-

-
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

Horm Mol Biol Clin Invest 2010;4(2):565-573 © 2010 by Walter de Gruyter « Berlin « New York. DOI 10.1515/HMBCI.2010.076

Peroxisome proliferator-activated receptor 3/6: a master
regulator of metabolic pathways in skeletal muscle
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Abstract LCAS long chain acyl-CoA synthetase
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Skeletal muscle is considered to be a major site of energy MAFbx muscle atrophy F-box
expenditure and thus is important in regulating events affect-  MuRFI muscle ring finger 1
ing metabolic disorders. Over the years, both in vitro and in PDK pyruvate dehydrogenase kinase
vivo approaches have established the role of peroxisome PFK phosphofructokinase
proliferator-activated receptor-B/8 (PPARB/S) in fatty acid  PGCla peroxisome proliferator-activated receptor
metabolism and energy expenditure in skeletal muscles. Y coactivatorla
Pharmacological activation of PPARB/ by specific ligands ~ SCD stearoyl CoA desaturase
regulates the expression of genes involved in lipid use, tri- ~ SREBPIe sterol regulatory element binding protein-lc
glyceride hydrolysis, fatty acid oxidation, energy expendi- uce uncoupling protein
ture, and lipid efflux in muscles, in turn resulting in B-HAD B-hydroxy-acyl-CoA dehydrogenase
decreased body fat mass and enhanced insulin sensitivity.
Both the lipid-lowering and the anti-diabetic effects exerted
by the induction of PPARB/d result in the amelioration of .
Introduction

symptoms of metabolic disorders. This review summarizes
the action of PPARB/S activation in energy metabolism in
skeletal muscles and also highlights the unexplored pathways
in which it might have potential effects in the context of
muscular disorders. Numerous preclinical studies have iden-
tified PPARB/3 as a probable potential target for therapeutic
interventions. Although PPAR[/8 agonists have not yet
reached the market, several are presently being investigated
in clinical trials.
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Skeletal muscle is considered to be the most abundant organ
in the human body, comprising approximately 40% of the
total body mass [1]. Because it is also the most active met-
abolically, it serves as the major site of fatty acid oxidation
and lipid metabolism [2]. In addition, skeletal muscle plays
a key role in the regulation of glucose use. In fact, skeletal
muscles are thought to account for approximately 75% of
insulin-stimulated glucose uptake [3, 4]. In obesity, insulin-
stimulated glucose disposal is reduced in skeletal muscles
[5-8]. Under these conditions, intramyocellular lipid content
is increased, possibly resulting in the development of insulin
resistance, a characteristic feature of chronic metabolic dis-
orders such as type 2 diabetes [9-11]. This relationship
underscores the importance of skeletal muscle in regulating
events involved in metabolic disorders. Various molecular
pathways, in which the regulatory roles of peroxisome pro-
liferator-activated receptors (PPARs) are well recognized,
have been associated with these disorders [12].

PPARs are members of the nuclear receptor superfamily
and share the same structural organization as other family
members [13]. They have a less-conserved ligand-independ-
ent activation domain (A/B) at the amino terminal end; a
well-conserved DNA binding domain (C), consisting of two
zinc finger-like structures comprising the a«-helical DNA
binding motif; a hinge region (domain D), implicated in
interactions with cofactors; and a well-conserved ligand
binding domain (LBD) at the C-terminal end (E/F domain)
[14, 15]. The ligand-dependent activation function (AF-2)
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resides within the LBD and enables heterodimerization of
PPAR with its obligate retinoid X receptor (RXR) partner.
The ligand-activated heterodimer binds to peroxisome pro-
liferator response elements (PPREs) present in the control
regions of the target genes, recruits coactivators, and stimu-
lates transcription [16—19]. Thus, PPARs are lipophilic
ligand-inducible transcription factors that form a subfamily
comprising three subtypes: PPARa (NR1C1) [20], which can
be activated by peroxisome proliferators (hence the name)
[21], PPARB/S (NR1C2), and PPARy (NRIC3) [22].

