
PEST MANAGEMENT AND SAMPLING

Estimation of Local Mean Population Densities of Japanese Beetle
Grubs (Scarabaeidae: Coleoptera)

D. DALTHORP, J. NYROP, AND M. VILLANI

Department of Entomology, Cornell University, NYSAES, Geneva, NY 14456

Environ. Entomol. 28(2): 255Ð265 (1999)

ABSTRACT Insect populations tend to be patchy in distribution. Even when the mean population
density is low, there may be local patches with high densities. As a result, estimates of mean
populations may provide little information about the size or intensity of local patches within the
sampled area. We compared the following 3 methods of estimating local population densities of
insects: (1)withmoving averages, a localmeanpopulationdensity is estimated as themeanof samples
taken within a given radius of a central point, (2) with inverse distances, local means are estimated
as weighted averages of samples; each sample is given a weight proportional to a power of the
reciprocal of its distance from the center of the region for which the mean is to be estimated, (3)
kriging is a geostatistical algorithm for estimating local means as weighted averages of samples.
Weighting is based on the spatial covariance of the samples, or the degree to which samples that are
near to each other are related. The Þrst 2methods are relatively easy to calculate butwere unreliable
when used with standard parameters to estimate local Japanese beetle grub densities. When an
optimum radius was used with moving averages and an optimum exponent was used with inverse
distances, the advantage of ease of calculationwas lost, yet bothmethodswere still inferior to kriging
in providing accurate estimates of local means.
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INSECT POPULATION DENSITIES are commonly estimated
as the mean of a set of sample observations. This
approach works well for estimating overall mean pop-
ulations, but more sophisticated approaches to esti-
mating local means are needed when identiÞcation of
patches with high or low density is desired. Because
the distribution of agricultural pests is often patchy,
pest populations may be high enough in some parts of
a Þeld to damage a crop, whereas other parts of the
Þeld remain virtually pest-free (Nyrop et al. 1995;
Weisz et al. 1995a, b). Targeting management tactics
such as application of insecticides to the parts of the
Þeld that harbor high pest populations may retard the
development of resistance in the pest population and
conserve natural enemies (e.g., Midgarden et al.
1997). Such precision management of insect pests re-
quires reliable methods for estimating mean popula-
tion densities in the smallest areas or blocks in which
signiÞcant damage could occur. When a single sample
observation provides a good estimate of mean density
within a block surrounding the sample, or when many
samples canbe takenwithin theblock so that a reliable
estimate of the mean density can be made by taking
the average of the observations, the problem of esti-
mating the local means is solved. These solutions are
not feasible when individual sample observations are
poor estimators of the local population means, and it
is not feasible to take several samples within each
block. In such cases, it may still be possible to estimate
local means reliably by taking advantage of spatial

autocorrelation, or the tendency of neighboring sam-
ples to have similar values.

Wewere facedwith this problemof estimating local
means for larvae of Japanese beetle, Popillia japonica
Newman, on golf course fairways. The fairways are
mixed plantings of turfgrass, each covering
6,000Ð16,000 m2. Golf courses normally contain 18
fairways, or some 200,000 m2 of intensely managed
turf. In the eastern United States, Japanese beetle
larvae are common pests on these plantings. Visible
grub damage can occur in block of turf as little as
45Ð90m2.Given the highly variable distribution of Jap-
anese beetle larvae in these turf plantings, reliable
estimates of local population densities could be useful
management aids.

A golf course may contain .3, 000 blocks in which
to estimate local means, so it may not be feasible to
collect several samples in each block. In addition, the
small size of each sample (0.008 m2) precludes it from
being aprecise estimateof a localmean.Wecompared
several methods of taking advantage of spatial covari-
ance of population density to use information from
nearby blocks to estimate the mean of a given block.
Each method estimates a block mean as a weighted
average of samples in and around the block. Weights
decrease as a function of distance from the center of
the block. The methods differ only in how those
weights are assigned. The 3 methods of estimating
local means were compared on the basis of effective-
ness (or ability to make correct estimates) and stabil-
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ity (or ability to give consistent results), as discussed
below.

Moving Averages. With the method of moving av-
erages, a local or block mean is estimated as the av-
erage of all samples within a given radius of the center
of the block. Moving averages has the advantage that
localmeans are easy to calculate.Disadvantages of this
method are that it is difÞcult to determine the most
appropriate radius for smoothing, and the implicit
model of spatial covariance may not be correct, in
whichcasegoodestimatesof localmeanswouldnotbe
obtained.

InverseDistances. Isaaks and Srivastava (1989) pro-
vide an excellent discussion of the commonly used
inverse distance method for spatial interpolation and
map generation. However, the method must be mod-
iÞed if it is to be used for estimating local means. The
modiÞedmethod is discussed below, and details of the
modiÞcations are discussed in the Appendix 1.

Local means are estimated as weighted averages of
the samples taken on a fairway. Weights assigned to
sample points are proportional to a power of the in-
verse of the distance from the sample to the center of
the block. Points far from the block thus receive little
weight, and points close to the block receive relatively
high weights. The weights are normalized so that they
sum to 1. The estimate of the block mean is the
weighted average of all points on the fairway, viz.

m̂j 5

wjzj 1 O
iÞj

1

di
p zi

wj 1 O
iÞj

1

di
p

, [1]

where m̂, is the estimate of the mean population den-
sity in block j, di is the distance from the center of the
block to sample i, zi is the number of grubs observed
in sample i, andwj is theweight assigned to the sample
at the center of the block (see Appendix and Table 2).
The gradual decline in weights with distance is intu-
itively satisfying, yet the weights are still relatively
easy to calculate. A priori disadvantages are that the
implicit model of spatial covariance (or how the
weights decline) is not very ßexible, and optimization
of the exponent p requires considerable computation.

