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Statins inhibit C-reactive protein-induced chemokine secretion,
ICAM-1 upregulation and chemotaxis in adherent human monocytes

F. Montecuccol, F. Burgerl, G. Pellil, N. K. Poku', C. Berlier', S. Steffens' and F. Mach'

Objectives. We have recently shown that CRP induces chemokine secretion and adhesion molecule up-regulation in human primary
monocytes cultured in adherence. Given the increasing evidence on direct immunomodulatory properties of statins, we investigated their
possible anti-inflammatory role on CRP-treated human monocytes.

Methods. Monocytes were isolated by Ficoll-Percoll gradients and cultured in adherence to polystyrene. Chemokine secretion and adhesion
molecule expression were detected by ELISA and flow cytometry. Migration assays were performed in modified Boyden chambers.
Intracellular kinase activation was assessed by western blot.

Results. Treatment with simvastatin or atorvastatin decreased CRP-induced release of CCL2, CCL3 and CCL4. In addition, both statins
reduced CRP-induced intercellular adhesion molecule (ICAM-1) up-regulation, but had no effects on CD11b and CD18. Treatments with 1 uM
simvastatin or atorvastatin significantly inhibited monocyte migration in response to CRP. CD32 and CD64 (CRP receptors) expression on
monocytes was not affected by statins. Statin-induced inhibition of CRP-mediated chemokine secretion, ICAM-1 up-regulation and migration
occurred through the inhibition of extracellular signal-regulated kinase (ERK) 1/2. Treatment with L-mevalonate or farnesylpyrophosphate, but
not geranylgeranyl-pyrophosphate reversed the statin-induced effect on CRP-mediated functions and ERK 1/2 phosphorylation, confirming
that statins blocked CRP-induced ERK 1/2 phosphorylation through the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase.

Conclusions. Statins inhibited CRP-induced chemokine secretion, ICAM-1 up-regulation and migration in human adherent monocytes,
through the inhibition of HMG-CoA reductase-ERK 1/2 pathway. This pathway could represent a very promising target to reduce CRP-
induced activities in monocyte-mediated diseases, such as atherosclerosis or RA.

Key worps: Inflammation, Rheumatoid arthritis, Cytokines and inflammatory mediators, Cell receptor-ligand interaction, Signalling and activation,

Monocytes.

Introduction

Emerging evidence shows that chronic inflammatory processes
characterizing RA increase and accelerate atherogenesis [1]. The
excess of cardiovascular mortality and morbidity in RA patients
strongly supports the strong association between these two
inflammatory diseases [2-5]. Common inflammatory mediators
orchestrate pathophysiological processes in RA and atherosclero-
sis [6]. Among several inflammatory factors, clinical trials and
basic research support a role for CRP as a pro-inflammatory
factor, which powerfully predicts future cardiovascular events
[7-11]. In particular, the chronic increase of CRP serum levels in
RA subjects can directly contribute to atherogenesis, by activating
several inflammatory and vascular cell types (including leucocytes,
endothelial cells and smooth muscle cells) [12, 13]. In the last
decade, CRP secretion has been shown not only by the
hepatocytes, but also within atherosclerotic lesions. In support
of a ‘paracrine’ intraplaque activity of CRP, we have recently
shown that adherence to polystyrene or an endothelial cell
monolayer is required for CRP-induced chemokine secretion in
human primary monocytes [14]. The aim of the present study was
to test the potential inhibitory effect of statins on CRP-mediated
pro-atherosclerotic effects in human adherent monocytes. Statins
[also called 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)
reductase inhibitors] are used as lipid-lowering agents for reducing
high cholesterol-mediated cardiovascular risk [15, 16]. More
recently, the beneficial effects of statins have been extended to a
direct immunomodulation of monocyte-mediated inflammatory
processes (including chronic inflammatory diseases, such as
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atherogenesis and RA), which are independent of their effects
on cholesterol levels [17-19]. In particular, statins have been
shown to reduce MCP-1-induced monocyte recruitment in mice
[20] and the expression of prostaglandin E2 receptors in human
atherosclerotic plaques and monocytic cells [21]. Macrophage
cyclo-oxygenase-2 (COX-2) expression, which plays a pivotal role
in inflammatory mediator synthesis, has also been shown to be
modulated by statins [22]. Furthermore, statins have been shown
to be bone protective and reverse endothelial dysfunction in
arthritis models [23-25]. Finally, direct anti-inflammatory proper-
ties of statins have been shown in cells from synovium of RA
patients [26, 27]. On the basis of these evidences, we aimed to
compare the effect of two different statins (simvastatin or
atorvastatin) on adherent monocytes in the presence of increased
concentrations of CRP. A possible modulating effect of statins on
CRP-mediated chemokine secretion, adhesion molecule expres-
sion as well as migration was investigated, together with the
intracellular signalling pathways involved.

