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MATHIAS ABSOLUTENESS AND THE RAMSEY PROPERTY 

LORENZ HALBEISEN AND HAIM JUDAH 

Abstract. In this article we give a forcing characterization for the Ramsey property of L2
- S e t s of reals. 

This research was motivated by the well-known forcing characterizations for Lebesgue measurability and 

the Baire property of L^-sets of reals. Further we will show the relationship between higher degrees of 

forcing absoluteness and the Ramsey property of projective sets of reals. 

§1. Notations and definitions. Most of our set-theoretical notations and nota­
tions of forcings are standard and can be found in [9] or [16]. An exception is, that 
we will write AB for the set of all functions from B to A, instead of B A because we 
never use ordinal arithmetic. A<0J is the set of all partial functions / from co to A, 
such that the cardinality of dom( / ) is finite. 

First we will give the definitions of the sets we will consider as the real numbers. 
Let [x]K :— {y C x : \y\ = K} and [x]<K := {y C x : \y\ < K}, where \y\ 

denotes the cardinality of y. For x g [co]w, we will consider [x]<w as the set of 
strictly increasing, finite sequences in x and [x]01 as the set of strictly increasing, 
infinite sequences in x. For x g [cof1 and n g co let x(n) be such that x(n) g x and 
\x(n) C\x\ = n. 

We can consider [co]OJ also as a set of infinite 0-1-sequences 

[cof — • 2"> 
x i—> / such that fin) = 1 iff n g x, 

or as the infinite sequences in co 

[co]"J — > coOJ 

x i—> (a„ : n g co)suchthat: «o := x(0) and 
an+\ := x(n + 1) — x(n) — 1. 

Note that these two mappings are bijective. 
1.1. The Baire space. The Baire space is the space coOJ of all infinite sequences 

of natural numbers, (a„ : n g co), with the following topology: For every finite 
sequence s = (ak : k < n), let 

C/, := {/ g co'" : s c / } = {(ck : k e co) : \/k < n{ck = ak)}. 
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178 LORENZ HALBEISEN AND HAIM JUDAH 

The sets Us {s G co<VJ) form a basis for the topology of coVJ. Note that each Ux is 
also closed. The Baire space is homeomorphic to the space of all irrational numbers 
in [0,1] with the topology of the real line (cf. [9] p. 36). 

Because the mapping given above between [co]w and a>1" is bijective, we can endow 
[co]01 with the induced topology and will not distinguish between the two spaces [cof1 

and co"1. The same holds for the sets [co]"1 and 2"J. 
1.2. Three properties of sets of reals. Let us work in the topological space [co]"J. 
A set R C [cof1 is rare (or nowhere dense) if the complement of R contains a 

dense open set and a set M C [co]"1 is meager (or of first category) if M is the union 
of countably many rare sets. A nonmeager set is also called a set of second category. 
A set A C [co]w has the Baire property if there exists an open set G C [co]"J such 
that the symmetric difference AAG = {A \ G) U (G \ A) is meager. 

A set N C [co]01 is null if N considered as a set of reals has Lebesgue measure 
zero. A set A C [co]m is Lebesgue measurable if there is a Borel set B such that the 
symmetric difference AAB is null. 

A set A C [co]'" has the Ramsey property (or is Ramsey) if 3x G [co]w([x]w C 
A V [x]ra n A — 0). If there exists an x such that [x]™ n A = 0 we call 4̂ a Ramsey0 

set and if [x]w C ^ w e call A a co-Ramsey0 set. Note that ^ can also be both. A 
set A C [co]01 is called uniformly Ramsey<0 if, for each x G [co]™ there is a y G [x]w 

such that [y]01 DA = $. 
1.3. The hierarchy of projective sets. We always consider the boldface Y}n hierarchy 

(see [9] p. 510). A Z[-set is the projection of a closed set. The EJ-sets are also called 
analytic sets. The nj-sets are the complements of the analytic sets. A 5^+1-set is the 
projection of a n^-set and the n^+1-sets are the complements of the S^+1-sets. A set 
is Al

n if it is J}„ and n^. For the normal form of the formulas representing projective 
sets and relations cf. [9] Section 40. Further we will consider a l}„ -relation without 
free variables as a Y}n -sentence. 

If all 5^-sets with parameters in V n W are Ramsey, (are Lebesgue measurable, 
have the Baire property, respectively), with respect to V, we will write V \=Y)n{9l)w 

{V \= "L\{%)w, V |= Y}n(38)w, respectively). If V = W, then we do not write 
the index W. The notations A\{m)WiA\(Se)w,A\(m)w, ?£»{&) w,T{\(Se)w and 
T\}n{&)w are similar. Note that because the three properties are closed under 
complements, the statements Y)n{m), Y}„{5C) and l}„{38) are equivalent to Vi\{m), 
Tll

n(S?) and X\\{3§), respectively. 

1.4. Filters and families on co. SF C [co]'" is a Ramsey family if for all n G 2^'" 
there is an h G SF such that 7r|^p is constant. 

Sr C [co]01 is a dominating family if for all x G [co]01 there is a d G SF and a natural 
number n G co such that for all k > n: d(k) > x(k). 

Sr C [co]01 is dominated by the real d if for all / G S' there is a natural number 
n G co such that for all & > n: d(k) > f(k). (In this case we call d a dominating 
real with respect to Sr.) 

Sr C [co]-01 is a filter (on co) if co G ̂  and for all x, y G [co]-ra: if x , j G 9~ then 
x f l j e J and if x G F", x C y then j - e J . 

A filter SF is proper \$% £ SF. 
A filter ,y is an ultrqfilter if it is proper and for every x G [co]-"J, either x e Sr or 

co\x e sr. 
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MATHIAS ABSOLUTENESS... 179 

The filter & = {x G [cof : \co \ x\ < co} is called the Frechetfilter. 
A Ramsey ultrafilter is a Ramsey family which is also an ultrafilter. We consider 

only niters which are proper and contain the Frechet filter. 
1.5. Some notions of forcing. We recall the definition of the following seven 

notions of forcing. 
(i) The Amoeba (measure) forcing A: 

p G A & p C 2^18 a perfect tree A ju(p) > \, 
P<q^ P^q-

(ii) The Random forcing B: 

p e B <̂> p C 2fUis a perfect tree A ju(p) > 0, 
P < q <=> P ^ q-

(iii) The Cohen forcing C: 

p G C & PG 2<UJ, 
p < q <=> p extends q. 