Although encoded in separate genes, the three PPARs are
often coexpressed at variable levels in different tissues [23,
24]. PPARa is highly expressed in liver, kidney, heart, and
skeletal muscles [24] and functions as a regulator for the
uptake and oxidation of fatty acids, lipoprotein metabolism,
and control of inflammatory responses [25, 26]. PPARYy is
expressed predominantly in adipose tissue and regulates adi-
pogenesis and fat storage and occurs in two isoforms, y1
and y2. The yl1 isoform is relatively abundant in preadipo-
cytes and is also expressed at high levels in colon epithelium
and in immune cells. PPARY2 is the predominant isoform in
preadipocytes and adipocytes [27], and apart from its role in
adipocyte differentiation, is involved in a diverse array of
other biological processes including insulin sensitization and
cell differentiation [28]. PPARB/S is expressed ubiquitously
[24] and is also implicated in different cellular functions in
the skin [29], brain [30], adipose tissue, heart, skeletal mus-
cle [12], and inflammation [31]. This isotype is particularly
implicated in tissue repair [32] and energy expenditure [33],
and its activation regulates dyslipidemia, resulting in
improved serum lipid profiles [34-36]. This review discusses
the roles of PPAR[3/8 in the regulation of energy metabolism
in skeletal muscles and the pathways through which it exerts
its action.

Role in fatty acid metabolism

In addition to skeletal muscle, white and brown adipose tis-
sues (WATs and BATSs) significantly contribute to fatty acid
metabolism and energy homeostasis [37, 38]. Excess energy
is stored in the form of triglycerides in WATS, and in times
of energy need it is released as free fatty acids and glycerol
in circulation and further used mainly by BATs, skeletal mus-
cle, and liver. BATs produce abundant heat from fatty acid
oxidation by uncoupling the production of ATP from the
electron transport chain. Apart from BATSs, this process of
energy dissipation also takes place in skeletal muscles. Thus,
skeletal muscles play an important role in coordinating met-
abolic processes by regulating lipid and carbohydrate catab-
olism along with thermogenesis. Of importance, of the three
isotypes, PPARB/3 is the one that is predominantly expressed
in skeletal muscles [39] and involved in these metabolic
pathways [40].

The role of PPARB/S as a central regulator of fatty acid
metabolism in skeletal muscles was established through dif-
ferent transgenic animal models with either muscle-specific
overexpression [41, 42] or deletion of PPARB/8 [43]. Germ-
line PPAR@B/8-null animals have been difficult to obtain

because of the placental defects observed during the mid-
gestation period [44-46]. Probably because of these diffi-
culties, which delayed the availability of null mice, the first
study to report the involvement of PPARRB/S in fatty acid
oxidation was performed in primary cultures of human skel-
etal muscle myotubes, showing that polyunsaturated fatty
acids regulate ucp-2 expression through PPARB/9 activation
[39]. Experiments involving gain and loss of functions of
PPARPB/S further confirmed the regulatory role of this recep-
tor in lipid metabolism in skeletal muscle cells [47]. C2C12
cells overexpressing PPARRB/S and treated with a selective
agonist increase the expression of genes involved in fatty
acid oxidation (CPT-1), fatty acid uptake (FAT/CD36), and
binding (FABP3 also called hFABP). A weak but significant
dose-dependent increase in lipoprotein lipase (LPL) and
acyl-CoA synthetase (ACS) mRNA levels has also been
observed in these cells.