Materials and methods

Reagents

Recombinant human CRP was from R&D Systems Europe
(Abingdon, UK). As reported by the manufacturer, the purity of
the compound was >97% (determined by SDS-PAGE and
visualized by silver stain) and endotoxin level was <1.0 EU/1 pg
of CRP [determined by the Limulus amoebocyte lysate (LAL)
method]. Simvastatin and atorvastatin were obtained from a
commercial source and dissolved as previously described [28].
Appropriate dilutions of vehicle (ethanol) were added as control
in all experiments. L-Mevalonate, farnesylpyrophosphate (FPP)
and geranylgeranyl-pyrophosphate (GGPP) were from Sigma-
Aldrich (St Louis, MI, USA). RPMI 1640 medium was from
Gibco (Grand Island, NY, USA). BSA was from Sigma-Aldrich.
Recombinant human CCL2, anti-phosphorylated extra-
cellular signal-regulated kinase (ERK) 1/2 (T202/Y204, AF1018)
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polyclonal antibody (Ab), anti-phosphorylated p38 mitogen-
activated protein kinase (MAPK) (T180/Y 182, AF869) polyclonal
Ab and anti-ERK 1/2 (AF1576) Polyclonal Ab were all purchased
from R&D Systems Europe. Phycoerythrin (PE)-conjugated
anti-human CD54/intercellular adhesion molecule (ICAM)-1 Ab
(No. 555511) and fluorescein isothiocyanate (FITC)-conjugated
anti-human CD14 Ab (No. 555397) were obtained from BD
Pharmingen (Allschwil, CH, Switzerland). Anti-p38 MAPK
(H-147, sc-7149) polyclonal Ab, anti-Akt1/2/3 (H-136, sc-8312)
polyclonal Ab and anti-phopshorylated Aktl/2/3 (Thr®%,
sc-16646-R) polyclonal Ab were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The kinase inhibitor
LY-294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] was
obtained from Sigma-Aldrich and PD-98059 [mitogen-activated
protein kinase (MEK) inhibitor] and SB-203580 (p38 MAPK
inhibitor) were obtained from BioMol Research Laboratories
(Plymouth Meeting, PA, USA). 1L-6-hydroxymethyl-chiro-
inositol 2[(R)-2-O-methyl-3-octadecyl chromate] (Akt inhibitor)
was from Calbiochem (San Diego, CA, USA).

Isolation and culture of human primary monocytes

Human monocytes were isolated from buffy coats of healthy
volunteers without clinical signs of inflammatory disorders, after
informed consent, as previously described [29]. The protocol and
study were approved by the local ethics committee and they
conformed with the principles outlined in the Declaration of
Helsinki. Briefly, after centrifugation on Ficoll-Hypaque density
gradient, mononuclear cells were collected from the interface and
washed with 0.9% sodium chloride. Then, monocytes were
purified from the upper interface of a hypotonic Percoll density
gradient. Purity of monocytes was determined by flow cytometric
analysis (using anti-human CDI14 Ab from BD Pharmingen),
confirming that at least 85% purity was achieved in all experi-
ments. Cells were cultured in adherence to polystyrene dishes at a
concentration of 5x 10° cells/ml in serum-free RPMI 1640
medium containing 25 mmol/l HEPES and 500 ng/ml polymyxin
B (Sigma-Aldrich) at 37°C in a humidified atmosphere with 5%
CO,, unless otherwise specified [14].