(iv) The Hechler forcing D: 

(n,f) £DonEcaAfea)co, 
<«,/> < (m,g) «• n > m A f\m = g\m A V*(/(fc) > *(*)). 

(v) The Mathias forcing M: 

(5,5} G M & s G [£o]<co A S G [a>]<° A max(range(.s))<min(S), 
(s,S) < (t,T) <=> J extends t A S C J A V Z G dom(i') \dom(f)( j (0 G T). 

(vi) The forcing notion P(£>) for an ultrafilter Z>: 

/>., G P{D) <=> /?., C [a»]<mis a tree and there is an s G />.s such that 
Vf G A , ( ( J C / V ( C s ) A ( s C / ^ { n : r^w G />4-} G D)), 

Ps < qt <=> Ps Q qt-

(vii) The forcing notion PD for an ultrafilter D: 

{s,a} e PD <=> s e [co]<OJ A a G [cof Aa e D A max(range(*))<min(a), 

(s,a)<(t,b) «• 5 extends? A a C 6 A V7 G (dom(s) \dom(f))(j(/) G 6). 

In the forcing notions (v),(vi) and (vii) we call s the stem of the condition (j, 5), 
ps and (J, a), respectively. A generic object over one of these seven forcing notions 
can be considered as a generic real and we will handle the generic reals like the 
corresponding generic objects. For example if GM is Mathias generic and p G GM 
(for a Mathias condition p), then we write p G m (for m Mathias generic real) and 
if p has empty stem (p = (0,-S)), we also write m C p. Note that the conditions 
of these seven forcing notions can also be considered as reals, (and the meaning of 
r\ < r2 is clear). Let p, q be Mathias conditions, then we write p <° q to say that 
p and q have the same stem and p < q. 

Names in the forcing language are denoted with a "~" over the letter. Canonical 
names for generic objects are usually denoted by boldface letters and canonical 
names for objects in the ground model we denote with a " v " over the letter. 
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180 LORENZ HALBE1SEN AND HAIM JUDAH 

1.6. Forcing-absoluteness. Let P be a notion of forcing. We define 

K p ^ $ ^ F h "llhp<D" 

where $ is a formula with parameters in V and 1 is the weakest condition of P. 
Now we say V is E^-P-absolute if for all T}„ -sentences ip with parameters in V, 

Or equivalently, if for all .P-generic objects Gp over V: 

V[GP]^viffV^v 

§2. Introduction. In this section we give a list of results. Some of them are 
well-known, others gave the motivation to this work. 

2.1. Characterizations with generic reals. Because the canonical well-ordering of 
constructible reals is A\ (cf. [9] Theorem 97), Godel's constructible universe L is 
neither a model for A\{35) nor &\{S?) nor A\(&). Hence, a model V of set theory 
in which one of these properties holds, has to be larger than L. In fact, V has even 
to contain even some reals which are generic over L. 

THEOREM 2.1. 

(i) V \= A\{3S) if and only if for all reals r £ V the set of reals in V which are 
Cohen over L[r] is not empty. 

(ii) V (= A\{Sf) if and only if for all reals r G V the set of reals in V which are 
random over L[r] is not empty. 

(iii) V \= A\(£%) if and only if for all reals r £ V the set of reals in V which are 
Ramsey over L[r] is not empty. 

PROOF. All three results were proved in [14]. H 

We also have a similar characterization for Ej-sets. 

THEOREM 2.2. 

(i) V \= Y}2{3§) if and only if for all reals r e V the set of reals in V which are 
Cohen over L[r] is co-meager. 

(ii) V \= YJ\ (5?) if and only if for all reals r 6 V the set of reals in V which are 
random over L[r] has measure 1. 

(iii) V \=*L\{M) if and only if for all reals r G V the set of reals in V which are 
Ramsey over L[r] is co-RamseyQ-

PROOF. A proof can be found in [1]. For the third result see also [14]. -\ 

2.2. Characterizations with forcing absoluteness. For the 22"s e t s w e a l s o n n ^ a 

characterization with forcing absoluteness. 

THEOREM 2.3. 

(i) V |= J}2{3§) if and only if V is l.\-Hechler-absolute. 
(ii) V |= £] (-S?) if and only if V is Y,\-Amoeba-absolute. 

(iii) V |= Z\(^) if and only if V is H\-Mathias-absolute. 

PROOF. The first two results were proved in [13] and [12]. A proof of the last one 
will be given in this work, Theorem 4.1. H 
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MATHIAS ABSOLUTENESS... 181 

For higher levels in the projective hierarchy, we lose the forcing characterization 
with Mathias forcing for the Ramsey property. We will show in Theorem 5.3 that 

Ij-Mathias-absoluteness =>l\(3i) 

but (Theorem 5.2) 

A\{X) =fr E^-Mathias-absoluteness. 

The reason for this is, that if V is Ej-Mathias-absolute, then coY is inaccessible in 
L. On the other hand we can build a model in which A\{&1) holds without using 
inaccessible cardinals. We will show further (Corollary 6.1) that 

I^-Mathias-absoluteness => A\{91), 

and moreover (Corollary 6.5) 

Z^-Mathias-absoluteness =>• A\{3i). 

§3. The Ramsey property and Mathias forcing. 
3.1. Basic facts about the Ramsey property. 

FACT 3.1. If A C [co]w is Ramsey and C C [co]m is uniformly Ramsey 0 (e.g., 
countable), then both, A Li C and A \ C are Ramsey. 

PROOF. TO see that A U C is Ramsey, first note that if there is an x £ [cof such 
that [xf C A, we are done. Otherwise, pick x such that [xf n A = 0 and pick 
y e [xf such that [yf f] C = 0. Now [y]w n (A U C) = 0. 

To see that A \ C is Ramsey, again note that if there is an x such that [xf DA = 0, 
we are done. Otherwise, pick x such that [xf C A. Now there is a y € [xf such 
that [vf H C = 0 and [yf C (A\C). H 

FACT 3.2. The axiom of choice implies that there are sets without the Ramsey 
property. 

PROOF. Define on [cof an equivalence-relation as follows: 

x ~ y iff\x&y\ is finite. 

Now choose from each equivalence class x~ an element cx. Further define: 

ft % / 1 if \xAcx\ is odd, 
J \ 0 otherwise. 

Then the set {x : f(x) = 1} is evidently not Ramsey. H 

The first example of a set which does not have the Ramsey property is given in [7]. 
A lot of other examples can be found in [4] and [5]. 

