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This contribution summarizes some typical features of complex systems such as

non-linear interactions, chaotic dynamics, the ‘‘butterfly effect’’, phase transitions,

self-organized criticality, cascading effects, and power laws. These imply some-

times quite unexpected, counter-intuitive, or even paradoxical behaviors of socio-

economic systems. A typical example is the faster-is-slower effect. Due to their

tendency of self-organization, complex systems are often hard to control. Instead

of trying to control their behavior, it would often be better to pursue the approach

of guided self-organization, i.e. to use the driving forces of the system rather than

to fight against them. This is illustrated by the example of hierarchical systems,

which need to fulfill certain principles in order to be efficient and robust in an

ever-changing environment. We also discuss the important role of fluctuations and

heterogeneity for the adaptability, flexibility and robustness of complex systems.

The presentation is enriched by a number of examples ranging from decision

behavior up to production systems and disaster spreading.

1. What is special about complex systems?

Many of us have been raised with the idea of cause and effect, i.e. some stimulus-
response theory of the world. Particularly, small causes would have small effects
and large causes would have large effects. This is, in fact, true for ‘‘linear
system’’’, where cause and effect are proportional to each other. Such behavior is
often found close to the equilibrium state of a system. However, when complex
systems are driven far from equilibrium, non-linearities dominate, which can

*This contribution was first published as Introduction of the book ‘‘Managing Complexity’’, edited by D. Helbing
(Springer, Berlin, 2008), republished with courtesy of the author.
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cause many kinds of ‘‘strange’’ and counter-intuitive behaviors. In the follow-
ing, I will mention a few. We all have been surprised by these behaviors many
times.

While linear systems have no more than one stationary state or one optimal
solution, the situation for non-linear systems is different. They can have multiple
stationary solutions or optima (see Figure 1), which has several important
implications:

> The resulting state is history-dependent. Different initial conditions
will not automatically end up in the same state1. This is sometimes
called ‘‘hysteresis’’.

> It may be hard to find the best, i.e. the ‘‘global’’ optimum in the
potentially very large set of local optima. Many non-linear optimiza-
tion problems are ‘‘NP hard’’, i.e. the computational time needed to
determine the best state tends to explode with the size of the system2.
In fact, many optimization problems are ‘‘combinatorial complex’’.

1.1. Chaotic dynamics and butterfly effect

It may also happen that the stationary solutions are unstable, i.e. any small per-
turbation will drive the system away from the stationary state until it is attracted by
another state (a so-called ‘‘attractor’’). Such attractors may be other stationary
solutions, but in many cases, they can be of oscillatory nature (e.g. ‘‘limit cycles’’).
Chaotically behaving systems3 are characterized by ‘‘strange attractors’’, which are
non-periodic (see Figure 2). Furthermore, the slightest change in the trajectory of
a chaotic system (‘‘the beat of a butterfly’s wing’’) will eventually lead to a
completely different dynamics. This is often called the ‘‘butterfly effect’’ and
makes the behavior of chaotic systems unpredictable (beyond a certain time
horizon), see Figure 3.

Figure 1. Illustration of linear and non-linear functions. While linear functions
have one maximum in a limited area (left), non-linear functions may have many
(local) maxima (right)
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1.2. Self-organization, competition, and cooperation

Systems with non-linear interactions do not necessarily behave chaotically.
Often, they are characterized by ‘‘emergent’’, i.e. spontaneous coordination or
synchronization4–6. Even coordinated states, however, may sometimes be
undesired. A typical example for this is stop-and-go waves in freeway traffic7,
which are a result of an instability of the traffic flow due to the delayed velocity
adjustments of vehicles.

Self-organization is typical in driven many-component systems7 such as traffic,
crowds, organizations, companies, or production plants. Such systems have been
successfully modeled as many-particle or multi-agent systems. Depending on the
respective system, the components are vehicles, individuals, workers, or products
(or their parts). In these systems, the energy input is absorbed by frictional effects.
However, the frictional effect is not homogeneous, i.e. it is not the same every-
where. It rather depends on the local interactions among the different components of
the system, which leads to spatio-temporal pattern formation.

The example of social insects like ants, bees, or termites shows that simple
interactions can lead to complex structures and impressive functions. This is
often called ‘‘swarm intelligence’’ 8. Swarm intelligence is based on local (i.e.