Furthermore, pharmacological activation of PPARB/d by
a specific ligand (GW501516) alone or in combination with
an agonist for RXR (LG101305) regulates genes involved in
triglyceride hydrolysis and fatty acid oxidation, lipid use,
energy uncoupling, and lipid efflux in differentiated myo-
tubes [2]. When GWS501516 or LG101305 are used sepa-
rately, the response is moderate from the majority of
investigated candidate target genes involved in skeletal mus-
cle lipid and carbohydrate metabolism, such as CD36 and
FABP3 (involved in fatty acid uptake and binding);
SREBPIc and SCD1 and SCD2 (involved in lipogenesis);
LPL, ACS4, and M-CPT]1 (triglyceride hydrolysis and fatty
acid oxidation); PDK4 (glucose use); ABCA1 and ApoE
(lipid efflux); and adipophilin/ADRP (lipid storage). How-
ever, a high induction of the genes involved in thermogenesis
and energy expenditure, such as uncoupling protein 1
(UCP1) and UCP2, results when the cells are treated with
the PPARB/3 ligand alone, and only UCP2 responds mod-
erately to the RXR agonist alone. Of interest, most of these
genes are synergistically upregulated on co-treatment with
agonists for both receptors.

These observations suggested a potential collaboration
between PPAR{3/8 and RXR ligands in skeletal muscle cells
with regard to metabolic pathways. This concept was further
consolidated by another study in which a microarray analysis
of GW501516-treated myotubes revealed that PPARB/8 con-
trols fatty acid oxidation by regulating genes involved in
fatty acid uptake, fatty acid -oxidation, and mitochondrial
respiration [48]. In addition to the effect of GW501516 on
myotubes, the role of PPARB/3 in metabolic homeostasis in
skeletal muscles was also confirmed in vivo. Effects similar
to those mentioned above have been observed in skeletal
muscles of mice treated with GW501516. More important,
administration of GW501516 to mice fed a high-fat diet ame-
liorates diet-induced obesity and insulin resistance. These
outcomes are accompanied by enhanced metabolic rate and
fatty acid 3-oxidation, an increased number of mitochondria,
and a marked reduction in lipid droplets, indicating that the
effects of the PPAR[/d agonist on skeletal muscles might
have a significant efficacy against diet-induced obesity. Fur-
thermore, treatment with GW501516 prevents diabetes in



Lahiri and Wahli: PPARB/S and metabolic pathways in skeletal muscle 567

genetically obese ob/ob mice not only by affecting the
change in body weight but also by significantly decreasing
plasma glucose and insulin levels. Collectively, these obser-
vations thus suggest that the inducing effects of the PPARB/d
agonist on fatty acid oxidation and energy expenditure result
in amelioration of obesity and insulin resistance in obese
animals, which might be of therapeutic significance.

In addition to in vivo activation of PPARB/$ through a
specific agonist, a study involving transgenic mice with mus-
cle-specific overexpression of the receptor [41] has been per-
formed to decipher the role of PPARB/S as a key target in
metabolic disorders in skeletal muscles. Muscle-specific
PPAR/3 overexpression results in decreased body fat con-
tent without alteration in lean mass. A large reduction in the
adipose pad weight resulting from a decrease in the adipo-
cyte cell size has also been observed [41]. Thus, PPARB/d
activation leads to increased lipid catabolism in muscle,
thereby decreasing its accumulation in adipose tissue and
resulting in beneficial effects in preventing disorders that
result from fat accumulation. Apart from the increased
PPARP/d activity through ligand activation or its overex-
pression, mice in which PPARB/3 has been selectively abla-
ted in myocytes further confirmed the pivotal role of the
receptor in regulating metabolic pathways in skeletal mus-
cles. Muscles in these mice have a lower oxidative capacity
that precedes the development of obesity and diabetes [43].
Transcript levels are lower in these mutant mice for genes
controlling lipolysis (LPL), fatty acid uptake (FAT/CD36),
binding (hFABP/FABP3), activation (LCAS), and {3-oxida-
tion (LCAD, MCAD, SCAD, and 3-HAD), the TCA cycle
(CS), and UCP3, whereas two genes of the glycolytic path-
way (PFK and GLUT4) remain unaltered, thus confirming
once more that PPARB/8 controls fatty acid metabolism in
skeletal muscles. In comparison to their control littermates,
the mutant mice show a significant increase in body weight
when fed a high-fat diet and are insulin resistant and glucose
intolerant. Even on a regular diet, these mutant mice gain
more weight than do control animals. This increased body
weight results from increased body fat content and increased
adipocyte size in WATs but not from increased muscle
weight. This phenotype is most probably a consequence of
the impaired fatty acid breakdown resulting from deletion of
PPAR/8, which results in increased fat storage in adipose
tissue.