Block Kriging. With block kriging, local means are
again estimated as a weighted average of the samples
(Isaaks and Srivastava 1989, Deutsch and Journel
1992). Weights are based on an explicit model of the
spatial covariance of the data. We used the covario-
gram to quantify the covariance (Cressie 1993,
Kaluzny et al. 1996). For each fairway, 2 different
covariance models were used: omnidirectional and
directional. Omnidirectional models assume that the
covariance is strictly a function of separation distance
or lag.Withdirectionalmodels, covariance ismodeled
as a function of both the lag distance and direction.
Directional models are useful when populations are
more continuous in 1 direction than another, as com-
monly occurs when an environmental gradient
changes more rapidly in one direction than another.
The advantage of this method is that the model of
spatial covariance is explicit and ßexible, resulting in
relatively reliable estimates of local means. The main
disadvantage is that the method does require explicit
modeling of the spatial covariance.

Comparison of the Methods. Effectiveness. The ef-
fectiveness of estimation methods can be quantiÞed

Table 1. Summary of sample counts of Japanese beetle grubs on 2 golf courses for each of 2 yr

Year Golf course Fairway Rowsa Columnsb n Meanc Variance

1995 Tuscarora T1895 11 9 82 0.805 1.122
T1095 15 9 130 1.023 1.961
T1195* 15 9 134 1.709 3.546
T1295 16 11 171 1.047 2.621
T1395* 10 12 106 1.085 1.621

Silver
Creek

S0895* 10 10 81 1.062 2.734

S1195* 12 21 236 0.822 1.960
S1395* 14 11 146 1.356 3.169
S1695* 13 9 117 0.872 1.544

Average 12.9 11.2 133.7 1.087 2.253
1996 Tuscarora T1896* 21 9 143 0.664 1.239

T1096* 29 9 255 0.808 1.463
T1196* 29 9 254 1.280 2.732
T1296* 31 11 326 0.546 0.907
T1396* 19 12 201 0.866 1.327

Silver
Creek

S0896 19 10 153 0.275 0.398

S1196 23 21 451 0.188 0.291
S1396 27 11 280 0.154 0.166
S1696* 25 9 225 0.231 0.384

Average 24.8 11.2 254.2 0.557 0.990

Fairways for which detailed spatial analyses were performed are indicated by asterisks.
a Number of rows of samples taken across fairway.
b Number of columns of samples taken along fairway.
c Average number of grubs per sample.
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by comparing estimates to true values using cross-
validation. In cross-validation, actual data points are
dropped one at a time and reestimated from the re-
maining data. Thus, the sample count at the center of
a block is ignored when calculating the cross-valida-
tion estimate for that block. Once a datum has been
reestimated using an estimation method, it is put back
into the data set and the procedure is repeated for the
next datum (Deutsch and Journel 1992). In this way a
cross-validation data set is constructed for each esti-
mation method with 1 cross-validation estimate cor-
responding to each point in the data set. Cross-vali-
dation estimates are subtracted from the raw data
values to obtain the cross-validation errors. The cross-
validation errors measure how well a given method
estimates means at ÔunsampledÕ locations. Thus, an
effective method should have relatively small cross-
validation errors.

Stability. Stability of an estimation method is de-
Þned in terms of the similarity of its interpretation of
local means for different smoothing parameters (e.g.,
the radius for moving averages). Different smoothing
parameter values result in unique topographical maps
or surfaces of block means, with peaks of high density
and valleys of low density. For example, with decreas-
ing inverse distance exponent or increasing moving
average radius, each estimated local mean approaches
the overall sample mean, so the density surface be-
comes smoother. Conversely, for large inverse dis-
tance exponent or small moving average radius, the
density surface is relatively rough.

With fortuitous circumstances in some applications,
choice of a smoothing parameter within a wide range
of values does not signiÞcantly affect the interpreta-
tion of the data (e.g., Weisz et al. 1995a, b). In such
situations, a carefully selected value may be chosen as
a standard value for widespread use. However, in
other situations the interpretation of data can change
substantially with small changes in parameter values,
making the estimation method unreliable if a standard
smoothing parameter is used.

A stability index can be used to quantify the differ-
ences in the topographies of density surfaces resulting
from small changes in smoothing parameter values.
This index then can be used as a relative measure of
stablity to compare estimationmethods for a single set
of data. The stability index also can be used to deter-
mine when instability precludes the use of a standard
inverse distance exponent or moving average radius
for a collection of data sets.

Materials and Methods

Sampling. Five fairways at Tuscarora Country Club
in Camillus, NY, and 4 at Silver Creek Country Club
in Waterloo, NY, were sampled for 2nd and 3rd instars
of Japanese beetle in late August and early September
1995 and 1996. The fairways were '200 m long and
40 m wide. All were irrigated, and normal applications
of fertilizers, herbicides, and fungicides were applied

as needed. Insecticides were not applied in the spring
or summer before each yearÕs sampling, but bendio-
carb was applied to the Tuscarora fairways after sam-
pling.