Figure 2. Illustration of trajectories that converge towards (a) a stable
stationary point, (b) a limit cycle, and (c) a strange attractor

Figure 3. Illustration of the ‘‘butterfly effect’’, i.e. the separation of
neighboring trajectories in the course of time
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decentralized) interactions and can be used for the self-organization and self-
steering of complex systems. Some recent examples are traffic assistance8 sys-
tems or self-organized traffic light control9,10. However, if the interactions are not
appropriate, the system may be characterized by unstable dynamics, breakdowns
and jamming, or it may be trapped in a local optimum (a ‘‘frustrated state’’).

Many systems are characterized by a competition for scarce resources. Then,
the question whether and how a system optimum is reached is often studied with
methods from ‘‘game theory’’11–13. Instead of reaching the state that maximizes
the overall success, the system may instead converge to a user equilibrium, where
the success (‘‘payoff’’) of every system component is the same, but lower than it
could be. This happens, for example, in traffic systems with the consequence
of excess travel times14. In conclusion, if everybody tries to reach the best
outcome for him- or herself, this may lead to overall bad results and social
dilemmas15 (the ‘‘tragedy of the commons’’16). Sometimes, however, the system
optimum can only be reached by complicated coordination in space and/or time,
e.g. by suitable turn-taking behavior (see Figure 4). We will return to this issue in
Sec. 2.4, when we discuss the ‘‘faster-is-slower’’ effect.

1.3. Phase transitions and catastrophe theory

One typical feature of complex systems is their robustness with respect to pertur-
bations, because the system tends to get back to its ‘‘natural state’’, the attractor.
However, as mentioned above, many complex systems can assume different states.
For this reason, we may have transitions from one system state (‘‘phase’’ or
attractor) to another one.
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Figure 4. Emergence of turn-taking behavior: After some time, individuals
may learn to improve their average success by choosing both possible options in
an alternating and coordinated way (after4)
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These phase transitions occur at so-called ‘‘critical points’’ that are reached by
changes of the system parameters (which are often slowly changing variables of
the system). When system parameters come close to critical points, small fluc-
tuations may become a dominating influence and determine the future fate of the
system. Therefore, one speaks of ‘‘critical fluctuations’’1.

In other words, large fluctuations are a sign of a system entering an unstable
regime, indicating its potential transition to another system state, which may be
hard to anticipate. Another indicator of potential instability is ‘‘critical slowing
down’’. However, once the critical point is passed, the system state may change
quite rapidly. The relatively abrupt change from one system state to an often
completely different one is studied by ‘‘catastrophe theory’’17. One can distin-
guish a variety of different types of catastrophes, but we cannot go into all these
details, here.

1.4. Self-organized criticality, power laws, and cascading effects

At the critical point itself, fluctuations are not only dominating, they may even
become arbitrarily large. Therefore, one often speaks of ‘‘scale-free’’ behavior,
which is typically characterized by power laws18,19. Note that, for power laws,
the variance and the expected value (the average) of a variable may be undefined!

One possible implication of power laws are cascading effects. The classical
example is a sand pile, where more and more grains are added on top20. Even-
tually, when the critical ‘‘angle of repose’’ is reached, one observes avalanches of
sand grains of all possible sizes, and the avalanche size distribution is given by a
power law. The angle of repose, by the way, even determines the stability of the
famous pyramids in Egypt.

Cascading effects are the underlying reason for many disasters, where the failure
of one element of a system causes the failure of another one (see Figure 5). Typical
examples for this dynamics are blackouts of electrical power grids and the spreading
of epidemics, rumors, bankruptcies or congestion patterns. This spreading is often
along the links of the underlying causality or interaction networks21.

‘‘Self-organized criticality’’20,22 is a particularly interesting phenomenon, where
a system is driven towards a critical point. This is not uncommon for economic
systems or critical infrastructures: Due to the need to minimize costs, safety
margins will not be chosen higher than necessary. For example, they will be
adjusted to the largest system perturbation that has occurred in the last so-and-so
many years. As a consequence, there will be no failures in a long time. But then,
controllers start to argue that one could safe money by reducing the standards.
Eventually, the safety margins will be low enough to be exceeded by some
perturbation, which may finally trigger a disaster.

Waves of bankruptcies23,24 are not much different. The competition for cus-
tomers, forces companies to make better and better offers, until the profits have
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reached a critical value and some companies will die. This will reduce the
competitive pressure among the remaining companies and increase the profits
again. As a consequence, new competitors will enter the market, which even-
tually drives the system back to the critical point.