Chemokine secretion assay

Monocytes were cultured in the presence or absence of 10 pg/ml
CRP for 12h [14]. For statin dose-response experiments, mono-
cytes were pre-treated for 2h in the presence of different concen-
trations (0, 0.01, 0.1 and 1 pM) of simvastatin or atorvastatin. In
other experiments, monocytes were pre-treated with kinase
inhibitors, LY294002 (50uM, PI3K inhibitor), Akt inhibitor
(40 uM), PD98059 (10 uM, MEK 1 inhibitor) or SB203580 (1 uM,
p38 MAPK inhibitor) for 2h before adding CRP. The concentra-
tions of kinase inhibitors used in these experiments were selected
on the basis of previous dose-response experiments (data not
shown). In selective experiments, monocytes were pre-treated with
1 uM simvastatin or 1 uM atorvastatin in the presence or absence
of 100 uM mevalonate, 10 pM GGPP or 10 uM FPP for 2 h before
adding CRP [30]. CCL2, CCL3 and CCL4 levels were measured in
supernatants of monocyte cultures by using ELISA kits (R&D
Systems Europe). ELISA assays were performed by following the
manufacturer’s instructions.

Flow cytometry

Monocytes were cultured in the presence or absence of 10 pg/ml
CRP for 30min (CDI1b and CDI8 analysis), 24h (ICAM-1
analysis) or 2h, 12h and 24h (CD32 and CD64 analysis),
respectively. In selective experiments, monocytes were pre-
incubated for 2h in the presence or absence of different
concentrations (0.01, 0.1 and 1 M) of simvastatin, atorvastatin
or kinase inhibitors LY294002 (50 uM), Akt inhibitor (40 uM),
PD98059 (10 uM) or SB203580 (1 uM) and then co-incubated with

CRP. The concentrations of kinase inhibitors used in these
experiments were selected on the basis of previous dose-response
experiments (data not shown). In additional experiments, mono-
cytes were pre-treated with 1 pM simvastatin or 1 pM atorvastatin
in the presence or absence of 100 uM mevalonate, 10 uM GGPP or
10 uM FPP for 2 h and then co-incubated with CRP. Then, culture
supernatants were removed and cells washed with PBS to remove
non-adherent cells. Adherent monocytes were collected by
scraping with a plastic policeman (Costar Cambridge, USA) and
pipetting energetically. Then the cells were stained with FITC- or
PE-labelled antibodies to anti-human CDI11b, CDI18 (R&D
Systems Europe Ltd), CD54, CD32 and CD64 (BD Pharmin-
gen™), as well as corresponding isotype controls. CellQuest
software was used for acquisition and analysis on a FACSCalibur
(BD Biosciences, Heidelberg, Germany). Data were expressed as
mean fluorescence intensities (MFIs), compared with baseline
expression (defined as 100%).

Cytotoxicity assay

Cell death was determined by quantification of lactate dehydro-
genase (LDH) release in cell culture supernatants of adherent and
suspension cultures after 12 and 24 h (BioVision, Mountain View,
CA, USA).

Modified Boyden chamber migration assay

Isolated monocytes were washed three times with chemotaxis
medium (RPMI containing 25mmol/l HEPES and 1% BSA;
Sigma-Aldrich) [29]. Monocytes were pre-incubated for 2h in the
presence or absence of different concentrations (0.01, 0.1 and
1 M) of simvastatin, atorvastatin or kinase inhibitors LY294002
(50 uM), Akt inhibitor (40 uM), PD98059 (10 uM), SB203580
(1uM) and then tested for migration in response to control
medium (CTL) or 40pg/ml CRP [31]. The concentrations of
kinase inhibitors used in these experiments were selected on the
basis of previous dose-response experiments (data not shown). In
additional experiments, monocytes were pre-treated with 1 pM
simvastatin or 1M atorvastatin in the presence or absence of
100 uM mevalonate, 10 uM GGPP or 10 uM FPP for 2h and then
tested for migration in response to control medium (CTL) or
40 pg/ml CRP. Monocyte chemotaxis was assessed in a 48-well
microchemotaxis modified Boyden chamber (Neuro Probe,
Gaithersburg, MD, USA) using a Sum pore size, S5-um thick
polyvinylpyrrolidone-free polycarbonate filter (Neuro Probe).
Cells were seeded in upper wells, while medium or chemoattrac-
tant solutions were added to the lower wells. The chamber was
incubated for 60 min at 37°C in a humidified atmosphere with 5%
CO,. Then, filters were removed from the chambers and stained
with Diff-Quick (Baxter, Rome, Italy). Cells in five random oil-
immersion fields were counted at 1000x magnification (blinded
observer) and the chemotaxis index was calculated from the
number of cells migrated to the chemokine divided by the number
of cells migrated to the medium.