FACT 3.3. Analytic sets (these are the l\-sets) are Ramsey. 

PROOF. A proof can be found in [6] and [18]. H 
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182 LORENZ HALBEISEN AND HAIM JUDAH 

3.2. The forcing notions P(D), PD and M. (Compare also with [17]). 
Let f = [a>]<m be the ideal of finite sets and let {3°{co)/f,<) =: U be the 

partial order defined as follows: 

p€U <* p<= [ o f , 

P <q^> p\q G «/(this is/j C* 9 ) . 

FACT 3.4. Le? D be I)'-generic over V, then D is a Ramsey ultrafilter in V[D\ 

PROOF. First note that U is N0-closed, hence adds no new reals to V, (cf. [9] 
Lemma 19.6). Let n G 2[aj]2, then by the Ramsey Theorem (cf. [9] Lemma 29.1) 
for each p G [co]OJ there exists a q • C* p such that n is constant on [qY. Therefore, 
Hn :— {q G [co]" : rcl^pis constant} is dense in U, hence Hn n D ^ 0. H 

LEMMA 3.5. Le? Z) Z>e fAe canonical U-name for the V'-generic object, then 

U *P6^M. 

PROOF. 

U*P6 = {(p,(s,a)):p€UAp\\-u{5,a)eP6} 

= {{p, (s,a)) : p G [cof A/>lhj/((5 G D Amax(range(.?)) < min(a))}. 

Now the embedding 

h: M —> U *P6 

(s,a) i—> (a,(s,a)) 

is a dense embedding (see [8] Definition 0.8): 
(1) It is easy to see, that h preserves the order relation <. 
(2) Let (p, (s,a)) G U * P^. Because U is No-closed, there is a condition 

q < p and s G [co\<w, a G [cof such that qW-ys — s A a = a. It is obvious 
that {q, {s, a)) G U * P$ is stronger than (p, {s, a)). Now let b :— q n a, 
then h((s,b)) < (p,(s,a)). 

H 

LEMMA 3.6. PD ~ P{D)if and only ifD is a Ramsey ultrafilter. 

PROOF. See [14] Theorem 1.20. H 

LEMMA 3.7. The Mathias forcing M is flexible. 

PROOF AND DEFiNiTiON.For the notation see [9] p. 153 and [16] p. 224. 
A set T C co<OJ is called a Laver-tree if 

T is a tree and 3T G Tia G r(«r C r V (t C <r A |{« : ff"« G J } | = cu)). 

(We call T the stem of 7\ For a £ T we let SUCC7-(<T) := {« : o""n G T}, (the 
successors of a in T) and 7), := {a £ T : a C p A p C a}.) 

A Laver-tree T is uniform if there exists uj G [co]" such that V<7 D stem(r)({« : 
a~n £ T} = uT \ (max(cr) + 1). 

For a Laver-tree T, we say A C T is a front \f a ^ r m A implies er $Z T a n ^ f°r 

all / G [T] there is an « £ co such that / | „ G ^ . 
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MATHIAS ABSOLUTENESS... 183 

The meaning of p < [OJ and p n [O] are Up C [O] and t/p n [<£>], respectively. 
(1) We say a forcing notion P is Laver-like if there is a P-name r for a dominating 

real such that 
(i) the complete Boolean algebra generated by the family {[?(/) = « | : i,n G co} 

equals r.o. (P), and 
(ii) for each condition p £ P there exists a Laver-tree 7" C com so that 

Va e T (p(T„) := I I E (^ n ^M = ^ • feto = «} G r o - (**) \ {°l ) • 

We express this by saying p(T) ^ 0 where /»(r) := p{Tstem(T)). 

M is Laver-like: 

PROOF. Let m be the canonical M-name for the Mathias real, then m is dominat­
ing (cf. [10] Part I, Lemma 3.15) and further let p — (s,S) e M with lg(s) — n and 

S = {a{j) : j e CD}. Then Up = FT M * ) = sfr)] • I I £ M « + 0 = «C/)1> 
/:£« i'6w,/£oJ 

which gives a proof of (i). 
For (ii) consider T C ai<w defined as follows: 

a £ T iff a strictly increasing and 
a C j V (s C IT A range(o-) \ ranged) C S). 

This T has the desired property and is even a uniform Laver-tree. H 

(2) If r is a P-name that witnesses that P is Laver-like, we say that P has strong 
fusion if for countably many open dense sets D„ C P and for p G P , there is a 
Laver-tree T such that p(T) ^$ and for each «: 

{ffe7-:p(r)nir|Ig(ff) = ffieZ)B} 
contains a front. 

M has strong fusion: 

PROOF. Let D C M be dense open and p = (s, S) an M-condition. For each er 
such that u C j o r ( j C ( 7 A ( j \ i C 5 ) w e define the rank of a, rk£>(o-) as follows: 

rkfl(cr) = 0 *> 3Ae[Sr{(a,A) eD), 
rkfl (er) = a <=> ->3fi < a(rkD (er) = /?)and 

\{n : « G S A rkz)(o-~w) < a } | = co. 

If rkxj(o-) is undefined, we put rkD{a) = oo. 
Note that if a G dom(rk£>), then rk£>((7) < oo. Otherwise almost all successors 

(in S) of a have rank = oo, hence the complement of So := {n : n G S Ark picr^n) = 
oo} with respect to S1 is finite. Let s„ := min(5„), then the complement of 

Sni\ := {n : n G Sn A rk£>(er"'%"'s^n) = oo for all z G [{s0, • • • ,s„-\}]<n} 

with respect to S„ is finite. Let A := {.v, : i G co} C S and take (p, A') < (a, A) such 
that {p,A') G D. Then /? = er"T"s„ (for an n) and ^4' G [A]w, hence rk/>(/>) = oo, 
a contradiction. 
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184 LORENZ HALBEISEN AND HAIM JUDAH 

For two uniform Laver-trees T and T', the expression T <„ T1 means that the 
first n elements of UT and uTi are the same. Let To be the uniform Laver-tree 
constructed in the proof of part (ii) above. 