2. Some common mistakes in the management of complex systems

The particular features of complex systems have important implications for
organizations, companies, and societies, which are complex multi-component
systems themselves. Their counter-intuitive behaviors result from often very
complicated feedback loops in the system, which cause many management
mistakes and undesired side effects. Such effects are particularly well-known
from failing political attempts to improve the social or economic conditions.

2.1. The system does not do what you want it to do

One of the consequences of the non-linear interactions between the components
of a complex system is that the internal interactions often dominate the external
control attempts (or boundary conditions). This is particularly obvious for group
dynamics25,26.

It is quite typical for complex systems that, many times, large efforts have no
significant effect, while sometimes, the slightest change (even a ‘‘wrong word’’)
has a ‘‘revolutionary’’ impact. This all depends on whether a system is close to a
critical state (which will lead to the latter situation) or not (then, many efforts to
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Figure 5. Illustration of the interaction network in anthropogenic systems.
When the system is seriously challenged, this is likely to cause cascading
failures along the arrows of this network (after21)
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change the system will be in vain). In fact, complex systems often counteract the
action. In chemical systems, this is known as Le Chatelier’s principle*.

Regarding such predictions, classical time series analysis will normally provide
bad forecasts. The problem of opinion polls to anticipate election results when the
mood in the population is changing, is well-known. In many cases, the expectations
of a large number of individuals, as expressed by the stock prices at real or virtual
stock markets, is more indicative than results of classical extrapolation. Therefore,
auction-based mechanisms have been proposed as a new prediction tool. Recently,
there are even techniques to forecast the future with small groups27. This, however,
requires to correct for individual biases by fitting certain personality parameters.
These reflect, for example, the degree of risk aversion.

2.2. Guided self-organization is better than control

The previous section questions the classical control approach, which is, for example,
used to control machines. But it is also frequently applied to business and societies,
when decision-makers attempt to regulate all details by legislation, administrative
procedures, project definitions, etc. These procedures are very complicated and
time-consuming, sensitive to gaps, prone to failures, and they often go along with
unanticipated side effects and costs. However, a complex system cannot be con-
trolled like a bus, i.e. steering it somewhere may drive it to some unexpected state.

Biological systems are very differently designed. They do not specify all proce-
dures in detail. Otherwise cells would be much too small to contain all construction
plans in their genetic code, and the brain would be too small to perform its incredible
tasks. Rather than trying to control all details of the system behavior, biology makes
use of the self-organization of complex systems rather than ‘‘fighting’’ it. It guides
self-organization, while forceful control would destroy it28.

Detailed control would require a large amount of energy, and would need
further resources to put and keep the components of an artificial system together.
That means, overriding the self-organization in the system is costly and ineffi-
cient. Instead, one could use self-organization principles as part of the man-
agement plan. But this requires a better understanding of the natural behavior of
complex systems like companies and societies.

2.3. Self-organized networks and hierarchies

Hierarchies are a classical way to control systems. However, strict hierarchies are
only optimal under certain conditions.

Particularly, they require a high reliability of the nodes (the staff members) and
the links (their exchange).

*Specifically, Le Chatelier’s principle says ‘‘if a chemical system at equilibrium experiences a change in concentration,
temperature, or total pressure, the equilibrium will shift in order to minimize that change.’’
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Experimental results on the problem solving performance of groups29 show
that small groups can find solutions to difficult problems faster than any of their
constituting individuals, because groups profit from complementary knowledge and
ideas. The actual performance, however, sensitively depends on the organization of
information flows, i.e. on who can communicate with whom. If communication is
unidirectional, for example, this can reduce performance. However, it may also be
inefficient if everybody can talk to everyone else. This is, because the number
of potential (bidirectional) communicative links grows like N(N21)/2, where
N denotes the number of group members. The number of communicative or group-
dynamical constellations even grows as (3N22N1111)/2.

Consequently, the number of possible information flows explodes with the
group size, which may easily overwhelm the communication and information
processing capacity of individuals. This explains the slow speed of group deci-
sion making, i.e. the inefficiency of large committees. It is also responsible for
the fact that, after some transient time, (communication) activities in large
(discussion) groups often concentrate on a few members only, which is due to a
self-organized information bundling and Differentiation (role formation) process.
A similar effect is even observed in insect societies such as bee hives: When a
critical colony size is exceeded, a few members develop hyperactivity, while
most colony members become lazy30.