Western blot analysis

Monocytes were cultured at a concentration of 5 x 10° cells/ml in
serum-free RPMI medium containing 25 mM HEPES with control
medium alone, 10 ug/ml CRP for different time points (1, 5, 10, 15
or 30min) or 10 nM r-CCL2 (positive control: 15min of
incubation for activating ERK 1/2 or 5S5min of incubation for
activating p38 MAPK or Akt) [29]. The reaction was stopped on
ice and cells were centrifuged at 4°C to remove culture super-
natants. Total protein was extracted in lysis buffer containing
20mM Tris-HCL (pH 7.5), 150mM NaCl, 10mM NaF, 1%
Nonidet P-40, 10 pg/ml glycerol, I mM phenylmethanesulphonyl-
fluoride (PMSF), 10pg/ml aprotinin, 10pg/ml leupeptin and
0.5mM Na3zVO,. Equal amounts of protein (40pg) for each
sample were electrophoresed through polyacrylamide-SDS gels
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and transferred by electroblotting onto nitrocellulose membranes.
Membranes were blocked for 1h in 5% (wt/vol) non-fat dry
milk before being incubated with appropriate dilutions of
anti-phospho-ERK 1/2, anti-phospho-Akt or anti-phospho-p38
MAPK primary Abs as well as corresponding secondary Abs.
Blots were developed using the ECL system (Immobilon Western,
Millipore, USA). Membranes were then stripped, reblocked and
reprobed to detect total ERK 1/2, Akt or p38 MAPK.
Immunblots were scanned and quantification was carried out
by Image Quant software version 3.3 (Molecular Dynamics,
Sunnyvale, USA). Values were normalized to total amounts of
ERK 1/2, Akt or p38 MAPK, respectively, and expressed as
percentages of medium control (defined as 100%).

Statistical analysis

All data were expressed as mean + s.E.M. One-way analysis of
variance with Bonferroni’s post-test was performed using
GraphPad InStat version 3.05 (GraphPad Software, San Diego,
CA, USA). Differences with P-values <0.05 were considered
statistically significant.

Results

Statins inhibit CRP-induced secretion of the chemokines
CCL2, CCL3 and CCL4 in human adherent monocytes

To study a possible modulation of CRP-mediated chemokine
secretion, we treated adherent monocytes with increasing concen-
trations of simvastatin or atorvastatin. The incubation of adherent
monocytes with 10 pg/ml CRP resulted in a significant induction of
CCL2 secretion as compared with untreated cells (Fig. 1A).
Simvastatin  (0.3-3uM) and atorvastatin (1 pM) significantly
reduced CRP-mediated secretion of CCL2 (Fig. 1A). Similarly,
simvastatin and atorvastatin dose-dependently reduced CCL3 and
CCLA4 secretion in human adherent monocytes (Fig. 1B and C). No
inhibitory effect on CRP-induced chemokine secretion was
observed in the presence of appropriate dilutions of ethanol
(statin vehicle), indicating that the inhibition of CRP-induced
chemokine secretion was indeed mediated by statins and not due to
a contamination of the vehicle (data not shown). In none of the
experimental conditions did we observe an increased cytotoxicity,
as determined by release of LDH (data not shown).