Define a uniform Laver-tree Tn+\ and the corresponding set uT„+l recursively such 
that Tn+\ <n Tn and if cr G T„+\ then one of the following is true: 

max(cr) < ur„{n) ACT G T„ 
( r k D » = 0 A Vk < lg(ff)(rki,„(ff|fc) > 0)) -» (<?,un+] \ (max(ff) + 1)) G Dn 

rka„(ff) > 0 AWk G wr„+i \ (max(a) + l)(rkz>„(cr) > rkD„(o~k)). 
Now Tn+\ is a uniform Laver-tree and T := f]n£aJ Tn is also uniform, p{T) ^ 0 

and {CT G T : /> n [mj^) — aj G D„} contains a front, (consider rk^J. H 

(3) A Laver-like P is closed under finite changes if given a /? G P and Laver trees 
T and r ' so that for all er G 7" : |succr(a) \ succr<(cr)| < co, if p{T) ^ 0, then 
p(T') ^ 0, too. 

M is closed under finite changes: 

PROOF. Use a standard fusion argument. H 

(4) We call P a flexible forcing notion iff P is Laver-like, has strong fusion and is 
closed under finite changes. 

Hence, the Mathias forcing M is flexible. H 

3.3. Essential theorems about Assets of reals. Now we will give the relationship 
between the Ramsey property and Mathias forcing. 

FACTS 3.8. 
(1) [14] Theorem 1.7: 
For every P(D)-sentence <X> and for all p G P(D) there exists a q G P(D) such 

that q < p, stem(/>)=stem(#) and 

q\\-p(D)Q> or q\\-p{D)^Q>{q decides O). 

(This is known as pure decision.) 
(2) [14] Theorem 1.14: 
lfV<ZV'C V" are models of ZFC and D G V is an ultrafilter and x e F ' i s 

P(D)-generic over V, then for every v e [x]w n F", y is P(D)-generic over V, too. 
(3) [14] Theorem 1.15: 
If D G K and g is P{D)-generic over K, then 

V[g]^l}2{M)v. 

(4) [14] Theorem 1.16: 
If£> G F,then 

r G [co]" is P(.D)-generic over V if and only if 

Va G D(r C* a) and V^ G 2[co] n V : 3« G co such that 7r|[f\„]2 is constant. 
(5) [14] Theorem 2.7: 

V |= A^(^)ifandonlyif F j=l£(.#). 
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MATHIAS ABSOLUTENESS... 185 

(6) [14] Theorem 2.11: 
For an s G [co]UJ define Ds := {a G [co]w : s C* a} (where s C* a means 

\s\a\<co) and Ds := D, n L[D,]. If £>s is an ultrafilter in L[DS] and r C* s, then 
£)r = Ds and we write Pv for the forcing notion P(DS) in L[D5]. 

V \= A^(^,)L[[,] <s> Vr G L[w]3.s G [ r f n F(s is i»-generic over L[u][Ds]). 

3.4. Some properties of Mathias forcing. 

FACTS 3.9. (1) Using the Fact 3.8 3. and the Lemmas 3.5 and 3.6 we see that if m 
is Mathias over V, then V[m] ^ Zl

2{M}v. Thus, (with [16] Lemma 5.14 on p. 276) 
an coj-iteration of Mathias forcing with countable support gives a model in which 
each E^-set is Ramsey. (2) We call r a Ramsey real over V if and only if there exists 
a D G V such that: 
(i) D is an ultrafilter, Va G D(r C* a) and 
(ii) for all n G 2[cul , rc G F there is an n £ co such that 7t|[r\„]2 is constant. 
(See also [14] Definition 1.17). 
Now we see that if ^ is Ps-generic over Z[w][D•'], then (by 3.8 4.) it is Ramsey over 
L[M][D,V] and even a dominating real with respect to L[M][£)V], 

PROOF. To each real r e L[w][Z)'] consider the function nr e 2^ (which also 
belongs to Z,[M][Z>S]) defined as follows: 

nr{{i,j}) = 0 «=> 3k(r(2k) < i,j < r{2k+x)). 

Because s is Ps-generic and by 3.8 4. we have 

3« € m(n\[s\„Y is constant). 

Thus, because s \ n is infinite, TT|[.S\„]2 = 1 and for k > 2« we get s(k) > r{k), hence 

Vr S L[«][D'V] n [co]w3l € eoVfc > I(s(k) > r(k)) 

which says, that the reals of L[u][Ds] are dominated by s. -\ 

We close this section by mentioning two useful corollaries. 

COROLLARY 3.10. If p is an M-condition and x is an M-name for a real, thenthere 
exists an M -condition q <° p and a real x e V such that V |= "q II-M X = x". 

PROOF. Let Jc be an M-name for a real. Each real can be considered as an infinite 
0-1-sequence, so x is such that for all natural numbers n: 

x{n) = 1 or x{n) = 6. 

Take p = (s, X). Because Mathias forcing has pure decision (by the Lemmas 3.5, 
3.6 and Fact 3.8 1., or by [2] Theorem 9.3) in V there is a condition (s, Xo) such that 
Xo C X which decides x(6). Let ao be the least member of Xo, then there are Y, X\ 
such that Xo \ {ao} 3 Y 2 X\ and (s^ao, Y), {s,X\) both decide x{\). Let now 
a\ be the least member of X\. There are Y\, Yi, y3, Xi such that X\ \ {a\} D Y\ 2 
... D Xi and (s^a^ai, Y\), (s^ai, Y2), (s^ao, Y3), {s,X2) all decide x{2). Now 
let «2 be the least member of X2 and so on. Define r := {a,- : / G co}. We encode 
now x by x := {s~t : t G [r]<m A (s~t, r \ (max(f) + l))\\-Mx(lg{t) ) = 1}. Then 
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186 LORENZ HALBEISEN AND HAIM JUDAH 

x is a real and if m is a Mathias real over V such that (s, r) G m then x[m] = x[m], 
where x[m]{n) = 1 if and only if m\n ex. H 

COROLLARY 3.11. Ifp is an M-condition and V \= "p \\~M 3XO(X)" , then there is 
an M-condition q <° p and an M-name x for a real such that V (= "q \\-M O(x)". 

