high concentrations
(40–50%).2 The use of such concentrations stems from the
identification of hypoxaemia as a major risk factor accompan-
ied by increased perioperative morbidity and mortality.3 4

Moreover, administration of high concentrations of O2 does
not cause major alterations in the flow dynamics in the
airways, despite the density and viscosity of O2 being greater
than those of nitrogen by about 20 and 10%, respectively.5

While these physical characteristics have negligible effects in
routine clinical practice, such differences can have major
impacts on turbulent flow in the conducting airways and can
bias the respiratory mechanical outcome systematically.6

Metabolic and immunological aspects
One of the major sources of variability in the established use of
O2 concentration in anaesthesia practice is related to the dual
nature of this gas, with its beneficial profile in treating hypox-
aemia and its deleterious potential for adverse metabolic
and immunological alterations. The normal oxidative metabol-
ism of cells, controlled by the cytochrome oxidase system
in mitochondria, generates free electrons that are captured
by oxygen.7 8 Incomplete reduction of O2 leads to reactive
oxygen metabolites (ROMs), which include superoxide and hy-
droxyl radicals, and also hydrogen peroxide. The oxidative
stress resulting from these ROMs is a primary cause of DNA
damage, impairment of mitochondrial function and organ in-
juries affecting primarily the brain and lung parenchyma.8 9

While this generalized damage is encountered in patients of
all types, clinical manifestations are greatly affected by a
number of factors including the concentration and duration

of exposure and age. The latter factor is of particular import-
ance, as the developing organs are highly prone to damage
by ROMs.8 While the presence of this mechanism explains the
concern in applying elevated concentrations of O2, anaesthe-
tists must make a distinction between different age groups
when anaesthesia management requires use of a high O2

concentration.
In addition to the tissue injury induced by ROMs, these chem-

ically reactive molecules exert a dual effect on the immune
system. ROMs are involved in bactericidal host defence mechan-
isms. Reduced nicotinamide adenine dinucleotide phosphate
oxidase10 located in the membrane of phagocytic vesicles, cata-
lyses formation of superoxide in an oxygen-dependent process.
This superoxide is reduced to hydrogen peroxide, which then
combines with chloride to form bacteriotoxic hypochlorous
acid in the myeloperoxidase reaction.11 In addition, supplemen-
tal high O2 concentration can enhance the gene expression of
pro-inflammatory cytokines in the lungs both in vivo12 and
in vitro.13 These phenomena lead to improved alveolar macro-
phage function.12 On the other hand, the effects of hyperoxia
on actin cause endothelial cell damage14 and impair antibac-
terial function of macrophages.15 This effect must be considered
in the context of general anaesthesia, which has a well-
characterized suppressive effect on numerous immunological
parameters including phagocytosis and the alveolar macro-
phage function.12 16 17 As a result of these opposing effects on
the immune system, there is no evidence of additional adverse
net effects of high concentrations of O2 on the depressed im-
munological function observed during anaesthesia.

Physiological aspects
Ventilatory effects

It is well established that general anaesthesia promotes venti-
lation heterogeneity through a disturbance of the equilibrium
between the expanding thoracic and retracting pulmonary
forces.18 Various pathophysiological and pharmacological
factors contribute to this adverse alteration in the respiratory
system. Respiratory depression by anaesthetic agents, use of
neuromuscular blocking agents, body position of the patient,
type of surgical procedure, age, obesity, and inhibition of hypoxic
pulmonary vasoconstriction are among the major factors.18 19

The use of high concentrations of O2 further enhances ventilation
defects by inducing airway closure and alveolar collapse.20

This mechanism is related to the increased gradient between
intra-alveolar partial pressure of O2 and mixed venous blood in
the capillaries. This results in rapid diffusion of O2 across the
alveolar-capillary barrier, subsequently leading to loss in alveolar
distending pressure and hence alveolarcollapse.21–23 The kinetics
of such O2-absorption atelectasis development is primarily
determined by alveolar concentration of O2 and time of adminis-
tration. A number of previous studies involving the use of lung
imaging techniques have established the existence of a threshold
inspiredfractionofO2 (FIO2

),providedatthe inductionofanaesthe-
sia until no clinically significant areas of alveolar derecruitment
remain.20 24 25 Exceeding the critical threshold of FIO2

of 80%,
leads to the rapid (within minutes) development of alveolar
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collapse.20 – 22 Lung imaging studies have revealed that al-
veolar collapse persists despite application of recruitment
manoeuvres when a high concentration of O2 is maintained
during anaesthesia.24