PPARpB/d activation leads to muscle fiber
switching

One of the roles of PPARB/S is to control the skeletal muscle
fiber type composition [41, 42]. Depending on metabolic
properties and type of myosin heavy chain, skeletal muscle
fibers can be classified into type I (oxidative/slow) and type
I (glycolytic/fast) fibers. The oxidative slow-twitch fibers
have large amounts of mitochondria and high levels of myo-
globin and mainly use oxidative metabolism to provide a
stable and long-lasting supply of ATP; thus, they are fatigue-
resistant [49, 50], whereas the fast-twitch glycolytic fibers

have fewer mitochondria and rely on glycolytic metabolism
as a major energy source and are fatigable [51-53].

PPARPB/8 overexpression leads to an increase in the per-
centage of type I fibers [41]. As a consequence, there is an
increase of both enzymatic activity (CS and B-HAD) and
expression of genes implicated in oxidative metabolism
(UCP2, hFABP/FABP3). Moreover, a transgenic mouse with
a constitutively active form of PPARB/8 has been generated
[42]. This mouse expresses a transgene in which the VP16
activation domain is fused to the N-terminus of full-length
PPARPB/8 in an expression vector under the control of the
human a-skeletal actin promoter, allowing expression spe-
cifically in skeletal muscles. Expression of this constitutively
active form of PPARB/d results in a profound and coordi-
nated increase in oxidation enzymes, mitochondrial activity
(COXII, COXIV, UCP2, and UCP3), and production of char-
acteristic type I fiber proteins, such as myoglobin and tro-
ponin I [42]. In addition, administration of the PPARB/d
agonist GW501516 has similar effects, thus providing evi-
dence that activation of endogenous PPAR[3/d affects fiber
type composition towards an increased proportion of type I
fibers. This effect of PPARB/d is mediated through its tran-
scriptional coregulator PGCla [43] (Figure 1). Mice with a
skeletal muscle-specific PPARB/3 deletion have a reduced
level of PGCla expression. In fact, there is a conserved
PPRE in the promoter region of the PGCla gene in both
mouse and human, and PPARRB/S agonist treatment stimu-
lates the PGClo promoter through this specific PPRE
(Figure 1).

Previous studies have also reported PGCla to be an
important regulator of the maintenance of the slow-twitch
muscle fiber type [54, 55]. Of interest, PGCla exhibits a
high level of expression in the slow-twitch oxidative muscles
rather than the fast-twitch glycolytic fibers [55]. Also in
humans, a high level of expression of both PPARB/d and
PGCla has been observed in biopsies from cyclists who
generally have a high proportion of type I muscle fibers. A
decrease in the expression of both is noted in patients with
spinal cord injuries resulting in a loss of type I fibers [56].
Apart from PPARB/8 and PGCla, another important regu-
lator implicated in the maintenance of muscle fiber compo-
sition is calcineurin [57, 58]. PPARPB/3 activation is
associated with a calcineurin-dependent effect on muscle
morphology that enhances the oxidative phenotype, thus sug-
gesting the involvement of a calcineurin-dependent signaling
pathway in PPARB/8-promoted muscle remodeling [59].
Moreover, the phenotype exhibited by transgenic mice
expressing higher levels of calcineurin, calmodulin-depend-
ent kinase, or PGCla [60-62] is similar to that of mice
overexpressing the activated form of PPARB/S in skeletal
muscle [42], indicating a possible link between these
signaling pathways.