PROOF. We will follow the proofs of [2] Theorems 9.1 and 9.3. 
Assume p = (s,A) \\~M 3X<D(X). First we prove that there is a B C A such that 

if (t, C) < (s,B), x an M-name and (t, C) \\-M O(Jc), then we find an M-name 
y such that (t,B \ (max(?) + 1)) \\-M <&($)• For this we construct a sequence 
bo < b\ < ... of elements of A and a sequence Bo D B\ D .,, of subsets of A such 
that for all b G Bn+\, bn < b. Let Bo := A. Given B„, let s\,si,--- ,Sk enumerate 
all the subsets of {Z>,- : / < « } . Now construct a sequence BQ

n 2 B\ D ... D Bk
n as 

follows. 5° := B„ and given B'n~
x let B'n C B'n~

l be such that for some M-name x, 
(s U sh Bl„) \\-M O(Jc), if it exists; otherwise let B'n := B'~x. Finally let b„ := f) 5*, 
i?„+i := if* \ {bn} and B := {b„ : n e co}. Suppose (t, C) < (s,B) and we find 
an M-name x such that (t, C) \\~M 0>{X). Because there is an n G co such that 
si :— t \ s C {Z>, : / < «} we must have chosen B^ so that for some M-name y, 
(sUs,,B!

n) lhM O(j) . N o w 5 \ ( m a x ( 0 + 1) C ^ , hence (f, B \ (max(f) + 1)) < 
(t, Bl

n) \\~M 0>{y) and we are done. 

If p, q are two M-conditions, then pC\q denotes the weakest M-condition which 
is stronger than p and q, (if it exists). Let x be an M-name and p an M-condition, 
then x{p) denotes the following name, {a, q) G x(p) if and only if there exists an 
M-condition q1 such that (<r,q') G x and q = p C\q'. For two M-names x,y let 
x Uy := {(<?,/?) : (<?,/?} £ x V (<7,/>) G j?}. 

Now we are prepared to prove the corollary. Given p = (s, A) \\~M 3 X O ( X ) . Let 
B c 4̂ be as above. We construct a sequence b0 < b\ < ... of elements of B and 
subsets Bo D B\ D . . . of 5 by induction as follows. Let Bo := B. Given B„, find 
B^+1 C B„ so that for all s' C {&,- : i < n} one of the following cases holds: 

(1) For all Z> G B^+1 we find an M-name x (depending on b) such that {s U s' U 
{Z>},^+1\(fe + l))lhM<D(x). 

(2) For no b G B^+, we find an M-name x (which may depend on b) such that 
(sUs'U{b},B'n+l\(b + l))U-M<l>(x). 

Because ofthe choice ofB, for each n we find a B^+1 C B„ C B. hetbn := (~}B'n+], 
5„+i := B'n+l \ {bn} and ^4' := {bn : « G co}. Suppose for (/, C) < (s,A') we find 
an M-name x, such that (t, C) \\-M O(x). Let |?| be minimal. If |/| = |sj then < = j 
and we find an M-name y such that (s, A') \\-M <b(y). If |/| > \s\ fhenmax(f) —bn 

for some « and at stage «, the first case held for some s' = t\(s\j{bn}). Nowforeach 
bt G A' (i > n) take an M-name x, such that ( s U / U { i , } , ^ ' \ ( i i + 1)) \\-M 0(x,) . 
Further let j := \){xt{pi) : i > «A/>,- = {sUs'\j{bi},A'\{bi + l)}}. Then we have 
{s U s',A' \ (max(j') + 1)) \\~M 3>(j), which is a contradiction to the minimality 
o f I/1. ' H 

§4. £2"sets a n ^ the Ramsey property. In this section we start to show the rela­
tionship between Mathias- absoluteness and the Ramsey property of projective sets 
of reals. 

It is well-known that for ~L\{^) and ~L\{5?) there are characterizations with 
forcing absoluteness (cf. Theorem 2.3). Such a characterization exists also for 
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MATHIAS ABSOLUTENESS... 187 

Z j ( ^ ) . Although the proofs for the Baire property and the Lebesgue measurability 
are similar, the proof for the Ramsey property is different. This is because Mathias 
forcing does not have the countable chain condition. (But fortunately it has a lot of 
combinatorial properties.) 

THEOREM 4.1. V \= Y}2 {3$) if and only if V is ~L\-Mathias-absolute. 

PROOF. First we prove that S'-M-absoluteness implies TL.2{&)- For this let ®(x) 
be a Aj-set: 

O(x) <-> tp(x) <-» y/(x), 

where tp(x) is a l,2-set and yt{x) is a F^-set. Because \/x(ip(x) <-» y/{x)) is a 
n^-sentence, by I^-M-absofuteness we have 

vM h v i M i ) « ^ ( j c ) ) . 

By Fact 3.9 1. we know that VM |="each Aj-set with parameters in V is Ramsey". 
Therefore 

VM \= 3y(Vx0(x0 G LP]™ -+ itr(xo)) VVJci(Jc, G [ j f - -¥>(*l)))-

But this is a resentence and because V \= <p(x) <-* y/(x),also V |= "O is Ramsey". 
Now because O(x) was arbitrary and Y.\(&) is equivalent to A\{{%) (by the Fact 
3.8 5.), we have V \=I\{31). 

Now we prove that "L\{3$) implies ?,\-M-absoluteness. Let *F = 3xy/(x) be 
a Sj-sentence. If V \= *F, then by the Shoenfield absoluteness Lemma (see [9] 
Theorem 98), the Ej-sentences are upwards absolute, hence F M (= *P. For the other 
direction assume that VM |= XP. Then, because of VM is full (cf. [9] Lemma 18.6), 
there is a name x, such that VM (= y/(x). By Corollary 3.10 there exist reals 
r, x G F such that x C r and F (= "rlh^f x — x". Now, because V \=^L\{^), there 
is an s G [r]00 such that 5 is Pv-generic over L[x][r][£>']. Let m C i b e a Mathias real 
over V, then m is also Ps-generic over £[x][r][Z)'] (by 3.8 2.). V[m] (= y/(x[m]), 
hence £[x][r][Dv][m] h= v ( x t w ] ) because if/ is n ^ m C s C r and x may be 
regarded also as a Ps-name. So there must be a condition p G L[jc][r][£),!] such 
that L[x][r][Z)v] f= " p\\-%y/{x)". Let k = max(range(stem(/?))), then s' := s \ k is 
P -generic over L[x][r][£>s] and there is an n G co such that s" := {s'\n)U stem(p) 
satisfies p, (by [14] Definition 1.8 and Lemma 1.12). Hence (again by [14] Lemma 
1.12), s" is P,-generic over L[Jc][r][Z)'5] and because of s" satisfies p and p\\-psi//(x) 
we have L[x][r][Ds][s"] \= y/(x[s"]) and finally V |= 3xy/(x), (by Shoenfield). H 

So, we have found a forcing characterization for Y}2{32). Such a characterization 
with Mathias forcing does not exist for higher degrees of Mathias-absoluteness as 
we will show in the next section. 