In contrast to the consensus regarding the lung peripheral
effects of acute hyperoxia, conflicting data have been reported
as to how increased O2 tension affects airway properties. One
experimental investigation suggested that acute hyperoxia
may have bronchodilatory potential by inhibiting cholinergi-
cally induced bronchoconstriction and potentiating bronchodi-
latory responses.26 However, this beneficial effect was not
consistently confirmed in subsequent investigations: some
reports reinforced this finding,27 while others indicated no
benefit,28 or even constriction of peripheral airways.29 While
further studies are necessary to resolve this controversy,
results of recent studies have yielded increasing evidence of
particular risks of supplemental O2 in prematurity, because of
its detrimental effects on airway smooth muscle, with possible
development of bronchial hyperreactivity, and wheezing.30 31

This points again to the importance of patient age when risk/
benefit ratio is considered for perioperative administration of O2.

Circulatory effects

Perioperative hyperoxia exerts differential effects on the sys-
temic and pulmonary circulations. Short-term application of
hyperoxia decreases pulmonary vascular resistance, leading
to increased blood volume with redistribution of regional pul-
monary perfusion.32 This effect is beneficial in the event of
enhanced ventilation-perfusion (V/Q) mismatch, as improve-
ment in pulmonary perfusion can increase the net surface
area available for pulmonary gas exchange. This phenomenon
is of particular importance in hypoxaemic patients because
of the low V/Q ratio.33 Conversely, hyperoxia exerts a vaso-
constrictive effect on the systemic arteries, which demands
particular attention in the management of patients with
pre-existing high systemic vascular resistance and impaired
coronary circulation.34 35 This increase in systemic vascular re-
sistance, which depends on O2 concentration, leads to a de-
crease in cardiac output via both increased afterload and
decreased preload.36 37 As a consequence of these cardio-
vascular alterations, hyperoxygenation can reduce tissue
perfusion and compromise O2 transport. The cerebral vasocon-
strictive potential of hyperoxia is also of concern in the two age
extremes where reductions in cerebral blood flow (CBF) can
have significant deleterious consequences both on the imma-
ture38 and aged brain.39

Oxygen transport

There is a general misbelief among clinicians that elevation
ofFIO2

results in increased O2 transportcapacity, thereby improv-
ing oxygenation at the level of the microcirculation. However, as
haemoglobin is fully saturated under physiological conditions,
an increase in the arterial partial pressure of O2 (PaO2

) increases
O2 content of the blood only marginally.40 In contrast, the
presence of optimal cardiac output and mild hypercapnic
vasodilation has a much greater impact in improving tissue oxy-
genation.41 As described, hyperoxia induces vasoconstriction

and decreases the blood flow in the microcirculation even in
the presence of anaemia.42 Accordingly, high concentrations
of O2 can compromise tissue oxygenation rather than providing
the anticipated beneficial effect.43

Age-related aspects of perioperative oxygen
delivery
Oxygen use in newborns and infants

One of the major dogmas concerning the use of hyperoxia
fell from favour completely after the compelling evidence of
the risks of using hyperoxia during neonatal resuscitation.44

In premature and newborn infants, perioperative use of a
high concentration of O2 is of major concern. The resulting
oxidative stress is responsible for major injuries, with the devel-
oping lungs and the brain of particular concern. Regarding
the adverse pulmonary effects of hyperoxia, development of
bronchopulmonary dysplasia (BPD) is the most important conse-
quence.45–47 The high sensitivity of immature airway smooth
muscle to even short periods of clinically moderate levels of O2

(,60%) was recentlydemonstrated.30 Further increase in O2 con-
centration has been shown to lead to apoptosis, causing adverse
structural and functional pulmonary alterations.31 O2 and the
consequent liberation of ROMs modify macromolecules such as
DNA and proteins, inducing epithelial and endothelial cell injury,
and thereby affecting airway structure and lung parenchymal
compartments.48–50 All these adverse changes influence epithe-
lial tight junctions, with a subsequent increase in alveolar-
capillary barrier permeability leading to pulmonary oedema and
induction of the inflammatory cascade,51 followed by develop-
ment of bronchial hyperreactivity.52 53 The chronic presence of
these pathophysiological changes can lead to airway and vascu-
lar remodelling in the lungs, with subsequent pulmonary hyper-
tension,54–57 fibrosis, and development of BPD.53 58