Circular soil cores 10 cm in diameter and '10 cm.
deepweredugusinggolf coursecupcutters.Thecores
were broken apart by hand, and the Japanese beetle
grubs found in each core were counted and recorded
along with the location of the sample. Samples were
taken in 4.6-m intervals along transects (rows) across
each fairway. In 1995, rows were separated by 14 m
along the length of each fairway; the sampling inten-
sity was doubled in 1996 by decreasing the distance
between rows to 7 m (Table 1).

Estimation of Local Means. Local mean densities
were estimated for rectangular blocks centered at
each sample point. In 1995 fairways, the blocks mea-
sured 4.6 by 14 m, and in 1996 the blocks were 4.6 by
7 m. Mean population densities were estimated for
each block by 3 methodsÑmoving averages, inverse
distances, and block kriging. For moving averages,
estimates were made for all sampled blocks with
smoothing radii of 0, 5.5, 7.6, 8.9, 10.7, 12.2, 14.2, 15.7,
18.8, 22.7, 31, and 47 m as indicated in Fig. 1. As
discussed below, we used cross validation to deter-
mine the optimum radii for each fairway. For inverse
distances, estimates were made for all sampled blocks,
using inverse distance exponents of P 5 0, 0.5, 0.75, 1,
1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, and 5. An exponent
ofP50 implies that all points receive the sameweight,
so estimates of all local means are equal to the overall
mean. As p 3 `, the estimates of block means ap-
proach the raw grub counts. As discussed below, we
used cross validation to determine the optimum ex-
ponent for the various fairways. For block kriging,
omnidirectional and directional covariance models
were used to obtain omnidirectional and directional
block kriging estimates of local means, respectively.

Fig. 1. Smoothing radii used in calculation of moving
averages.
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Effectiveness of Estimation of Local Means. Cross-
validation estimates were made for each fairway for
inverse distanceswith each of the exponents, formov-
ing averages with each of the radii, and for both om-
nidirectional and directional kriging.

Quanitification of Cross-Validation Errors. Themag-
nitude of the cross-validation errors for a given set of
estimateswasmeasured2waysÑas the sumof squared
errors (SSE), and as sums of absolute values of errors
(SAE). The following standardizations of SSE and SAE
were then made:

mean squared error: MSE 5
(~zi* 2 zi!

2

n
, [2]

mean absolute error: MAE 5
(?zi* 2 zi?

n
, [3]

coefÞcient of determination: R2 5
SST 2 SSE

SST
, [4]

relative absolute error (analog of R2):

A 5
SAT 2 SAE

SAT
, [5]

where zi* is the cross-validation estimate of sample i;
zi is the number of grubs in sample i; n is the total
numberof sampleson the fairway; and SSTandSATare
total sums of squared and absolute errors (i.e., the SSE
and SAE for the null model, in which the overall mean
is taken as the estimate for each local mean). Thus,
MSE and MAE measure the average magnitude of
errors, and R2 and A are measures of the improvement
a given model makes over the null model, with values
of 0 indicating no improvement, 1 indicating a perfect
model, and negative numbers indicating a poorer Þt
than than that of the null model.

Optimization. For each fairway, the moving average
radius and inverse distance exponent that minimized
the cross-validation MSE and MAE were selected as
the optimum parameters. To make the Þnal MSE-op-
timized and MAE-optimized estimates for a fairway,
the moving average and inverse distance calculations
were repeated using the optimum parameters with all
the samplepoints on the fairway.Kriging estimates are
based on models of the covariograms rather than on
minimization of cross-validation errors, but the cross-
validation errors still were calculated for each fairway
for comparison with the other methods.

Relative Effectiveness. To facilitate comparisons of
themethodsÕ effectiveness among fairways, theR2 and
A values (equations. 4 and 5) for each method were
standardized for each fairway by dividing by the R2

and A for directional kriging on that fairway. This is a
measure of relative effectiveness based on a common
scale for all fairways and methods. Thus, the relative
effectiveness of directional kriging for both MSE and
MAE for each fairway is 1, and the other methods are
compared against this standard. For example, a rela-
tive MSE of 0.7 for a method implies that the method
was70%aseffectiveasdirectional krigingat improving
onthenullmodelÕsMSE,orR2

method/R
2
directionalkriging5

0.7. Because results are independent of which method
is used as a standard, our choice of directional kriging
was based solely on esthetic reasons.

Stability of the Methods. We deÞned stability of
moving averages and inverse distances in terms of the
changes in estimates of local means for small changes
in moving average smoothing radius or inverse dis-
tance exponent.

Critical Range of Parameters. For each fairway, we
calculated the optimum exponent for inverse distance
and optimum radius for moving averages by selecting
the values that resulted in the smallest cross-validation
MSE and MAE. We then removed the highest and
lowest values and deÞned the critical range of param-
eters to be the remaining interval. For example, the
MSE-optimized inverse distance exponents for the
twelve fairways were 1.25, 1.5, 1.75, 2, 2, 2, 2, 2.25, 2.25,
2.25, 2.5, and 2.75. After removing the highest and
lowest of these exponents, the truncated range is 1.5Ð
2.5. This, then, was the critical range for MSE-opti-
mized inverse distance. Similarly, we calculated the
critical ranges for MAE-optimized inverse distance,
MSE-optimized moving average, and MAE-optimized
moving average. As deÞned, the critical range is an
estimate of the range of optimum parameter values
that were commonly observed in the Þeld. A method
that can be standardized reliably should give consis-
tent results for any choice of parameter value in the
critical range.