§5. Lj-M-absoluteness and the Ramsey property. 

THEOREM 5.1. £{-Mathias-absoluteness implies A\{&). 

PROOF. Assume that V is £{-M-absolute. Let O(x) be a A^-set in V with para­
meters in V: O(x) «-»<p(x) <-> y/(x) where <p{x) is a S^-set and i//(x) is a E^-set. So 
V (=Vx(v?(x) <-» ^(x))andVx((y(x)v-i^(x))A(-"^(x)V^(x))) is a Il^-sentence, 
hence M-absolute. Therefore 0{x) is still a Aj-set in VM. 
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188 LORENZ HALBEISEN AND HAIM JUDAH 

Assume V \= "O(x) is not Ramsey". Hence V |= Wx3y\y2{y\ C x A yi C 
x A O(ji) A -i<5(j2))- Obviously we have 0(>>i) i/f <£>(ji) and ->0(>,2) # - ^ ( j ^ ) 
but </p(x), -i^(x) are both £3-sets. So V |= "O(x) is not Ramsey" is equivalent to 

where @ is a n^-sentence. Thus by S^-M-absoluteness we have 

(*) vM\=e. 

Let m be the canonical name for a Mathias real m over V. Then there is a 
condition p with empty stem such that p\\-M<p(m) or p\\-M-up(m), (see Lemmas 
3.5 and 3.6 and Fact 3.8 1.). Assume pW-M'pi.m), then p\\-\i3xip{x) (otherwise 
p\\-M^y/(m) and -n//(m) is also S3). Because each y G [m]m is Mathias over V and 
stem(/>) = {) we have F[y] |= y ( j ) . Because F[ j ] C F[m] and tp is S3, hence 
upwards absolute, V[m] is also a model of ¥>(y). So, we get 

p\hM3xVy(y G [ x f ^ *>(;?)). 

Now because F M )= Vx(y?(x) <-> ^(x)) we finally have 

/>lhM3xVj>(j; 6 [ x f - • <?(j) A ^(j>)), 

but this is a contradiction to (*). H 

THEOREM 5.2. Aj (^) does no? i'mpfy l\-Mathias-absoluteness. 

PROOF. For this it is enough to find a model V in which all A3-sets are Ramsey, 
all Assets have the property of Baire and a>\ in this model is the same as <a\. 

We have V \= Hs}2{3§) if and only if for all reals r in V there is a real in V which 
is Cohen over L[r]. To say this is a n^-sentence: For s G 2<UJ consider l"-s as a 
binary code for a natural number n (« > 0) and let fl/i := 5, (|0 := ftl = ()). We 
write n -<m if (IHigdn) = !"• Note that \n C tfm is an arithmetical statement. The 
sentence Vr G [cofBc G [OJ]MVX G [co]a'(c is a branch A(x G L[r] A x encodes a 
dense set —> x n c ^ 0)) is a composition of the following sentences. 

c is a branch is V«m((« G c A m G c) — ^ ( n ^ w V w ^ «)), which is an 
arithmetical statement. 

x e Z,[r] is a Sj-sentence with parameter r (cf. [9] Theorem 97). 
x encode a dense set is Vw3n(« € x A m r< n), which is arithmetic. 
Finally x (~)c ^ 0 is 3?(/ G x A ? G c), which is arithmetic, too. H 

So, if F is a model with the desired properties and V is S^-M-absolute, for each 
real r G V[m] there is (in V[m]) a Cohen real c over L[r]. If r G F[w] is a real and 
c is a Cohen real over L[r], then L[r] n ©"" is a strong measure zero set in Z.|>][c] 
(see [5] Theorem 1.3) and hence we find in V[m] a covering of L n of' with respect 
to the real r. So I n coffl is a strong measure zero set belonging to V. 

Now if coy = co\ then we get in V[m] a strong measure zero set of cardinality co\ 
with parameter in V, namely L n cuw, but this is a contradiction, (cf. [2], proof of 
Theorem 9.7 or cf. [10] Lemma 8.2 and recall that M « U * Pb « £/ * P (£>)). 

It leaves to construct a model F with the desired properties. 
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MATHIAS ABSOLUTENESS... 189 

PROOF. In [ 15] §3 they show, that an co\ iteration of Mathias forcing starting from 
L, yields a model in which every A]-set is Ramsey and a>\ in this model is the same 
as o)\. (By the claim of Theorem 5.3 this is already enough.) 

Now in [11] Lemma 1.18 it is proved that if we make a suitable co\ iteration 
starting from L, and add alternately Kesef and Cohen reals, we get a model V in 
which every A^-set is Ramsey, every Aj-set has the Baire property and m\ is the 
sameascuf. H 

The next theorem is in fact a consequence of the following: If V is S^-M-absolute, 
then a>\' is inaccessible in L. 

THEOREM 5.3. Y.\-Mathias-absoluteness implies lX,{M). 

PROOF. We first give the following 
CLAIM: If V is S^-M-absolute, then for all reals r e V we have cofM < m\, 

(hence m\ is inaccessible in L). 
Now we show that this claim implies that V \= Y,\{£%). 

LEMMA 5.4. IfVisY.\-M-absoluteand\lr G V(co!{lr] < col{) then V \= H\(M). 

PROOF OF THE LEMMA. Let O(x) = 3yy/(x, y) be a Sj-set with parameter a e V. 
If V |= 3zVx(x e [z]"J -> -><J>(x)), then the set <D(x) is Ramsey in V. Therefore let 
us assume that V f= Vz3x(x e [z]"' AO(x))(=: 0 ) . Because ©is a Fl^-sentence with 
parameter a and by S^-M-absoluteness we have VM (= 0 . Now there is a Mathias 
condition p with empty stem, such that p decides O(m). Because VM \= 0 , VM is 
amodelof3x(x e [m]"' A<J>(x)). Further VM is full and <l>(x) = 3yy/(x,y), hence 
we find Mathias names x, _y such that VM (= (x € [m]"J A y/{x,y)). 

Consider the statement V[m) (= 3j>^(x, j ) <̂> F[x] |= 3z(y(x, z) and further 
assume that K \= "q\\-My/{x,y) A F[x] ^ 3zi//(x,z)" (for an M-condition #). 
First we have to define the meaning of q\\-\i" V[x] \= 'P(x)" where *P is an arbitrary 
formula with at most one free variable: If z is a variable in *P for a real and h £ z is 
a subformula of *P, then ^olh^" V[x] \= h e z" if and only if there exists a Mathias 
condition (w, t/) such that 

(u, U)\\-M» G z and ^ M V£(A: e » ^ i e i A i e i ^ ( i £ U V k £ u)). 