Statins inhibit CRP-induced ICAM-1, but not CD11b,
CD18 up-regulation in adherent human monocytes

We next investigated the effect of statins on CRP-induced CD11b,
CD18 and ICAM-1 up-regulation in adherent human monocytes.
Treatments with 1 uM simvastatin or atorvastatin (Fig. 2A and D)
significantly inhibited CRP-mediated ICAM-1 up-regulation.
No significant inhibition of CRP-induced CDIlb or CDI18
up-regulation was observed in the presence of different concen-
trations of simvastatin or atorvastatin (Fig. 2B-D). In all
experiments, appropriate dilutions of ethanol (statin vehicle) did
not induce any effect (data not shown).

Statins inhibit human monocyte migration in response
to CRP

The ability of CRP to induce monocyte migration has been
previously described [31]. On the basis of this previous study, we
selected 40 pg/ml as an effective concentration to test monocyte
locomotion in the presence of statins. Both simvastatin and
atorvastatin at 1 uM significantly inhibited monocyte migration in
response to CRP (Fig. 3A and B).

Statins do not influence CD32 or CD64 (CRP receptors)
expression on adherent human monocyte surface

In order to investigate the molecular mechanisms by which
statins reduced CRP-mediated chemokine secretion, I[CAM-1 up-
regulation and chemotaxis, we investigated if treatment with sim-
vastatin or atorvastatin could modulate the expression levels of
CD32 and CD64 (CRP receptors) [14, 32]. Co-incubation of CRP-
treated monocytes with 1 uM simvastatin or 1 uM atorvastatin did
not modify CD32 or CD64 expression in comparison with control
medium (CTL), as tested at different time points (see
supplementary figure IA and B available as supplementary data
at Rheumatology Online). Supplementary figure IC and D
(available as supplementary data at Rheumatology Online)
shows that CD32 or CD64 expression was not modulated by
either co-incubation (12h) of CRP-treated monocytes with
different concentrations of statins nor incubation (12h) of
untreated monocytes with 1 uM simvastatin or 1 pM atorvastatin.

CRP-induced chemokine secretion, ICAM-1 up-regulation
and chemotaxis is dependent on ERK 1/2 activation

Given the lack of statin-mediated effect on CRP receptor surface
expression, we next investigated their possible inhibitory activity
on intracellular pathways. We first investigated a possible CRP-
mediated activation of different signalling pathways in human
primary monocytes. Previous studies have shown that CRP
induces mitogen-activated protein kinase (MAPK) phosphoryla-
tion in human monocytes and monocytic cell lines [33-36].
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Fic. 1. Statins reduce CRP-induced CCL2, CCL3 and CCL4 secretion in adherent
human monocytes. Effect of simvastain and atorvastatin in chemokine secretion in
CRP-treated monocytes cultured in adherence to polystyrene dishes for 12 h (data
are expressed as mean=+s.e.m.). (A) CCL2: CTL and CRP alone: black bars,
n=24, **P <0.001 vs CTL; simvastatin: white bars, n=18, *P < 0.05, *P <0.01
vs CRP; atorvastatin: grey bars, n=16, P <0.05 vs CRP. (B), CCL3: CTL and
CRP alone: black bars, n=24, ***P <0.001 vs CTL; simvastatin: white bars,
n=18, ¥P <0.01 vs CRP; atorvastatin: grey bars, n=16, *P <0.05, **P <0.01 vs
CRP). (C) CCL4: CTL and CRP alone: black bars, n=16, ***P <0.001 vs CTL;
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Therefore, we focused our investigation on MAPK. A 10uM
PD98059 (inhibitor of MEK 1, a kinase directly activating ERK
1) inhibited CRP-induced CCL2, CCL3 and CCL4 secretion
(Fig. 4A—C). PD98059 also significantly inhibited CRP-induced
ICAM-1 up-regulation and migration (Fig. 4D and E). The
inhibitors of PI3K/Akt and p38 MAPK did not induce any effect
in CRP-mediated chemokine secretion, [CAM-1 up-regulation or
migration (Fig. 4A-E). A 15-30 min of exposure to 10 pg/ml CRP
increased ERK 1/2 phosphorylation, in a manner comparable
with CCL2 (positive control). Fifteen minutes of incubation in the
presence of 10pg/ml CRP also induced Akt phosphorylation,
while a non-specific increase of p38 MAPK activation was

observed after 5-15min (Fig. 5A). Densitometric analysis of
different experiments confirmed these data (Fig. 5B-E).