Evidence has accumulated of the role of decreased nitric
oxide (NO) production in hyperoxia-induced lung injury with
subsequent imbalance in the relaxation-constrictive regulation
of the smooth muscle and lung parenchymal destruction.59–61

NO also affects lung structural development, including alveolar-
ization,62 and is involved as a mediator of non-adrenergic, non-
cholinergic signalling in the pathogenesis of the inflammatory
response and in regulation of the pulmonary circulation.63

These functions are inactivated in a hyperoxic environment,64

which compromises NO effects and dependent pathways by
increasing the activity of guanosine 3′, 5′ -cyclic monopho-
sphate-dependent phosphodiesterases (c-GMP), resulting in
impaired airway relaxation65 and abnormal angiogenesis.65 66

Titrating inspired oxygen fraction is not straightforward
in premature and term newborns. Indeed, because of the
high affinity of fetal haemoglobin to O2 and the shape of the
O2-haemoglobin dissociation curve, O2 saturation (SaO2 ) over
92% might not accurately correlate with PaO2

.67 Small varia-
tions of oxygen saturation can indicate large variations of
PaO2

.68 Nevertheless, targeting a SaO2 between 85 and 89%
rather than 91and 95% in premature infants was associated
with a higher incidence of death before discharge, while
maintaining higher SaO2 conferred a survival benefit, but at
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the additional cost of an increased rate of severe retinopathy.
Caution is therefore required when titrating O2 perioperatively
for preterm and low birth weight neonates, for whom hyper-
oxia can be particularly harmful, and the saturation of O2 in
the arterial blood (SaO2 ) should be maintained between 88
and 94%.69

Neonates with congenital heart disease (CHD) are another
specific group where O2 supplementation should be considered
with great care and where O2 therapy is challenging.70 In acya-
notic congenital heart disease (e.g. atrial or ventricular septal
defects), the provision of a high concentration of O2 can lead
to a significant increase in systemic vascular resistance, with
subsequent decreases in cardiac output and O2 transport.71 By
increasing pulmonary blood flow and causing an imbalance of
the pulmonary to systemic perfusion, O2 can precipitate circula-
tory instability in the presence of single ventricle physiology.72

Furthermore, in ductus-dependent CHD, O2 therapy can jeop-
ardize patency of the ductus arteriosus despite administration
of prostaglandin, and there is therefore a consensus to maintain
SaO2 between 75 and 85%.70 In view of the regional differences
in tissue oxygenation during cardiopulmonary bypass in chil-
dren with congenital heart disease,73 caution with O2 is also
mandatory after weaning from the bypass, and should be
guided by the level venous saturation in O2 (SvO2

) and regional
oxygenation, monitored by near-infrared spectroscopy.

Intraoperative hypoxaemia in children is probably the most
frequent complication in anaesthesia. Whereas deliveryof high
FIO2

forms part of the first-line strategy in the presence of
hypoxia (after airway obstruction, laryngospasm, or broncho-
spasm) or O2 diffusion impairment (pulmonary oedema, sur-
factant depletion, or fibrosis), intraoperative O2 concentration
strategy differs completely when it comes to the prevention of
hypoxaemia resulting from V/Q mismatch. The physiological
characteristics of the infant respiratory system, with a highly
compliant chest and increased lung elastic recoil, result in a
loss in balance between chest-extending and lung-collapsing
forces.74 These features lead to a decrease in functional residual
capacity, with a higher tendency to airway collapse, loss in
lung volume and subsequent hypoxaemia. As a consequence,
infants and pre-school children exhibit reduced tolerance to
apnoeaandgain littlebenefitfrompreoxygenationbeforethein-
duction of anaesthesia.75 Although no randomized clinical trials
have addressed the advantages of gentle facemask ventilation
during rapid sequence induction to prevent hypoxaemia,76 such
ventilation strategies at induction are now an integral part of
good clinical practice guidelines.77 Furthermore, as discussed
above in connection with the physiological effects of hyperoxia,
use of 100% FIO2

during induction and maintenance of anaes-
thesia can further precipitate airway closure, with a significant
decrease in lung volume participating in gas exchange.78 As a
V/Q mismatch in children is mainly attributable to a lung
volume loss, the maintenance of anaesthesia with a high FIO2

can mask the occurrence of atelectasis through a correction of
the hypoxaemia related to the V/Q mismatch, with the preserva-
tion of high SaO2 .