Stability Index. The degree of smoothness of the
grub density surface is summarized by a statistic that
we refer to as the estimated population variance, or the
variance of the collection of estimated local means for
a given fairway and method. A high population vari-
ancecorresponds to ahighly variable or rough surface,
whereas a low population variance corresponds to a
smooth surface. To quantify stability, we deÞned a
stability index for a given fairway as the ratio of pop-
ulationvariances resulting fromthehighest and lowest
parameter values in the critical range. For example,
the critical range for MSE-optimized inverse distance
exponents is 1.5Ð2.5. The estimated population vari-
ances on T1896 for exponents 1.5 and 2.5 are 0.17 and
0.58, respectively, so the stability index for MSE-opti-
mized inverse distance on T1896 is 0.58/0.17 5 3.4. By
contrast, the critical range for MSE-optimized moving
average radii is 10.7Ð18.8 m. The estimated population
variances on T1896 for radii 18.8 and 10.7 are 0.31 and
0.21, respectively, giving a stability index of 1.5. By this
measure, the inverse distance method has a higher
stability index value and is more unstable than moving
averages on fairway T1896. We calculated stability
indices forboth inversedistancesandmovingaverages
optimized for MSE and MAE on all 12 fairways ana-
lyzed.

Critical Ratio and Quantification of the Practical Im-
plications of the Stability Index. Because of space lim-
itations, the nature and degree of the uncertainties
captured by the stability index were analyzed in detail
foronly1 fairway(T1896).Differences ingrubdensity
surfaces for parameters within the critical range for
MSE-optimized inverse distance exponents and mov-
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ing average radii were plotted in wireframe graphs of
estimated local mean populations. The wireframe
graphs provide a visual summary of the practical im-
portance of the stability index. Differences between
the surfaces then were quantiÞed via differences in
the heights and extents of the peaks. The peaks were
characterized by the upper percentiles (50th, 75th,
90th, 95th, 98th, and maximum) of the estimated local
means on the fairway. These percentiles were then
plotted as functions of the inverse distance exponent
andmoving average radius.Of particular interestwere
the differences in the estimates of each percentile for
parameters within the critical range. To summarize
such differences, we deÞned the critical ratio for a
given method and percentile on a fairway as the ratio
of the highest to the lowest estimate of the percentile
forparameter values in thecritical range.Forexample,
theestimates for the98thpercentile of blockmeanson
T1896 for inverse distance exponents of 1.5 and 2.5
(spanning the critical parameter range) are 1.58 and
2.73, respectively. Therefore, the 98th percentile crit-
ical ratio for inverse distances on T1896 is 2.73/1.58 5
1.73, implying that within the critical range, estimates
of the 98th percentile vary by a factor of 1.73. For each
fairway the critical ratio was calculated for inverse
distances and moving averages, each optimized for
MSE and MAE. Then for each method, the geometric
mean critical ratio across fairways was calculated and
plotted against percentile. We used the geometric
mean whenever calculating an average of ratios or
factors. The geometric mean considers 1⁄2 and 2 to be
equidistant from 1, an apt view when dealing with
factors and ratios. This allows for easy comparison of
the robustness of themethodsÕ estimates of theheights
of the peaks and how those estimates depend on rel-
ative grub population density.

Fairway Selection. Detailed spatial statistical anal-
yseswereperformedon12of 18 fairways sampled.Not
includedwere 2 fairways that lacked signiÞcant spatial
covarianceÑS1396 had a mean grub density of 0.15
per sample, and the count distribution did not differ
from Poisson (P 5 0.18, chi-square test); S0896 had a
mean grub density of 0.27 per sample, and neither the
variogram nor covariogram revealed any spatial co-
variance structure. Not coincidentally, these 2 fair-
ways had the lowest and 4th lowest population den-
sities of the 18 that were sampled; not enough grubs
were found to discern spatial relationships. Also not
included in the analyses were 4 fairways for which the
spatial covariancewasnot strongenough for anyof the
methods to provide reliable estimates. As a rough
measure of reliability,weused the P value of the linear
regression of cross-validation estimates against the
raw grubs counts. Fairways T1895, T1095, T1295, and
S1196 had P values substantially higher than those of
the other fairways (Fig. 2), making meaningful com-
parisons between the methods impossible for these 4
fairways. Therefore, the analysis does not include
these fairways.

Results and Discussion

Effectiveness. The relative effectiveness of the
methods (inverse distance, moving average, omnidi-
rectional kriging, directional kriging) was compared
on the basis of the MSE and MAE of the cross-valida-
tion errors. For each fairway, the inverse distance
exponent and moving average radius that minimized
the MSE and MAE were calculated and are listed in
Table 3. Optimum parameter values varied not only
from fairway to fairwaybut also dependedonwhether
they were optimized with respect to MSE or MAE. For
inverse distances and moving averages, the analysis of
effectiveness was based on these optimized parame-
ters.

Effectiveness of Moving Averages and Inverse Dis-
tances Relative to Directional Kriging. On average,
MSE- optimized inverse distances and moving aver-
ages were respectively only 82 and 67% as effective as
directional kriging at improving on the null MSE. In
Fig. 3 points above the dotted line represent a relative
effectiveness .1, indicating that the given method is
more effective than directional kriging on the fairway
represented by the point. Conversely, points below
the dotted line indicate that the method is not as
effective as directional kriging on the fairway. When
compared on the basis of MAE rather than MSE, in-
verse distances and moving averages were still not as
effective as directional kriging, although the differ-
ences were less pronounced (geometric means of rel-
ative effectiveness were 85 and 90% for inverse dis-
tances and moving averages, respectively).