Statins reduce CRP-induced chemokine secretion, I[CAM-1
up-regulation and chemotaxis through the inhibition of
HMG-CoA reductase-ERK 1/2 pathway

After having identified the signalling pathway in CRP-mediated
pro-inflammatory activities, we investigated their possible mod-
ulation by statins. In particular, we focused on statin-induced
inhibition of HMG-CoA reductase and the downstream kinase
activation pattern. Simvastatin- and atorvastatin-mediated
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inhibition of CCL2, CCL3 and CCL4 in the presence of CRP was
reversed by the co-incubation with L-mevalonate or farnesylpyro-
phosphate (Fig. 6A—C), indicating that CRP-induced chemokine
secretion was dependent on the activation of these two mediators.
Co-incubation with L-mevalonate or farnesylpyrophosphate also
reversed statin-induced inhibition of CRP-mediated ICAM-1
expression or migration on human monocytes (Fig. 6D and E).
On the other hand, geranylgeranyl-pyrophosphate did not induce
any effect on statin-mediated activities (Fig. 6A—E). In accor-
dance with these data, simvastatin or atorvastatin inhibited
CRP-induced ERK 1/2 phosphorylation (Fig. 7A and C). Co-
incubation with L-mevalonate or farnesylpyrophosphate, but not
geranylgeranyl-pyrophosphate significantly reversed the statin-
induced inhibition of CRP-mediated ERK 1/2 phosphorylation,
as shown by western blot analysis and densitometries (Fig. 7A and
B). These data confirm that statin-induced inhibition of the
HMG-CoA reductase-ERK 1/2 pathway is necessary to reduce
CRP-mediated chemokine secretion, ICAM-1 up-regulation and
migration in human primary monocytes (Fig. 8A-D).

Discussion

Monocytes are inflammatory cells which play a crucial role in
various chronic inflammatory disorders, such as atherosclerosis
and RA. These cells sustain inflammatory processes through the
secretion of several soluble mediators. Although a great number
of chemokines and cytokines have been already identified, much
remains to be discovered. Under certain conditions, such as
adherence to endothelial cells or other substrates, CRP-treated
monocytes secrete high concentrations of CC chemokines, such as
CCL2, CCL3 and CCL4 [14]. These chemokines contribute to
inflammation through a double activity. First, they induce the
recruitment of other inflammatory cells from the blood stream
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Fic. 4. Effect of kinase inhibitors on CRP-induced chemokine secretion, ICAM-1 up-regulation and migration. Effect of 50 uM LY294002 (LY, PI3K inhibitor), 40 uM Akt
inhibitor (AKTI), 10 uM PD98059 (PD, MEK 1 inhibitor), 1 uM SB203580 (SB, p38 MAPK inhibitor) on CRP-mediated pro-inflammatory effects. (A) CCL2 secretion (n=8 for
CTL, CRP alone, CRP plus LY, CRP plus AKTI, CRP plus SB, n=6 for CRP plus PD, *P < 0.05 vs CTL, *P < 0.05 vs CRP). (B) CCL3 secretion (n=10 for CTL, CRP alone,
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for ERK 1/2 or 5min for Akt and p38 MAPK, as positive controls) and analysed by western blot to detect phosphorylated (P) and total ERK 1/2, Akt and p38 MAPK.
(A) Representative western blots of different experiments (n=2 for ERK 1/2 and n=23 for Akt and p38 MAPK). (B—E), Quantification of densitometries of kinase activation

of different experiments (data are expressed as mean =+ s.E.m., *P <0.05 vs CTL).