74 Hence, it is good clinical practice to maintain
FIO2

�30–35% during anaesthesia maintenance in children in
order to detect onset of intra-operative alveolar closure.

Increasing evidence has emerged from experimental
studies on the harmful effects of postnatal hyperoxia on imma-
ture brain white matter.79 – 81 Hyperoxia and resulting ROMs
lead to enhancement of inflammation and to oligodendrocyte
apoptosis.80 Furthermore, increase in cerebral vascular resist-
ance and subsequent decrease in CBFadd to the deleterious in-
fluence of hyperoxia in the immature brain.38

These effects on the cerebral vasculature have to be taken
into account in routine clinical practice, where perioperative
ventilation with high concentrations of O2 is often performed
in an arbitrary manner in the context of traumatic brain injury
or post resuscitation. The frequently associated hypocapnia
attributable to mechanical ventilation or to the enhanced venti-
lation induced by O2 delivery82 enhances cerebral vasoconstric-
tion.38 Moreover, administration of high concentrations of O2

can intensify cerebral vascular ischaemia by inducing adverse
autonomic and hormonal changes in several rostral brain
regions.83 Carbon dioxide (CO2) is most effective in modulating
the response to hyperoxia, with hypercapnia counteracting the
vasoconstriction mediated by hyperoxia,83 and hypocapnia wor-
sening the effects of hyperoxia.38

Oxygen use in middle aged

The last decade has seen a debate in the literature regarding
the potential advantages of delivering high concentrations of
O2 intraoperatively.84 – 94 This abundant literature on the po-
tential beneficial effects of perioperative high FIO2

has led to
several meta-analyses on the same topic.95 – 102 Many of
these meta-analyses have important limitations with some
failing to include negative trials88 and others taking into con-
sideration the data extracted from unpublished abstracts.101

Thus, a more nuanced presentation of their findings and con-
clusions is warranted. The controversy revolves around the ef-
ficacy of high perioperative O2 supplementation in decreasing
surgical site infection (SSI), postoperative nausea and vomiting
(PONV), and ultimately morbidity and mortality.

The body of evidence for efficacy of high FIO2
in reducing SSI

is strengthened by an additional randomized controlled trial
considered in the latest meta-analysis.102 The valuable effect
of O2 on surgical wounds stems from a potential increase
in O2 tissue delivery and hence prevention of tissue hypoxia,
which otherwise promotes SSI.103 A recent in vitro study
demonstrated that while exposure to 80% FIO2

led to increased
levels of ROMs, the phagocytic activity of neutrophils and cyto-
kine release were not affected.13 Hence, the main factor in the
prevention of SSI seems to be related to the O2 distribution to
the surgical wounds rather than to O2 content per se. Numer-
ous perioperative factors jeopardize tissue blood flow and O2

delivery such as the surgical trauma, hypothermia, hypovol-
aemia, oedema, severe anaemia, pain, a decreased cardiac
output, or all.104 Therefore, as pointed out by several authors,
an increase in FIO2

alone has no impact on wound O2 levels
in the presence of vasoconstriction. Besides haemodynamic
optimization, the use of prophylactic antibiotics and decon-
tamination of the digestive tract are also regarded as major
players in reducing SSI and improving outcome.102 104 105 Peri-
operative use of high concentrations of O2 should therefore be
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considered a supplemental strategy rather than an independ-
ent variable for reducing SSI, given that the efficacy of O2

appears to be comparable with that of antibiotic prophylaxis
in many surgical settings.102 In addition, subgroup analysis of
large trials has failed to detect a benefit of high-inspired FIO2

in some patients such as these with obesity.106

Early investigations suggested that perioperative administra-
tion of a high FIO2

for patients undergoing colorectal surgery
significantly decreases the incidence of PONV by reducing intes-
tinal hypoxaemia.107 This was thought to be a plausible hypoth-
esis as perioperative supplemental O2 did not reduce PONV after
other surgeries.108 109 However, as in the case of SSI, numerous
factors contribute to PONV. These factors include surgical-
dependent (duration and type of surgery, and gastroparesis),
anaesthesia-dependent (inhalation agents, N2O, long-acting
opioids, and decreased perioperative fluids), or patient-related
(age, gender, obesity, anxiety, history of motion sickness, or
previous PONV).110 It is therefore hazardous to conclude that
high FIO2