Forall but 1 fairway(S1696),directional krigingwas
the most effective as measured by MSE. For S1696,
inverse distance with an exponent of 2 had a relative
effectiveness of 1.35 (optimized for MSE). However,
the methodÕs R2 was still only 0.047 compared with

Fig. 2. Fairway-by-fairway P values for linear regression
of cross-validation residuals on sample grub counts. For fair-
ways T1895, T1095, T1295, and S1196, the correlations are
substantially weaker than they are for the other fairways,
indicating that none of the estimation methods is reliable on
these data sets.
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directional krigingÕs 0.035 (Table 4), implying that
both methods were only slightly better than the null
model inwhichall localmeans are assumed tobeequal
to the overallmean. The relative effectiveness ofmov-
ing average optimized for MAE is 1.9 for the same
fairway, indicating that the method outperformed di-
rectional krigingon this fairway.For all other fairways,
directional krigingwas themost effectivewith respect
to MSE (Fig. 3; Table 4). However, inverse distance
and moving average often were much less effective
than directional kriging. On 5 of the 12 fairways, MSE-
optimized inverse distances were ,75% as effective as
directional kriging, and on 6 fairways MSE-optimized
moving averageswere ,70%as effective as directional
kriging.On1 fairway (T1195),MSE-optimizedmoving
averages were outperformed by the null model.

The relative effectiveness of inverse distances and
moving averages improved when MAE was the yard-
stick. The improved performance relative to kriging is

not surprising in that inverse distances and moving
averages can be optimized to give low MAE, whereas
kriging inherently minimizes MSE rather than MAE.
On S1696, moving averages had substantially higher
relative effectiveness than all other methods (Fig. 3).
This may be because the low mean population density
on the fairway (0.23 grubs per sample compared with
an average of 1.01 for the other fairways with signif-
icant spatial covariance) (Table 1). Only 37 of 225
samples contained grubs. Because the sampling pro-
vided so little information about the grub dispersion
patterns, the results are highly sensitive to random
variation, so theunusually strongperformanceofmov-
ing averages is probably overstated by the relative
effectiveness statistic. On 4 other fairways (T1096,
T1196,T1296, andT1396)movingaveragesyielded the
lowest MAE of all the methods, although the perfor-
manceswere only slightly better than directional krig-
ing (Fig. 3; Table 4). On all other fairways, directional
kriging was still the most effective as measured by
MAE. On several of these fairways, the differences
were large.

In summary, we found that although on some fair-
ways the effectiveness of directional kriging was not
signiÞcantly better than that of inverse distances or
moving averages, directional kriging greatly outper-
formed the other methods on a third to half of the
fairways.

Effectiveness of Omnidirectional Kriging Relative to
Directional Kriging. Incorporating the effect of direc-
tion into covariogram models when performing direc-
tional kriging greatly complicates the modeling effort.
In most cases, the added complexity did not result in
signiÞcantly better estimates of local means, because
on most fairways omnidirectional kriging was as ef-
fective or nearly as effective as directional kriging. On
9of the 12 fairways, omnidirectional krigingwas .90%
as effective as directional kriging at improving on the
nullMSE (Fig 3).On fairways S1695, S0895, andT1396,
however, omnidirectional kriging had MSE-based rel-
ative effectiveness of 0.48, 0.72, and 0.82, respectively,
indicating that directional kriging was substantially
more effective on these fairways. As measured by
MAE, the performance gap between omnidirectional

Fig. 3. Relative effectiveness of moving average, inverse
distance, and omnidirectional kriging using directional krig-
ing as a standard for comparison. Each dot represents the
relative effectiveness of the method indicated on the x-axis
for a single fairway. Inverse distance exponents and moving
average radii are optimized for MSE and MAE of cross-vali-
dation errors, as indicated. Open squares represent geomet-
ric means. Points above and below the dotted line represent
superiority over and inferiority to directional kriging.

Table 3. Inverse distance and moving average parameters that minimize MAE and MSE

Fairway
Inverse distances, exponent: Moving averages, Radius m

MSE-optimized MAE-optimized MSE-optimized MAE-optimized

T1896 1.75 2.75 15.2 8.8
T1096 2.25 3 10.7 10.7
T1196 2.75 3 15.2 7.6
T1296 2.5 3.5 10.7 10.7
T1396 2 2.5 18.3 8.8
T1195 2.25 2.5 4.6 4.6
T1395 2.25 5 13.7 7.6
S0895 1.5 2 45.7 10.7
S1195 2 3 15.2 7.6
S1395 2 1.75 13.7 13.7
S1695 1.25 1.5 45.7 10.7
S1696 2 4 15.2 7.6
Mean 2.04 2.88 18.67 9.09
Critical range 1.5Ð2.5 1.75Ð4 10.7Ð18.3 7.6Ð10.7
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and directional kriging was smaller than when mea-
sured by MSE (Fig. 3). On 10 of the 12 fairways, the
relative effectiveness of omnidirectional kriging ex-
ceeded90%asmeasuredby improvement inMAEover
the null model.

Stability.Themain advantage that inverse distances
and moving averages have over kriging is ease of cal-
culation. We found that, when optimized, inverse dis-
tances and moving averages were sometimes compa-
rable to directional kriging with respect to
effectiveness. However, optimization is calculation-
intensive and thus partially negates the advantage of
simplicity. Therefore, as others have noted (e.g.,
Weisz et al. 1995a, b), it would be highly beneÞcial to
be able to use a single, standard parameter that would
be applicable to all Þelds. However, as discussed be-
low, we found that such standardization would con-
tribute substantially to the uncertainty of the esti-
matesmadeby inversedistances andmoving averages.