PPARpB/8-mediated muscle fiber transformation
protects against obesity

There is a correlation between the composition of specific
muscle fiber and the development of obesity and diabetes.
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Figure 1 Model of exercise-induced metabolic pathways and fiber type switching in skeletal muscle cells.

The promoter of the PGCla gene comprises a PPRE, a myocyte-specific enhancer factor (MEF) binding site (MEF-BS), and a cAMP
response element (CRE). The PGCla promoter is stimulated by muscle contraction that induces a calcium-signaling pathway, which activates
CREB and MEF2 via Ca**/calmodulin-dependent kinase IV (CaMKIV) and calcineurin A. Exercise can increase the level of PPARB/S
ligands (fatty acids) and furthermore increases PPARB/S levels through an unknown mechanism. Exercise-increased PPARB/S activity
further stimulates the expression of PGCla. By coactivating MEF2 and PPARB/3, PGCla fuels a positive feed-forward signal to further
increase PGCla expression. In turn, PGCla potentiates PPARB/3/RXR heterodimers that stimulate the expression of genes involved in
fatty acid uptake and (-oxidation. It also stimulates the expression of nuclear respiratory factor 1 (NRF1) and NRF2, thus leading to
enhanced expression of nuclear-encoded mitochondrial genes. Finally, through coactivation of MEF2, PGCla regulates the switch to the

expression of slow-twitch muscle fiber genes.

Skeletal muscles with reduced oxidative capacity, increased
glycolytic capacity, and a decreased percentage of type I
fibers are observed in both obese [63, 64] and diabetic
patients [65]. Animals with body weight gain induced by a
high-fat diet have fewer type I muscle fibers [66], as do
animals with a skeletal muscle-specific deletion of PPARB/3.
This fiber type switching in the skeletal muscles towards a
lower oxidative capacity is the causative factor in the devel-
opment of obesity and diabetes [43]. Along the same line of
evidence, mice overexpressing the activated form of
PPAR/S in skeletal muscles or wild-type mice administered
a PPARP/3-specific agonist along with a high-fat diet are
resistant to obesity. This finding signifies that muscle fiber
conversion to type I due to activation of PPARB/S in these
animals exerts a protective effect against obesity [42].

Enhanced PPARB/6-dependent muscle
performance

Skeletal muscle performance is dependent on the distribution
of fiber types. Exercise training increases PPARB/S expres-
sion and, in parallel, oxidative fibers [41]. This pattern has

been confirmed in individuals showing increased PPARB/d
levels after exercise training [67-70]. As already mentioned,
the increase in the number of fibers with oxidative capability,
an effect induced by muscle-specific overexpression of
PPARB/d [41], is similar to that observed in exercised mice
[71-73] and humans [74], suggesting that upregulation of
PPARPB/S plays an important role in muscle adaptation to
exercise. Transgenic mice expressing constitutively active
PPARPB/8 have a significantly enhanced running capacity
[42]. In contrast, PPARB/8-null mice show reduced endur-
ance [43]. Collectively, these observations favor a strong role
for activated PPAR[/S in the physical performance of skel-
etal muscles. In fact, the PPARB/S ligand GW501516 has
been classified as a doping substance by the World Anti-
Doping Agency because of its ability to influence muscle
performance [75], and two of its major urinary metabolites
have been characterized for identification of the drug in rou-
tine doping controls [76]. Mechanistically, PPARB/8 can
enhance running endurance through activation of AMPK sig-
naling [77, 78] as AMPK is activated during exercise training
(Figure 2) [79, 80]. Of interest, a decrease in running capac-
ity has been observed in mice with defective AMPK signal-
ing in muscle [81, 82]. More important, mice with an
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Figure 2 Actions of PPARB/S in skeletal muscles.