within the inflamed tissues. Second, they reduce the expression of
their cognate receptors on monocyte surface membrane, thus
favouring leucocyte retention and differentiation within inflamed
tissues [14]. CRP is a crucial player, which contributes to the
establishment of this deleterious vicious circle. In this study, we
tested the ability of two statins (simvastatin and atorvastatin) to
inhibit pro-inflammatory effects of CRP in adherent monocytes.
Importantly, the effective concentrations of statins and CRP used
in the present experiments are within the range of human serum
levels detected in patients with cardiovascular disease under statin
treatment [7, 37]. The major finding of this study was the dose-
dependent inhibition induced by both simvastatin and atorvasta-
tin on CRP-mediated CCL2, CCL3 and CCL4 secretion, ICAM-1

up-regulation and migration in human primary monocytes. No
effect was observed on CRP-induced expression of CD11b and
CD18. These adhesion molecules, which form the Mac-1 complex
on the cell surface, have been identified as crucial players in CRP-
induced chemokine secretion in human adherent monocytes [14].
The absence of inhibitory activity of statins on CRP-induced Mac-1
up-regulation indicates that both simvastatin and atorvastatin
selectively inhibit CRP-mediated intracellular signalling rather
than co-stimulatory activation through Mac-1/ICAM-1 interac-
tion. In order to investigate the inhibitory molecular mechanism
triggered by statins, we focused on the possible modulation by
these molecules of CRP receptors and CRP post-receptor
pathways. Statins are selective competitive inhibitors of
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Fic. 6. Statins reduce CRP-induced chemokine secretion, ICAM-1 up-regulation and migration through the inhibition of HMG-CoA reductase. Monocytes were pre-
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*P<0.05 vs CTL, *P<0.05 vs CRP, $P<0.05 vs simvastatin or atorvastatin alone). (B) CCL3 secretion (n=7, **P<0.01 vs CTL, *P<0.05 vs CRP, $P<0.05 vs
simvastatin or atorvastatin alone). (C) CCL4 secretion (1=6, *P<0.05 vs CTL, #P <0.05 vs CRP, $P < 0.05 vs simvastatin or atorvastatin alone). (D) ICAM-1 expression
(n=6, *P<0.05 vs CTL, *P<0.05 vs CRP, $P<0.05 vs simvastatin or atorvastatin alone). (E) Monocyte migration in response to CRP (n=6, ***P < 0.001 vs CTL,

###p _0.001 vs CRP, 8P <0.001 vs simvastatin or atorvastatin alone).

HMG-CoA reductases, the rate-limiting enzyme in the synthesis
of cholesterol [38]. However, this enzyme has been recently shown
to exhibit crucial immunomodulatory activities in inflammatory
cells [20, 39-46]. The majority of the studies showed anti-oxidant,
anti-inflammatory, anti-thrombotic and anti-atherogenic effects of
statins [47-49]. On the contrary, statin-induced promotion of pro-
inflammatory responses has also been shown [43, 44]. Statins
modulate inflammatory cell functions mainly through the regula-
tion of intracellular kinase pathways downstream to HMG-CoA
reductase [33, 36, 50-54]. However, functional differences among
members of the statin family suggest that these pharmacological
molecules could also directly modulate inflammatory pathways,
independently of the inhibition of HMG-CoA reductase [55-57].
In the present work, we show that the inhibition of HMG-CoA
reductase by statins results in the downstream inhibition of
ERK 1/2 phosphorylation. This is supported by three different
findings. First, ERK 1/2 phosphorylation is crucial for CRP-
mediated pro-inflammatory activities in human monocytes, as
shown by the experiments with PD98059 (the selective inhibitor of
MEK 1, a kinase which directly activated ERK 1) and the