Stability Index for Moving Averages and Inverse Dis-
tances. We quantiÞed the degree of uncertainty asso-
ciated with choosing a standard inverse distance ex-
ponentormovingaverage radius foruseonall fairways
by use of the stability index (Table 3). An unstable
method is not amenable to standardization because
the standard parameter is likely to differ enough from
the optimum to have a signiÞcant impact on the re-
sulting estimates of local means.

Moving averages were more stable than inverse
distances on the fairways we sampled (Fig. 4). The
stability index for MSE-optimized inverse distances
exceeded 3.0 on 11 of 12 fairways, whereas the index
forMSE-optimizedmoving averageswas ,3.0 for 11 of
the 12 fairways. The differences in stability between
inverse distances and moving averages optimized for
MAE were even greater. The stability index for MAE-
optimized inverse distances exceeded 3.0 for all 12
fairways, whereas the stability index for MAE-opti-
mized moving averages was ,1.8 for all 12 fairways.
Thus, the method of inverse distances was less well
suited for standardization than was moving averages.

Not only was the method of inverse distances less
well suited for standardization than was moving av-

erages, we also found the method to be unsuitable in
an absolute sense. The argument relies on a more
detailed discussion of the practical signiÞcance of the
stability index. Because of space limitations, we limit
the detailed discussion to 1 fairway. Fairway T1896
with inverse distances with MSE optimization was
selected because it has a stability index of 3.44, which
marks a cutoff that separates inverse distances from
moving averages with respect to stability (Fig. 4).
T1896 is among the most stable fairways for inverse
distances, yet its stability index value of 3.44 for MSE
is higher than the index for moving averages on every
fairway (Fig. 4; Table 5).

Stability Index and Uncertainty of Topography of the
Grub Density Map. A stability index of 3.44 corre-
sponds to a large degree of uncertainty about the
roughness of the estimated grub density surface, as
shown in Fig. 5a and b However, an index of 3.44 is
close to the minimum for inverse distances among all
fairways. The density surfaces for most of the fairways

Table 4. Effectiveness of methods of estimating local mean populations

Cross-validation R2 Cross-validation A

IDa MAb OKc DKd IDa MAb OKc DKd

T1896 0.125 0.144 0.142 0.163 0.142 0.158 0.156 0.161
T1096 0.157 0.175 0.177 0.177 0.133 0.168 0.152 0.152
T1196 0.219 0.199 0.220 0.240 0.168 0.195 0.174 0.191
T1296 0.213 0.207 0.213 0.213 0.194 0.210 0.194 0.194
T1396 0.124 0.137 0.145 0.177 0.090 0.126 0.114 0.122
T1195 0.103 20.020 0.164 0.164 0.055 0.026 0.090 0.090
T1395 0.169 0.161 0.210 0.210 0.158 0.158 0.148 0.148
S0895 0.102 0.086 0.098 0.136 0.046 0.042 0.055 0.069
S1195 0.129 0.101 0.148 0.154 0.107 0.100 0.106 0.113
S1395 0.200 0.138 0.226 0.226 0.122 0.103 0.130 0.130
S1695 0.069 0.065 0.049 0.104 0.048 0.063 0.049 0.067
S1696 0.047 0.023 0.035 0.035 0.090 0.125 0.066 0.066

a Inverse distance weighting.
b Moving averages.
c Omnidirectional kriging.
d Directional kriging.

Fig. 4. Stability index for moving averages and inverse
distances. Each dot represents the stability index for a single
fairway and a given method (x-axis). The value of the index
increases with uncertainty about the smoothness of the grub
population density surface.
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vary even more markedly for parameter values in the
critical ranges (MSE and MAE) for inverse distances.
By contrast, Fig. 5c and d illustrate the uncertainty
associated with a stability index of 1.53, the value for
MSE-optimizedmoving averages on the fairway. Thus,
the moving average surfaces are relatively consistent
for all radii in the critical range. The stability index is
a general quantiÞcation of the differences visible in

Fig. 5, and as such, the index measures the relative
stability of the methods. However, the practical
implications of differences in stability are not cap-
tured directly by the index. Instead, we examined
the stability of the distribution of local means within
the critical region for a quantitative assessment of
the practical implications of a stability index value
of 3.44.

Table 5. Estimated population variance and stability index (ratio)

Fairway

Inverse distance Moving avg

MSE MAE MSE MAE

p 5 1.5 p 5 2.5 Ratio p 5 1.75 p 5 4 Ratio r 5 10.7 r 5 18.8 Ratio r 5 7.6 r 5 01.7 Ratio

