
M A J O R A R T I C L E

Effect of Immunosuppression on T-Helper 2 and
B-Cell Responses to Influenza Vaccination

Adrian Egli,1,4 Atul Humar,5 Lukas A. Widmer,2 Luiz F. Lisboa,4 Deanna M. Santer,4 Thomas Mueller,3 Joerg Stelling,2

Aliyah Baluch,6 Daire O’Shea,4 Michael Houghton,4 and Deepali Kumar5

1Infection Biology Laboratory, Department of Biomedicine, University of Basel, 2Department of Biosystems Science and Engineering, ETH Zurich, and
Swiss Institute of Bioinformatics, Basel, and 3Division of Nephrology, University Hospital Zurich, Switzerland; 4Li Ka Shing Institute of Virology, University
of Alberta, Edmonton, and 5Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; and
6Division of Infectious Diseases, Moffitt Cancer Center, Tampa, Florida

Background. Influenza vaccine immunogenicity is suboptimal in immunocompromised patients. However, there
are limited data on the interplay of T- and B- cell responses to vaccination with simultaneous immunosuppression.

Methods. We collected peripheral blood mononuclear cells from transplant recipients before and 1 month after
seasonal influenza vaccination. Before and after vaccination, H1N1-specific T- and B-cell activation were quantified
with flow cytometry. We also developed a mathematical model using T- and B-cell markers and mycophenolate mofetil
(MMF) dosage.

Results. In the 47 patients analyzed, seroconversion to H1N1 antigen was demonstrated in 34%. H1N1-specific
interleukin 4 (IL-4)–producing CD4+ T-cell frequencies increased significantly after vaccination in 53% of patients.
Prevaccine expression of H1N1-induced HLA-DR and CD86 on B cells was high in patients who seroconverted.
Seroconversion against H1N1 was strongly associated with HLA-DR expression on B cells, which was dependent
on the increase between prevaccine and postvaccine H1N1-specific IL-4+CD4+ T cells (R2 = 0.35). High doses of
MMF (≥2 g/d) led to lower seroconversion rates, smaller increase in H1N1-specific IL-4+CD4+ T cells, and reduced
HLA-DR expression on B cells. The mathematical model incorporating a MMF-inhibited positive feedback loop be-
tween H1N1-specific IL-4+CD4+ T cells and HLA-DR expression on B cells captured seroconversion with high spe-
cificity.

Conclusions. Seroconversion is associated with influenza-specific T-helper 2 and B-cell activation and seems to
be modulated by MMF.

Keywords. immunosuppression; cellular response; cytokines; computational model; influenza; vaccine; B cells;
T cells; cytokine profile.

Infection with influenza viruses in organ transplant recip-
ients is associated with greater risk of hospitalization and
mortality [1, 2]. The primary means to prevent influenza
in this population is annual influenza vaccination [3]. In
immunogenicity studies, transplant recipients show sub-
optimal seroconversion rates against influenza [4, 5]. Fac-
tors associated with reduced humoral immunity include

the use of mycophenolate mofetil (MMF), vaccination
within the first year after transplantation, and receipt of
a lung transplant [4, 6–9]. In particular, MMF dosage
>2 g/d is a strong predictor of vaccine failure [9–11].

Protective immunity against influenza involves a
multitude of interactions between the innate and adap-
tive immune system [12, 13]. Neutralizing antibody
against influenza is well known to protect against infec-
tion [14]. Seroprotection and seroconversion are fre-
quently used as surrogates of vaccine protection in the
general population. Although neutralizing antibodies
play an important role in prevention of infection, influ-
enza-specific T-cell responses add to the protection and
may be cross-reactive to provide broad protection
against drifted strains of influenza [15]. Whereas T-
helper (Th) 1 and cytotoxic T-cell response clear viral
infected cells, Th2 responses stimulate antibody
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production. The type of immunity stimulated by influenza vac-
cination likely defines the degree of protection.

Previous studies of cellular immunity against influenza after
transplantation have focused on production of interferon (IFN)
γ (a Th1 cytokine) from T cells and have not shown an associ-
ation with humoral immunity [16, 17]. Limited data exist for the
transplant population and the interaction of influenza-specific
Th2 cells and B cells.

We hypothesized that influenza vaccine immunogenicity
after transplantation is likely to be related to the interplay of
Th2 and B cells and that immunosuppression is an important
regulator. To test these hypotheses, we analyzed humoral and
cellular immunity in a cohort of solid organ transplant recipi-
ents and healthy controls that were given influenza vaccine. Pe-
ripheral blood mononuclear cells (PBMCs) were stimulated
with influenza antigen and underwent flow cytometric analysis
for intracellular IFN-γ as a marker for Th1 response, interleukin
4 (IL-4) as a marker of Th2 response, and HLA-DR and CD86
expression as activation markers for B-cell response. We also
developed a computational model to investigate the influence
of MMF on the interplay of T and B cells.

MATERIALS AND METHODS

Patient Population
From the original trial comparing intradermal versus intramus-
cular influenza vaccine, adult solid organ transplant recipients
were randomly selected to participate in a cellular immunity
substudy (n = 47) [6].No significant differences in humoral im-
munity between intradermal and intramuscular vaccine were
seen [6]. All patients received nonadjuvanted 2010–2011 influ-
enza vaccine containing the following influenza strains: A/
California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and
B/Brisbane/60/2008 in either a high-dose (18 µg per antigen)
intradermal (Intanza; Sanofi-Pasteur) or a standard-dose
(15 µg per antigen) intramuscular preparation (Vaxigrip; Sanofi-
Pasteur). Patients had whole blood collected before and 4 weeks
after vaccination.