decreases the incidence of PONV. The results of rando-
mized controlled studies on this topic are not clear-cut.98 99 Not
surprisingly, the most recent meta-analysis failed to provide
strong evidence of a beneficial effect of high FIO2

in preventing
the occurrence of PONV.102 The prophylactic effect of a high FIO2

was weak, with a benefit observed in only 1 of 15 patients

compared with normal FIO2
, which is inferior to effective antie-

metic regimens.
The potential cardiovascular effects of hyperoxia are of

concern in patients with a history of acute myocardial infarc-
tion, systemic arterial hypertension, or both. In the former,
a recent meta-analysis failed to demonstrate usefulness of
high concentrations of O2. This lack of efficacy (even a poten-
tially harmful effect) of hyperoxia has been attributed to
decreased coronary arterial flow and increased systemic
vascular resistance.34 37 111 Moreover, ROMs can cause lipid
peroxidation in the course of perioperative myocardial ischae-
mia-reperfusion, and further increase ischaemic injury.112

This ROM-mediated reperfusion myocardial injury indicates
the need for caution in the use of hyperoxia during and imme-
diately after cardiopulmonary bypass, despite the potential
benefit in reducing gas microemboli that develop during extra-
corporeal circulation.113 114 Hypertensive patients exhibit a bi-
phasic arterial pressure response when exposed to 100% O2 for
20 min, with an initial drop in systemic vascular resistance (and
subsequently in systolic, diastolic, and mean arterial pressure)
followed by an increase that diminishes cardiac output.115

This effect seems to be related to deactivation of carotid
body chemoreceptors by hyperoxia. Hence, perioperative use
of hyperoxia should be considered with particular care in
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hypertensive patients, in those at a high risk of myocardial
ischaemia, or both, two knownrisk factors that increase cardio-
vascular complications and mortality after surgery.116

Oxygen use in the elderly

With the increase in population ageing, anaesthetists are chal-
lenged to provide optima anaesthesia management for elderly
patients with numerous co-morbidities. The recent scientific
literature has suggested that this population requires special
considerations when perioperative O2 supplementation is pro-
vided. One of the hallmark changes that occurs with ageing is
the altered transport, exchange, and utilization of O2.117 More-
over, changes in the histological structure of the skin, with a de-
crease in the microcirculation, jeopardize wound healing in
elderly patients.118 Hence, the possibility of perioperative O2

supplementation in these patients should be considered
from a broader viewpoint, taking into account the impact of
ageing on the organism. Ageing has been demonstrated to
be associated with significantly increased production and ac-
cumulation of ROMs and reduced antioxidant function, which
can trigger various age-related disorders.119 120 As hyperoxia
leads to enhanced production of ROMs, it is anticipated that
perioperative use of high FIO2

will potentiate disorders related
to ageing, particularly those affecting the lungs and the brain.

Experimental evidence shows that the lungs in elderly
subjects are more susceptible to hyperoxia during mechanical

ventilation.121 Increased production of ROMs, enhanced ex-
pression of pro-inflammatory cytokines,122 and irreversible
structural changes with degeneration of elastic fibres in the
lungs123 all contribute to this finding. In addition to these
adverse pulmonary effects, hyperoxia compromises the con-
tractile function of the diaphragm in aged subjects.121 124

This disorder is related to hyperoxia-induced exacerbation of
the generalized skeletal muscle destruction with age that
takes place subsequent to myofibril injury.125

The prevalence of chronic obstructive pulmonary disease
(COPD) in the elderly is a major public health problem.126 In
view of accumulating evidence of the role of oxidative stress
in the pathogenesis of COPD,127 anaesthetic management of
these patients demands special attention, with particular
awareness of supplemental O2 therapy. Even a modest in-
crease in FIO2

(,30%) for a short period (,1 h) leads to oxida-
tive stress and airway inflammation in COPD patients.128 129