T1896 0.168 0.578 3.441 0.249 1.054 4.228 0.314 0.205 1.529 0.446 0.314 1.421
T1096 0.146 0.657 4.500 0.241 1.248 5.170 0.381 0.229 1.665 0.543 0.381 1.427
T1196 0.420 1.332 3.170 0.599 2.368 3.955 0.790 0.549 1.439 1.116 0.790 1.412
T1296 0.076 0.393 5.183 0.132 0.774 5.873 0.241 0.135 1.789 0.348 0.241 1.443
T1396 0.140 0.570 4.072 0.218 1.115 5.121 0.317 0.185 1.716 0.474 0.317 1.494
T1195 0.270 1.170 4.324 0.454 2.133 4.702 1.028 0.307 3.348 1.738 1.028 1.691
T1395 0.177 0.614 3.476 0.273 1.021 3.737 0.662 0.234 2.829 0.873 0.662 1.318
S0895 0.381 1.039 2.728 0.539 1.646 3.056 1.081 0.424 2.550 1.393 1.081 1.289
S1195 0.131 0.618 4.720 0.226 1.141 5.042 0.636 0.272 2.336 0.933 0.636 1.467
S1395 0.408 1.249 3.066 0.600 2.020 3.368 1.369 0.579 2.365 1.808 1.369 1.321
S1695 0.171 0.530 3.104 0.249 0.895 3.588 0.560 0.199 2.812 0.758 0.560 1.355
S1696 0.027 0.153 5.618 0.048 0.320 6.684 0.058 0.030 1.919 0.102 0.058 1.767
Mean 0.210 0.742 3.950 0.319 1.311 4.544 0.620 0.279 2.192 0.878 0.620 1.451
Geometric mean Ñ Ñ 3.854 Ñ Ñ 4.428 Ñ Ñ 2.117 Ñ Ñ 1.444

Fig. 5. Estimated grub population density on fairway T1896 using inverse distances and moving averages with parameter
values in the critical range. (A) Inverse distance with exponent of 2.5. (B) Inverse distance with exponent of 1.5. (C) Moving
average with radius of 10.7 m. (D) Moving average with radius of 18.3 m.
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Stability Index andUncertainty of PatchDensity. The
overall mean grub density for the surfaces in Fig. 5a
andb is essentially the sameÑ0.676 for exponent 1.5
and 0.667 for exponent 2.5. The differences between
the surfaces lie in the heights of the peaks and the
depths of the troughs. The sizes of the peaks can be
compared via the upper tails of the distributions of
local means. In Fig. 6, a given percentile of estimated
local grub density is plotted against inverse distance
exponent p. The lowest line is the estimated minimum
grub density. Lines for the median, 75th, 90th, 95th,
and 98th percentiles are above that, with the line for
the maximum on top. For p 5 0, all local means are
equal to the overall sample mean, so the lines start at
the localmeanandspreadout asp increases. Steepness
in the curve is indicative of rapid change in grub
density surface corresponding to relatively small
changes in exponent. For example, with an exponent
of 1.5, the estimated maximum population density is
1.99, but for an exponent of 2.5, the expected maxi-
mum rises to 3.94, nearly twice as high. Thus, within
the critical range for MSE, estimates of the maximum
grub density on the fairway vary by nearly a factor of
2, making inverse distances unreliable for estimating
the maximum population density on this fairway.

Stability Index and Uncertainty About Patch Extent.
A turfgrass manager interested in treating only those
sections of the fairway that harbor grub patches with
density exceeding a threshold would need to identify
the boundaries of those patches. A commonly used
treatment threshold for Japanese beetle grubs in turf-
grass is 100 grubs per square meter, or '1 per sample.
According to inverse distance with an exponent of 1.5,
21% of the fairway (T1896) has a density exceeding 1
and would be treatable. With an exponent of 2.5, the

treatable fraction of the fairway rises only to 23%. This
indicates that forT1896, choiceof exponentwithin the
critical range has very little effect on the estimation of
the treatable portion of the fairway given a treatment
threshold of 1 grub per sample, making inverse dis-
tancea seemingly reliable tool.Fora treatment thresh-
oldof1.5, however, the situationchangesdramatically.
An exponent of 1.5 results in an estimate of 2.8% of the
fairway requiring treatment. An exponent of 2.5 in-
creases the estimated treatable portion of the fairway
to 17%, a 6-fold increase, making inverse distance an
unreliable tool for identifying patch boundaries. Fig.
6 suggests that inverse distance gives a consistent es-
timate of the 75th percentile of grub density onT1896.
However, it gives inconsistent estimates of the upper
quantiles of population density. Thus, a stability index
of 3.44 or higher is a strong indication that the method
may be unreliable for many types of ecological prob-
lems. Because the stability index was commonly in
excess of 3.44 for inverse distances (both for MSE and
MAE), themethodwasnot suitable for standardization
by using a single exponent for all fairways.

Suitability of Standardization of InverseDistance and
Moving Averages. As alluded to in the previous para-
graph, suitability for standardization is dependent
upon the question of interest. Fig. 7 shows how the
upper tail of the distribution of estimated local means
(i.e., the heights of the peaks) varies for parameters in
the critical range. We deÞned the critical ratio for a
method as the ratio of the estimates of a given grub
densitypercentile forparameters on theboundaries of
the critical range. The critical ratio was calculated for
each fairway for inverse distances and moving aver-
ages for a number of percentiles. The average critical
ratio in Fig. 7 is the geometric mean of the ratios for
all the fairways, and it is a measure of how stable a

Fig. 6. Percentiles of estimated localmean grubdensities
on fairway T1896 as functions of inverse distance exponent.
Vertical lines represent the boundaries of the critical param-
eter range.