result in amelioration of metabolic
syndrome

Pharmacological activation of PPARRB/8 by a specific ligand has been shown to regulate expression levels of genes involved in triglyceride
hydrolysis and free fatty acid oxidation, lipid use, energy expenditure, and muscle fiber type switching in skeletal muscle, in turn resulting
in decreased body fat mass and enhanced insulin response. Both the lipid lowering and the anti-diabetic effects exerted by the inducing
effects of PPARB/d result in the amelioration of symptoms of metabolic disorders. In addition, exercise training induces fiber type switching
accompanied by increased PPARB/3 levels and AMPK, resulting in endurance in exercise through upregulation of the common effector
molecule, PGCla. Pharmacological activation of PPARB/3 also promotes myonuclear accretion and angiogenesis in skeletal muscle and
protects against Duchenne muscular dystrophy (DMD). However, the role of PPARB/8 in myogenic differentiation and muscular atrophy

remains to be deciphered. FFA, free fatty acids; TG, triglycerides.

activated form of PPARB/d in skeletal muscle show a con-
stitutive high level of AMPK expression [83], and a physical
association between exercise-activated AMPK and PPARf/
d is observed, revealing a molecular link most probably con-
tributing to the running endurance phenotype observed after
activation of PPARB/S.

The mechanism through which PPARB/3 is upregulated
during exercise remains unclear, although one plausible
explanation is that exercise results in recruitment of fatty
acids that might act as endogenous ligands for PPARB/3,
thus resulting in its activation and stimulation of its target
genes (Figure 1). Another mechanism probably involves
mediation through upregulation of PGCla, as exercise train-
ing leads to increased levels of PGCla in skeletal muscles
[55, 84], which might in turn lead to increased activity of
PPARPB/8 because of its interaction with PGCla. These two
possible mechanisms are, of course, not mutually exclusive.

Expert opinion

PPARPB/3 is a crucial player in regulating lipid metabolic
pathways in skeletal muscle, which in turn affects other
organ systems, resulting in the amelioration of metabolic dis-
orders (Figure 2). Muscle-specific deletion of this PPAR iso-
type provides additional proof for its involvement in muscle
physiology. In these mutated animals, a partial compensatory

role of PPARa cannot be excluded because PPAR« is also
expressed in tissues with high rates of fatty acid oxidation,
including muscle [85-87]. Furthermore, activation of
PPARa induces expression of genes involved in fatty acid
oxidation. A significant decrease in the expression levels of
these genes has been observed in PPARa-null mice, but in
tissues other than skeletal muscle [88]. Thus, the oxidative
capacity of skeletal muscle appears not to be compromised
in PPARa-null mice, further strengthening the importance of
PPARPB/8 in metabolic regulation in this tissue. However, a
recent report [89] suggests that PPARB/S is dispensable in
skeletal muscles for regulating pathways involved in lipid
metabolism. In that study, deletion of PPARB/d alone did
not exert a significant effect on the (-oxidation pathway.
Furthermore, there was apparently a lack of compensation
between these two receptors, as double deletion of PPAR«
and PPARPB/8 resulted in a phenotype more like that of
PPARa-null mice. Thus, it is currently difficult to defini-
tively attribute exclusive roles to each of these two receptors
in muscle metabolism. The reasons behind the discrepancies
remain unclear. A better understanding can be obtained with
muscle-specific deletion of PPAR« and a combined muscle-
specific deletion of both PPARa and PPARB/3, which
remain to be performed. In animals with a germline deletion
of PPARa, the muscle phenotype can, in part, result from
the absence of PPAR«a in other tissues.
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Furthermore, what has gone unexplored so far is the func-
tion of PPARB/3 in muscle cell differentiation and thus its
role in skeletal muscle disorders, such as muscle atrophy or
hypertrophy. Apart from a few recent, conflicting reports [90,
91], the role of PPARB/3 in the muscle atrophic program has
not been addressed. What is known is that acute administra-
tion of a PPAR[B/S agonist activates ubiquitin proteasome
proteolytic-dependent skeletal muscle atrophy [90], and
although the muscle-specific E3 ubiquitin ligases MuRF1
and MAFbx are upregulated, no 20S proteasome transcrip-
tional activity has been detected. Obviously, further studies
with muscle-specific overexpression or deletion of PPARB/
9 are needed to clarify its possible role in the muscle atrophy
program.