This illustrates the tendency of bundling and compressing information flows,
which is most pronounced in strict hierarchies. But the performance of strictly
hierarchical organizations (see Figure 6) is vulnerable for the following reasons:

> Hierarchical organizations are not robust with respect to failure of
nodes (due of illness of staff members, holidays, quitting the job) or
links (due to difficult personal relationships).

> They often do not connect interrelated activities in different
departments well.

(a) (b) (c)

Figure 6. Illustration of different kinds of hierarchical organization. As there
are no alternative communication links, strict hierarchies are vulnerable to the
failure of nodes or links (after31)
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> Important information may get lost due to the filtering of information
implied by the bundling process.

> Important information may arrive late, as it takes time to be
communicated over various hierarchical levels.

Therefore, hierarchical networks with short-cuts are expected to be superior to
strictly hierarchical networks31–33. They can profit from alternative information
paths and ‘‘small-world’’ effects34.

Note that the spontaneous formation of hierarchical structures is not untypical
in social systems: Individuals form groups, which form companies, organiza-
tions, and parties, which make up a society or nation. A similar situation can be
found in biology, where organelles form cells, cells form organs, and organs form
bodies. Another example is well-known from physics, where elementary parti-
cles form nuclei, which combine to atoms with electrons. The atoms form che-
mical molecules, which organize themselves as solids. These make up cellular
bodies, which form solar systems, which again establish galaxies.

Obviously, the non-linear interactions between the different elements of the
system give rise to a formation of different levels, which are hierarchically
ordered one below another. While changes on the lowest hierarchical level are
fastest, changes on the highest level are slow.

On the lowest level, we find the strongest interactions among its elements.
This is obviously the reason for the fast changes on the lowest hierarchical level.
If the interactions are attractive, bonds will arise. These cause the elements to
behave no longer completely individually, but to form units representing the
elements of the next level. Since the attractive interactions are more or less
‘saturated’ by the bonds, the interactions within these units are stronger than the
interactions between them. The relatively weak residual interactions between the
formed units induce their relatively slow dynamics35.

In summary, a general interdependence between the interaction strength, the
changing rate, and the formation of hierarchical levels can be found, and the
existence of different hierarchical levels implies a ‘‘separation of time scales’’.

The management of organizations, production processes, companies, and
political changes seems to be quite different today: The highest hierarchy levels
appear to take a strong influence on the system on a relatively short time scale.
This does not only require a large amount of resources (administrative overhead).
It also makes it difficult for the lower, less central levels of organization to adjust
themselves to a changing environment. This complicates large-scale coordination
in the system and makes it more costly. Strong interference in the system may
even destroy self-organization in the system instead of using its potentials.
Therefore, the re-structuring of companies can easily fail, in particularly if it is
applied too often. A good example is given in Ref. 36.
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Figure 7. Top: Schematic representation of the successive processes of a wet
bench, i.e. a particular supply chain in semiconductor production. Middle: The
Gantt diagrams illustrate the treatment times of the first four of several more
processes, where we have used the same colors for processes belonging to the
same run, i.e. the same set of wafers. The left diagram shows the original
schedule, while the right one shows an optimized schedule based on the
‘‘slower-is-faster effect’’. Bottom: The increase in the throughput of a wet bench
by switching from the original production schedule to the optimized one was
found to be 33%, in some cases even higher (after37)
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Governments would be advised to focus their activities on coordination
functions, and on adaptations that are relevant for long time scales, i.e. applicable
for 100 years or so. Otherwise the individuals will not be able to adjust to the
boundary conditions set by the government. If the government tries to adjust to
the population and the people try to adjust to the socio-economic conditions on
the same time scale of months or years, the control attempts are expected to cause
a potentially chaotic dynamics and a failure of control.

Anyway, detailed regulations hardly ever reach more fairness. They rather
reduce flexibility, and make the anyway required processes inefficient, slow,
complicated, and expensive. As a consequence, many people will not be able to
utilize their rights without external help, while a specialized minority will be able
to profit from the regulations or exploit them.

2.4. Faster is often slower

Another common mistake is to push team members to their limits and have
machines run at maximum speed. In many cases, this will not maximize pro-
ductivity and throughput, but rather frustration. Most systems require some spare
capacity to run smoothly. This is well illustrated by queuing systems: If the
arrival rate reaches the service rate, the average waiting time will grow enor-
mously. The same applies to the variation of the waiting time. Jamming and full
buffers will be an unfavorable, but likely side effect. And there will be little
reserves in case of additional demand.