Fig. 7. Stability of smoothing methods with respect to
distribution of local means. A critical ratio near 1.0 indicates
that the method gives consistent estimates of the given per-
centile for all parameters in the critical range. ID, method of
inverse distances;MA,moving averages;mae andmsedenote
which critical range (MSE or MAE) was used to calculate the
critical ratios.Critical ratios are themeancritical ratios across
all fairways.
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given method is for estimating a given quantile on
average. Thus, Fig. 7 shows that the least stable
method on average is inverse distance optimized for
MAE. Within the critical parameter range for this
method, estimatesof themedianvarybya factorof 2.7,
which is far higher than for any other method. All the
methods reliably estimate the 75th percentile on av-
erage, but the critical ratio for MAE-optimized inverse
distance estimates is 1.5 or more for the 90th percen-
tile and above and exceeds all other methods at every
percentile higher than the 75th. The critical ratios for
moving averages (optimized for either MSE or MAE)
are between 0.8 and 1.25 for all quantiles between the
median and 95th percentile. The most stable method
is moving averages optimized for MAEÑall critical
ratios are between 0.8 and 1.25.

In summary, without optimization, the inverse dis-
tancemethodwas toounstable to reliably estimate the
median population density, upper percentiles (or
heights of the peaks on the grub density maps), or
maximum local means. Even when optimized for MSE
or MAE, cross-validation indicates that the inverse
distance method is less effective than directional krig-
ing at estimating local means.

The method of moving averages was more stable
than inverse distances; it may even be stable enough
for a standard radius to be used for some applications,
especially when the standard is based on the minimi-
zation of MAE. Moving averages optimized for MSE
was considerably less effective than either directional
or omnidirectional kriging; but when optimized for
MAE, it was often comparable in effectiveness to om-
nidirectional kriging.

Directional kriging consistently gave better esti-
mates of local means than either moving averages or
inverse distanceswhenmeasured by MSE.Whenmea-
sured by MAE, moving averages gave slightly better
estimates than directional kriging on some fairways,
but on 25% of the fairways, it was substantially out-
performed by directional kriging.

Natural variation in the spatial patterns of grub
abundance from fairway to fairway and year to year
wasgreatenough that selectionof a standardexponent
for inverse distances or a standard smoothing radius
for moving averages often resulted in poor estimates
of localmeans, especially in sections of fairwayswhere
grub density was relatively high. When the variation
in grub patterns was implicitly accounted for by op-
timization of exponent or smoothing radius on a fair-
way-by-fairway basis, the stability and effectiveness of
moving averages and inverse distances improved, but
only with an increase in complexity. Moreover, even
with optimization, inverse distances and moving av-
erages were still far less effective than kriging for
several fairways.

In conclusion, we demonstated that in some situa-
tions standardized inverse distances or moving aver-
ages may perform just as well or nearly as well as
directional kriging, whereas for other situations, the

methods may be vastly outperformed by kriging, even
after they are optimized. Their performance on a par-
ticular data set depends on whether the spatial co-
variance of the data by chance happens to be com-
patible with the inverse distance or moving average
model. Therefore, inverse distances and moving av-
erages tend to be unreliable, even though they occa-
sionally may be just as effective as directional kriging.
Because kriging is linked to the ecology of the organ-
ism via an explicit model of the spatial covariance, it
naturally adjusts itself to the spatial patterns in the
data and therefore performs more consistently and
reliably than inverse distances or moving averages.
Because of its higher degree of reliability, kriging is to
be recommended over inverse distances or moving
averages for estimation of local means.
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Appendix 1: Determination of Inverse Distance
Weights for Center Points of Blocks.

Because samples are taken at the center of each
block, an inverse distance weighting would give each
sample inÞnite weight in the determination its block
mean. The estimates of the block means would simply
be the raw sample values. Because the problem is to
estimate themean ina small area, apossiblealternative
would be to make conventional, interpolated inverse
distance estimates for a number of points in each
block. The block mean estimate would be then be
the average of the interpolated point estimates. This
proposed solution has 2 drawbacks as follows: (1) it
substantially increases the difÞculty of the computa-
tions in terms of computermemory andCPU time; (2)
lim

min?x2xo?30
~m̂o! 5 v0, or as more and more points

are averaged, the estimated mean approaches the raw
samplecount.The1st drawback is overcomebynoting
that averaging a Þnite number of interpolated points
in a block is equivalent to assigning a proper weight to
the central point. The ideal weight varies with the
number of interpolated points, the size of the block,
and the inverse distance exponent. Problem (2) is
overcome by taking a moderate number of interpo-
lated points for each block size. For powers between
0.5 and 5 and for an equally spaced grid of 16 inter-
polated points within a block, the ideal weight is be-

tween the arithmetic mean and the harmonic mean of
the weights that assigned to the 16 points by their
inverse distance to the center of the block. The ideal
weight never varies far from the geometric mean, so
that is the weight we use throughout the study. Thus,
the preliminary weights given to individual central
samples in the estimation of the mean density in their
respective blocks are given in Table 2 (these weights
are the wjÕs in equation 1).

Table 2. Weights assigned to samples at centers of blocks for
inverse distance method

Power
Weighta

4.6 by 7 m. grid 4.6 by 14 m. grid

0.5 0.3901 0.3074689
0.75 0.2437 0.170491
1 0.1522 0.094537
1.25 0.09507 0.052421
1.5 0.05938 0.029067
1.75 0.03709 0.016118
2 0.02317 0.0089373
2.25 0.01447 0.004956
2.5 0.009038 0.002748
2.75 0.005645 0.001523
3 0.003526 0.00084490
3.5 0.001376 0.0002598
4 0.0005367 0.00007987
4.5 0.0002094 0.00002456
5 0.00008169 0.000007551

a Weights are the wj in equation 1.
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