Let x be the evaluation of x by the Mathias real m. Now because F M |= x Cm, x is 
also Mathias over Fand V[x] \= *P(x) if and only if there exists a Mathias condition 
qQ £ V such that q0 £ m and q0\\-M V[x\ \= *P(x). Thus "#IHM F[x] |= *P(x)" is 
well defined. 

Letr, x, j e F be such that r < qand V \= "r\\-Mx = xAy = y." Further let r e 
s £ K be Ramsey over L[a][r][x, y], then there is a condition /?o€Z/[a]|>][x, y][Ds], 
/?o<r such that L[a][r][x, j][Z)v] \= "po\\-j>ij/(x,y)". This is because if m' < s is 
Mathias over F, then m^s Pv-generic and L[a][r][x,j][.D'][ra'] (= ^(x |W], j[w']) 
(by Shoenfield). Let s' be /^-generic such that po£s', further let s'em be Mathias 
over V and x := x[w](= x[w]). We write Ps as a two step iteration Q\ * g 2 and 
choose g\ such that gi is Q\-generic over L[a][r][x, j][D'5] (=:N) and N[gi] = 
N[x]. Because of ATx] C V[x], V[x] n [co]1" n N[x] is a E^-set in V[x] and 
Vx3jVz(z e A [̂x] —> 3«(j„ = z)) (this is: for all x,coi^^' is countable) is a 
nj-sentence. Because of x C m is Mathias over V and V is S^-M-absolute, it 
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190 LORENZ HALBEISEN AND HAIM JUDAH 

follows that co\ VW is inaccessible in N[x]. Hence, there exists a set gi 6 V[x] 
which is Q2[x]-genehc over N[x] such that N[x][g2] (= y(-*> j[gi * ft])- Now 
N[x][g2] N 3yv(^»>') a n d N[x][g2] Q V[x] and because Ej-formulas are upwards 
absolute, V[x] |= 3 j ^ (x , J ) . which is a contradiction to gIHA/"K[X] ^ 3zy(x,z)" . 

(If m is Mathias over F and x G [m]™ n F[w], then we say that V is EJ,-M-correct 
if for every E'-set O(x) with parameters in F: V[m] \= fl>(x) <=> F[x] (= O(x).) 

Let /? be a Mathias condition with empty stem which decides O(zn), where m is 
Mathias over V. Thus 

V (= '>lhM3z>(z,»i)" or F |= "pH-M-.<X>(m)". 

If the first case holds, let r, z be such that: r C p and if m C r is Mathias over V, 
then V[m] f= y/(z[m],m). In F there exists a Ramsey real s C r over L[a][r][£] and 
because n^-sets are absolute (by Shoenfield) in £[«]|/][z] there exists a Ps -condition 
q with empty stem (note that all t G [sf are also Ramsey over £[a][r][z]) such that 
L[a][r][z][Z)s] (= "q\\-Piy/(z,g)" where # is the canonical name for the /'-generic 
real over L[a][r][z][£>']. In V there is a /^-generic real s' such that s' C q, hence 
for all t G [ s ' f : L[a][rp][£F][>] |= y/(z[t], t). Again by Shoenfield we get: 

V \= y/(z[t],t) and this implies V (= 3jVx G [.yf <D(x). 

Therefore the set O(x) is Ramsey in V. 
If the second case holds, we get 

V |= >lh M Vx G [ m r - O ( x ) " 

hence F |= "p\\-M3y\/x G [yf'^^ix)" which is a E{-sentence (with parameters in 
V) and says, that <5(x) is Ramsey. Therefore by Ej-M-absoluteness the set O(x) 
has to be Ramsey in V. -\ 

Now we have to show that the claim holds. 

PROOF OF THE CLAIM. Assume V is E^-M-absolute, then by Theorem 4.1 V \= 
T,\{&), and by the Facts 3.8 5., 3.8 6. and 3.9 2. the following is true in V: 

Vw G [co]wVr G L[u] n [cof3j G [ r f (sis Ramsey over L[u][Ds]). 

To say this is a IT^-sentence: 

Define b : [o»]2 —> a> 
{n,m} i—> 2(max({«, w})2 - max({«, w}))+min({«,w}). 

Note that b is a bijection and arithmetic. With b we can consider each n G [co]VJ as 
a function from [co]2 to 2, namely by 

7r({n,m}) = 0 <==> \>{n,m} G 7t. 

The sentence 

VM G [cwfVr G L[u] n [cofa.* G [ r f ( s is /»-generic over L[w][£>s]) 

is a composition of the following sentences. 
r G Z-[w] is a E2-sentence with parameter u. 
s G [r]w is \/i(i G s —> / G r), which is arithmetic. 
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s is Pv-generic over L[w][Z>v], which is again a composition of the following sen­
tences. 

x G L[w][Dv]is a Ej-sentence with parameters u and s. 
7t|[S\„pis constant is an arithmetical sentence because of b is arithmetic. 
Dsis an ultrafilter in L[u][Dx] isVx e L[u][Ds]n[co]'"3n{s\n C xVs\nHx = 0), 

which is a n^-sentence with parameters u and s. 
Mn e L[u][Dx]3n{7i\[s\nf is constant), which is also a T^-sentence with the pa­

rameters u and s. 
Therefore if V is S{-M-absolute, in VM for each real u there exists a real s which 

dominates the reals of L[u] (cf. Fact 3.9 2.). Let m be Mathias over V. Because M 
is flexible (cf. Lemma 3.7), M adds a dominating family of size co\ (see [3] Theorem 
3.1). If there is a real r e V such that co^ = <a\ and m is Mathias over V, then the 
reals of £[r][m] dominates the reals of V[m]. (Note that the M-names fa {a < a>\) 
which are constructed in [3] Theorem 3.1 can all be defined within L[r\.) But this 
contradicts that in V[m] we have a dominating real over L[r][w]. H 

This concludes the proof of the Theorem. H 

We can prove even more, as we will see in the next section. 

§6. Higher degrees of Mathias-absoluteness. 

COROLLARY 6.1. ~L\-Mathias-absoluteness implies A\{3Z). 