phosphorylation of ERK 1/2 induced by CRP. The involvement of
ERK 1/2 in CRP signalling has already been shown in monocytic
cell lines and also in human peripheral blood monocytes [33, 35].
We confirmed the CRP-induced phosphorylation and we provide
evidence for the involvement of ERK 1/2 in CRP-mediated CCL2,
CCL3 and CCL4 secretion, ICAM-1 up-regulation and migration.
Second, co-incubation with L-mevalonate or FPP significantly
reversed the statin effect on chemokine secretion, ICAM-1
up-regulation, migration and ERK 1/2 phosphorylation, suggest-
ing that simvastatin and atorvastatin blocked CRP-induced pro-
inflammatory activity in human monocytes through the direct
inhibition of the HMG-CoA reductase-FPP-ERK 1/2 pathway.
Third, statin did not down-regulate the surface expression of CRP
receptors. This is a novel and important finding in primary human
monocytes. The lack of activity of a member of the statin family
(fluvastatin) on CD32 and CD64 expression has been previously
described in U937 cells (a human leukaemic monocyte lymphoma
cell line) and further supports the modulation of signalling events
downstream of receptor activation [58]. On the other hand, statins
have been shown to modulate the expression of chemokine
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Fic. 7. Statins reduce CRP-induced chemokine secretion, ICAM-1 up-regulation and migration through the inhibition of HMG-CoA reductase-ERK1/2 pathway. (A)
Representative western blot of ERK 1/2 activation in the presence or absence of 10 nM CCL2 (15 min, positive control), 10 ug/ml CRP (30 min), 1 uM simvastatin (2h,
SIMV), 100 uM L-mevalonate (2h, MEVA), 10 uM farnesyl (2h, FPP), 10 uM geranyl (2h, GGPP). (B) Quantification of densitometries of ERK 1 and ERK 2 activation of
different experiments: CTL (control); CCL2 (positive control); Sl (simvastatin); SI+M (simvastatin + L-mevalonate); SI+F (simvastatin + FPP); SI+-G (simvastatin + GGPP).
Data are expressed as mean + s.e.m., n=4, *P < 0.05 vs CTL. (C) Representative western blot of ERK 1/2 activation in the presence or absence of 10 nM CCL2 (15 min,
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(D) Quantification of densitometries of ERK 1 and ERK 2 activation of different experiments: CTL (control); CCL2 (positive control); AT (atorvastatin); AT+M (atorvastatin +
L-mevalonate); AT+F (atorvastatin + FPP); AT+G (atorvastatin + GGPP). Data are expressed as mean =+ s.e.m., n=3, *P <0.05 vs CTL.

receptors and adhesion molecules in human monocyte/macro-
phages [30, 46, 59]. Moreover, toll-like receptor 4, angiotensin II
type 1 receptor (AT;R) and CD36 expression are modulated by
statins in human monocytes [60-62]. In addition, statins also
reduced the expression of CD40, CD83 and CD86 in human
monocyte-derived dendritic cell maturation [63]. In conclusion,
although statins are well-known regulators of different receptors
on human monocytes, in the present study we showed that statins
do not modulate CRP receptor (CD32 and CD64) expression on
human primary monocytes.

To summarize, we provide evidence that statins reduce CRP-
induced chemokine secretion, ICAM-1 up-regulation and

migration in human primary monocytes through the inhibition
of the HMG-CoA-ERK 1/2 pathway (Fig. 8). The HMG-CoA-
ERK 1/2 pathway could represent a novel and promising target to
reduce CRP-mediated pro-inflammatory activities on human
monocytes. This study further supports the direct beneficial effects
of statins (independently of lowering cholesterol levels) in the
modulation of monocyte-mediated inflammatory diseases char-
acterized by increased levels of CRP. Mainly for the inadequate
inflammation suppression and the multiple concomitant drug
therapy, the reduction of cardiovascular burden in patients with
RA is a more complex process than in the general population. For
this reason, among various anti-RA therapies which could
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Fic. 8. Statins reduce CRP-mediated pro-inflammatory effects in human monocytes through inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
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which are also activated by CRP are not involved in CRP-mediated pro-inflammatory effects (D).

modulate atherogenesis [64], statins may represent a pathophysio-
logical approach independent of cholesterol levels for reducing
CRP-mediated pro-inflammatory activity on primary monocytes.

Rheumatology key messages

e CRP induces pro-inflammatory activities in human adherent
monocytes through ERK 1/2 activation.

e Statins inhibit CRP-mediated pro-inflammatory activities through
the inhibition of HMG-CoA-ERK 1/2 pathway.

o HMG-CoA-ERK 1/2 pathway could represent a promising target to
reduce CRP-mediated activities in human monocytes.
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