The situation becomes even more difficult by dynamic interaction effects,
when a system is driven to its limits. In traffic systems, for example, this leads to
a ‘‘capacity drop’’. Such a capacity drop occurs often unexpectedly and is a sign
of inefficiencies due to dynamical friction or obstruction effects. It results from
increasing coordination problems when sufficient space or time are lacking. The
consequence is often a ‘‘faster-is-slower effect’’ (see Figure 7). This effect has
been observed in many traffic, production, and logistic systems. Consequently, it
is often not good if everybody is doing his or her best. It is more important to
adjust to the other activities and processes in order to reach a harmonic and well
coordinated overall dynamics. Otherwise, more and more conflicts, inefficiencies
and mistakes will ruin the overall performance.

2.5. The role of fluctuations and heterogeneity

Let us finally discuss the role of fluctuations and heterogeneity. Fluctuations are
often considered unfavorable, as they are thought to produce disorder. They can
also trigger instabilities and breakdowns, as is known from traffic flows. But in
some systems, fluctuations can also have positive effects.

While a large fluctuation strength, in fact, tends to destroy order, medium
fluctuation levels may even cause a noise-induced ordering (see Figure 8).
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An eventual increase in the degree of order in the system is particularly expected
if the system tends to be trapped in local minima ‘frustrated states’). Only by
means of fluctuations, it is possible to escape these traps and to eventually find
better solutions.

Fluctuations are also needed to develop different behavioral roles under
initially identical conditions. This eventually leads to a differentiation and spe-
cialization (heterogeneity), which often helps to reach a better group perfor-
mance40 (see Figure 9).

Furthermore, the speed of evolution also profits from variety and fluctuations
(‘‘mutations’’). Uniformity, i.e. if everybody behaves and thinks the same, will
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Figure 8. Illustration of frequency distributions of behaviors in space (after39).
Left: Separation of oppositely moving pedestrians perpendicularly to their
walking direction for a low fluctuation strength. Right: Noise-induced ordering
for medium fluctuation levels leads to a clear separation into two spatial areas.
This reduces frictional effects and increases the efficiency of motion
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Figure 9. Typical individual decision changes of 9 test persons in a route choice
experiment with two alternative routes. Note that we find almost similar or
opposite behaviors after some time. The test persons develop a few kinds of
complementary strategies (‘‘roles’’) in favor of a good group performance (after40)
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lead to a poor adaptation to changing environmental or market conditions. In
contrast, a large variety of different approaches (i.e. a heterogeneous population)
will imply a large innovation rate. The innovation rate is actually expected to be
proportional to the variance of individual solutions. Therefore, strong norms,
‘‘monocultures’’, and the application of identical strategies all over the world due
to the trend towards globalization imply dangers.

This trend is reinforced by ‘‘herding effects’’7. Whenever the future is hard to
predict, people tend to orient at the behavior of others. This may easily lead to
wrong collective decisions, even of highly intelligent people. This danger can
be only reduced by supporting and maintaining a plurality of opinions and
solutions.

3. Summary and outlook

In this contribution, I have given a short overview of some properties and
particularities of complex systems. Many of their behaviors may occur unex-
pectedly (due to ‘‘catastrophes’’ or phase transitions), and they are often counter-
intuitive, e.g. due to feedback loops and side effects. Therefore, the response of
complex systems to control attempts can be very different from the intended or
predicted one.

Complex behavior in space and time is found for many multi-component
systems with non-linear interactions. Typical examples are companies, organi-
zations, administrations, or societies. This has serious implications regarding
suitable control approaches. In fact, most control attempts are destined to fail. It
would, however, be the wrong conclusion that one would just have to apply more
force to get control over the system. This would destroy the self-organization in
the system, on which social systems are based.

Obtaining a better understanding of how to make use of the natural tendencies
and behaviors at work. A management that supports and guides the natural self-
organization in the system would perform much more efficiently than an artifi-
cially constructed system that requires continuous forcing. Companies and
countries that manage to successfully apply the principle of self-organization will
be the future winners of the on-going global competition.

In conclusion, we are currently facing a paradigm shift in the management of
complex systems, and investments into complexity research will be of compe-
titive advantage.
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