PROOF. Let <t>{x) be a A^-set: 

O(x) <-» <p{x) <-• ~^i//{x) 

where <f(x) and y/{x) are S^-sets. By Zj-M-absoluteness, O(x) is still a A^-set in 
VM. Let p be an M-condition with empty stem such that 

V |= "p \\-M <p(m)", 

(if V \= "p \hM -K/j(m)" then V \= "p \\~M y/(m)"), then there is an M-name y 
and (by Corollary 3.11) a p' C p with empty stem, such that 

V^"p'\hM<po{mjy 

(where ip{x) = 3yip(x, y) and y>o is a ITj-formula). Let m C p' be Mathias over V, 
then 

V[m] f= <p0{m,y[m]). 

Now in the proof of Lemma 5.4 in fact we showed, that if m is Mathias over V, 
m' e [m]'" n V[m], Mr e [co]a> n F(cof[r] < co[) and O(x) is a L]-set (or a nj-set) 
with parameters in V, then 

V[m'] \= <b{m') ^ V[m] \= d>(m'). 

Because of m' e [w](u n V[m], m' is also Mathias over V and the sentence Vx 6 
[ra]ro(<^o(*>>'['«])) holds in V[m]. Therefore 3zVx e [z]0J-<y/(x), which is a I j -
sentence with parameters in V, is true in V[m]. Hence, V (= "<l)(x)is Ramsey" and 
because <J>(x) was arbitrary we get V \= A\(&). H 

To prove the last results, we need two slightly technical lemmas. 
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LEMMA 6.2. IfVrG [co]w n V{co[[r] < 'to\) and <P(z) is a I.\-formula {where z is 
an M-name in V for a real), then: for all M-conditions q in V there is a real a and 
an M-condition I in V such that (q is an M-condition in L[a] and I < q) and for 
all reals m: ifm is Mathias over V and I e m, then (m is Mathias over L[a] and 
z[m] t L[a] and(L[a][m] j= <D(z[m]) if and only ifV[m] (= 0(z[m]))). 

PROOF. To simplify the notation we assume that the parameters of <J> are in L. 
Assume V |= "q0 \\-M ¥ ( £ , * ) " where qo < q and O(z) = 3xxF(r, x). Let r0 < q0 

and z,x such that V (= "r0 I KM z = z A x = x". Let a be a real which encode 
the reals r 0 ,z ,x and q. In L[a] there must be an M-condition q\ < ro such that 
L[a] |= "gi \\~M *F(z,x)" (because of the absoluteness of IT^-formulas). Let/ e V 
be Mathias over L[a] such that q\ & I and further let m be Mathias over V such 
that / e m, then L[a][m] (= ¥(£[wi], x[m]) and F[a][w] |= ¥(z[w], x[m]). 

If F |= "g0 ll-/v/ -'O(z)" for all qo < q which decides 0(£), there is an M-
condition q\ as in the former case, (because Ilj-formulas are downwards absolute). 
The rest of the proof in this case is the same as above. -\ 

We say L[a] computes well the 2,\ formula <D(£) (the Yl\ formula ->®(£), respec­
tively) with respect to q\. 

LEMMA 6.3. IfV isT,\-M-absolute, then V is 1L\-M-correct. 

PROOF. If not, then there is a S^-formula O(x) and an M-condition p e V such 
that V \= "p \\-M x e [m]"J A <D(x) A V[x] \fc <D(x)". Because V ^ "p lhM O(x)" 
there is an M-name y such that F |= "p \\~M ¥{X,y)" where <J>(x) = 3yx¥{x,y) 
and ^ (x , y) is a n^-formula. 

Let r, x, y be such that r < p and V \= "r \\~M x = x A y = p." By Lemma 6.2 
there is an a e F and an M-condition g < r such that L[a] computes well ^ ( x , j ) 
with respect to </. Let / and w as in the Lemma 6.2 and further let x := x[m]. 
Because m is Mathias over L[a] and x e L[a][m] we can write the Mathias forcing as 
a two step iteration Q\ * Q2 and choose (as in the proof of Lemma 5.4) g\,g2 6 F[x] 
such that £i is Q\-generic over L[a], g2 is g2[gi]-generic over L[a][g!], g\ * g2 is 
M-generic over L[a] with respect to q and £[a][gi] = L[a][x]. With the same 
arguments as in the proof of Lemma 5.4 we have £[a][x][g2] |= *P(x, y[g\ * gi])-
Now because L[a] computes well the Il^-formula T and g2 £ V[x], we finally have 
V[x] f= O(x). H 

THEOREM 6.4. Y}b-Mathias-absoluteness implies *L\{9i). 

PROOF. Let ®(x) be a I^-formula with parameters in V and further let p e V be 
an M-condition which decides 0(/w). 

If V (= "/? lhM 0>(/n)" then by Lemma 6.3 V \= "p \hM 3xV>> e [x]'"<S>(y)". 
If V \= "/? lhM - .*(m)" then by Lemma 6.3 F |= ' > \VM 3xVj e [xf-0(>>)". 
In both cases (by E^-M-absoluteness) we get that <J>(x) is Ramsey in V and 

because O(x) was arbitrary we have F (= Y\{3$). -\ 

COROLLARY 6.5. Y.\-Mathias-absoluteness implies A\(t%). 

PROOF. Let O(x) be a Aj-set: 

O(x) <-> y>(x) *-> ^y/(x) 
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where <p(x) and y/(x) are Sj-sets. By Sg-M-absoluteness, O(x) is still a A^-set in 
VM. Let p be an M-condition with empty stem such that V \= "p \\~M ip(m)", (if 
V |= "p \\-\i -«^(in)" then V f= "/? lhM ^(m)"), then there is an M-name y and 
(by Corollary 3.11) a p' C /> with empty stem, such that 

(where <£>(x) = 3>yo(*, >0 and </?n is a IT^-formula). Let m C / / be Mathias over 
F,then 

F[w] (= <p0(m,y[m]). 

Because of Lemma 6.3 and because m' G [m]w n F[w] is Mathias over F, the 
sentence Vm' e [ w ^ ^ ^ ' . ^ I m ' ] ) which is F[w] \= 3zVx e [z]™y>(x), holds in 
V[m]. Therefore 3zVx g [z]VJ^i//(x) which is a E^-sentence with parameters in V 
is true in V[m]. 

Hence, V (= "0(x)is Ramsey" and because <D(x) was arbitrary we get 

H 
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