Pharmacological activation of PPARP/3 is protective
against Duchenne muscular dystrophy in mdx mice [91] and
promotes myonuclear accretion [92]. Age-related muscle
atrophy is associated with reduced numbers of oxidative
myofibers, and activation of PPARB/d promotes fusion of
muscle progenitor cells to form myofibers and increases
myonuclear density. Ligand-induced activation of PPARB/3
also promotes calcineurin-dependent fiber remodeling and
angiogenesis in mouse skeletal muscle through upregulation
of myogenic and angiogenic markers [59]. In spite of these
interesting observations, modulation by PPARB/3 of the dif-
ferent molecular pathways involved in myogenic differenti-
ation remains to be elucidated, which might provide further
insights into the roles of PPARB/8 in muscular dystrophies.

Outlook

To counter the growing threat that the metabolic syndrome
poses, one can dream of a ‘‘magic pill’’ with multifaceted
effects that enable combating the various aspects of this dis-
order. The impact of PPARB/8 activation on hypertriglyce-
ridemia and insulin resistance through enhancement of fatty
acid catabolism and energy expenditure in both adipose tis-
sue and skeletal muscle confers on this nuclear receptor
strong potential in the fight against obesity and diabetes. Its
promising effects in different tissues make it the most favor-
able target for future therapeutic interventions. The potent
ligand for PPARB/8, GW501516, which has been used in
most of the preclinical studies described here, is already in
clinical trials for the treatment of dyslipidemia and metabolic
syndrome. Observations from Phase I clinical studies have
confirmed its efficacy in altering the serum lipid profile,
including increasing triglyceride clearance after a fatty meal
in treated groups, thus strengthening its potential for function-
ality in people in addition to what has been previously
observed in different animal models for dyslipidemia [93].
Furthermore, in Phase II studies, the PPARPB/d agonist
GW501516 improved multiple metabolic disorders associ-
ated with the metabolic syndrome, most probably through an
increase in skeletal muscle fatty acid oxidation [94]. In that
study, the PPARB/d agonist was more efficient than the
PPARa agonist GW590735. The promise that GW501516
has shown in these clinical trials will hopefully not be

undone by adverse effects that might emerge when large
cohorts are treated. PPARB/d is involved in various tissue
repair processes, such as cell survival, differentiation, prolif-
eration, and migration. Such processes will have to be mon-
itored carefully during long-term treatment with candidate
drugs targeting PPARPB/S.

Highlights

» Skeletal muscle is a major site of fatty acid catabolism
and energy expenditure.

* PPAR/S is the isotype predominantly expressed in skel-
etal muscles and plays a pivotal role in muscular fatty
acid (B-oxidation.

* The role of PPARB/d as a central regulator of fatty acid
metabolism in skeletal muscles has been established
through in vitro and in vivo approaches involving trans-
genic animal models with either muscle-specific over-
expression or deletion of PPARB/S.

* Pharmacological activation of PPARB/3 by a selective
ligand regulates genes involved in lipid use, triglyceride
hydrolysis, fatty acid oxidation, energy expenditure, and
lipid efflux in skeletal muscle.

» Agonist-induced effects of PPARB/3 result in ameliora-
tion of obesity, insulin resistance, and glucose intolerance,
revealing its potential as a therapeutic target in metabolic
disorders.

* PPAR/d activation alters the composition of the muscle
fibers towards the slow oxidative type I, in support of its
protective effect against metabolic syndrome and
enhancement of muscle performance during endurance
exercise.

* PPARB/3-mediated regulation of myogenic differentia-
tion and muscle atrophic signaling pathways remains
unexplored.

* Clinical studies related to the safety and efficacy of
PPARP/3 agonists are ongoing.
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