Another aspect of supplemental O2 is related to the existence
of lung areas with low V/Q ratio in COPD patients, ultimately
manifested in a greater propensity to alveolar collapse when
a high concentration of O2 is administered.21 23 In contrast
to these deleterious effects of intraoperative administration
of O2, O2 can have a dual effect if administered before or
after operation in patients with COPD. Accordingly, a recent
study demonstrated that COPD patients benefit from a small
increase in FIO2

during preoperative cardiopulmonary exercise,
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which results in an improvement in perioperative risk stratifica-
tion.130 Conversely, supplementation of a high concentration
of O2 after operation suppresses hypoxic drive, which is crucial
in maintaining alveolar ventilation in the presence of COPD.131

Thus, in the patients at high risk of hypercapnia, O2 should
be carefully titrated in order to target O2 saturation between
88 and 92%.132

In the last decade, anaesthetists have become aware of the
role of anaesthesia management in reducing postoperative
cognitive dysfunction (POCD) in elderly patients.133 Application
of near-infrared spectroscopy in aged patients has revealed
that adequate and optimal cerebral oxygenation is of para-
mount importance.133 – 135 However, supplementing O2 pre-
operatively leads to an increase in cerebral vascular resistance,
with a subsequent decrease in CBF, independently of the
effect of CO2 on cerebral vasoreactivity.39 This effect might be
further enhanced by the impaired NO-mediated cerebral vaso-
dilator response and the compromised CBF observed with
ageing.136 The resulting compromised cerebral desaturation
not only may contribute to the higher incidence of POCD and
longer hospitalization in elderly patients,134 but also have long-
term consequences on cognitive function. The findings from
animal models have incriminated perioperative use of excessive
O2 in elderly subjects as one of the factors triggering develop-
mentofAlzheimer’sdisease.137 138 Althoughtheroleof oxidative
stress in the pathogenesis of Alzheimer’s disease is also sup-
ported by clinical investigations,139–141 further studies are
needed to establish the link between perioperative hyperoxia
and various neurodegenerative disorders in aged humans.142

Another concern in this population is related to a history
of recent stroke and the potential for further neurological
damage. Astissue hypoxia is linked to neuronal damage subse-
quent to stroke, compensation bysupplementing high concen-
trations of O2 is tempting. However, conflicting results have
been reported from experimental and clinical studies. Experi-
mental data demonstrated a worsening of brain injury and
increasing mortality,143 144 whereas clinical investigations
either failed to confirm the efficiency145 or indicated only a transi-
ent improvement.146 Arecentmulticentrecohortstudyconcluded
that hyperoxic ventilation of stroke patients worsens mortality, in-
dicating the need for critical application of hyperoxia.147

Conclusions and future perspectives
The predominant goal of the use of O2 in the perioperative
period is to provide adequate tissue oxygenation and thereby
avoid the vicious spiral triggered by hypoxaemia. To address
this challenge, anaesthesia management should consider O2

supplementation as an important strategy to ensure optimal
O2 supply. The anaesthetist should be aware of the limitations
of increasing the O2 concentration in inspired gas situations
with limited O2 transport to the organs. Perioperative O2

supplementation is one piece of the puzzle that involves opti-
mization of O2 delivery by the microcirculation. Automatic
utilization of O2 supplementation without a broad view of the
needs of patient risks the development of hyperoxia-induced
injury, which can enhance tissue damage particularly in patients

with pre-existing chronic disease or ischaemia-reperfusion
injury. These features stress the importance of careful choice of
O2 delivery to patients to provide optimal tissue oxygenation
and ensure a balance between hypoxia- and hyperoxia-induced
harm. The tuning of the perioperative O2 concentration should
therefore take into account not only O2 supplyand consumption,
but also age-specific aspects of O2 demand and toxicity (Fig. 1).
As O2 demand and prevention of hypoxaemia are of critical im-
portance, mainly during induction of and recovery from anaes-
thesia, a higher FIO2

not exceeding 80% should be considered
only in these critical phases(Fig. 2). Ageing affectstheoptimal O2

concentration for maintenance of anaesthesia and in the post-
operative period, where age-dependent O2 saturation should
be targeted (Fig. 2). Anaesthesia has benefited from technical
advances, such as near-infrared spectroscopy, that facilitate the
optimizationoftissueoxygenation.Theoftenneglectedmeasure-
ment of SvO2

as a surrogate for balance between O2 supply and
demand deserves a more thorough consideration. Further re-
search promises to advance our understanding of the effects of
perioperative O2 in a wide range of clinical situations, clarifying
those areas where the findings currently remain conflicting.
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