Eleven healthy volunteers were separately recruited and re-
ceived standard intramuscular vaccination with the 2011–
2012 vaccine (Vaxigrip, Sanofi-Pasteur). The vaccine viruses
in the 2011–2012 vaccine were identical to those in the 2010–
2011 vaccine. The study protocols were approved through the
institutional research ethics board, and written informed con-
sent was obtained from all participants.

Humoral Response to Vaccine
Serum samples underwent hemagglutination inhibition (HAI)
assay for the H1N1 antigen contained in the vaccine, as de-
scribed elsewhere [18]. Definitions of vaccine immunogenicity
were based on recommendations for annual licensure of influ-
enza vaccine (European Medicines Agency document CHMP/

VWP/164653/2005). Seroconversion was defined as a ≥4-fold
rise in titer from the prevaccine titer and a postvaccine titer
≥1:40. However, if prevaccine antibodies are present, the defini-
tion of seroconversion may also represent a booster effect or a
cross-reactive immune response. Seroprotection was defined as
a titer of ≥1:40.

PBMC Isolation and Stimulation
The PBMCs were isolated from whole blood using a Ficoll-
based method, cryopreserved until use, and then stimulated
with formalin-inactivated, partially purified A/California/7/
2009 (H1N1) (NIBSC, NYMC-X179A), the same strain as in
the vaccine. A final concentration of 0.3 µg/mL was used to
stimulate cells for 16 hours at 5% carbon dioxide. Cells were
stimulated in Roswell Park Memorial Institute containing 5%
fetal calf serum and 1% Glutamax (R5; all Sigma) at a concen-
tration of 2 × 105 cells per well.

Flow Cytometry
Experiments were performed on a FACSCanto II flow cytome-
ter (BD) and analyzed with FlowJo software (version 10.0.5;
TreeStar). Supplementary Figure 1 shows the overall gating
strategy (Supplementary Figure 1). Medium alone served as
negative control and was subtracted from samples stimulated
with influenza antigen. LIVE/DEAD staining was performed
(near-IR; Invitrogen). Markers for identifying T-cell subsets
were CD3 (Pacific Blue), CD4 (phycoerythrin–cyanine 7),
and CD8 (characterized as the CD4-negative gate). Intracellular
cytokine staining was performed according to protocols pub-
lished elsewhere [19]. IFN-γ (Alexa Fluor 488) and IL-4 (allo-
phycocyanin) were used as key representatives for Th1 and Th2
cytokine production, respectively. All reagents, including perm
and fixation buffers and antibodies, were from eBioscience. Iso-
type controls have previously been used to establish the assays.
Markers for B-cell subsets were CD20 (Alexa Fluor 488) and
CD27 (PE), with CD20+CD27− as naive B cells and CD20+

CD27+ as memory B cells. HLA-DR (Pacific Blue) and CD86
(allophycocyanin) served as activation markers (Biolegend or
eBioscience).

Cytokine Profile
Cell-free supernatants from H1N1-stimulated PBMCs were col-
lected after 24 hours and used for cytokine analysis. A 17-plex
Luminex-based cytokine profiling kit was used (Eve Technolo-
gies), including fractalkine, IFN-α, IFN-γ, growth regulated
oncogene, monocyte chemoattractant protein 3 (MCP-3), inter-
leukin 13, soluble CD40-L, interleukin 9, interleukin 1β, inter-
leukin 2, IL-4, interleukin 5, interleukin 6, interferon gamma
induced protein 10, MCP-1, macrophage inflammatory protein
1α (MIP-1α), and tumor necrosis factor α.
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Cytokine Profile Analysis
GeneSpring GX version 12 (Agilent Technologies) was used for
cluster and principal component analysis of the cytokines mea-
sured in H1N1-stimulated PBMCs. Nonstimulated samples
were subtracted from stimulated PBMCs. Percentile shift was
used as normalization algorithm, and baseline transformation
was performed to the median of all samples. Hierarchical clus-
tering was done using Euclidean as the similarity measure and
centroid linkage as the linkage rule. Principal component anal-
ysis was used to detect major trends in the experimental condi-
tions, and cluster analysis of variance was used to compare
antibody response clusters.

Mathematical Model
We constructed a phenomenological ordinary differential equa-
tion (ODE) model, as described in detail in the Supplementary
Information and Supplementary Table 1. Numerical simula-
tions were performed in MATLAB (R2014a; MathWorks),
with the CVODE ODE integrator from the sundialsTB toolbox
[20]. Parameter estimation was performed using the MEIGO
toolbox [21], and confidence intervals were determined using
the HYPERSPACE toolbox [22].

Statistical Analysis
Statistical analyses were performed using SPSS Statistics
(version 20.0; IBMIL) and GraphPad Prism (version 4.0;
GraphPad Software). Data are shown as medians and inter-
quartile ranges. Categorical variables were analyzed using a
χ2 test, and continuous nonnormal distributed data (Shapiro–
Wilk test) were analyzed using a Mann–Whitney U test or, if
paired, a Wilcoxon matched-pairs rank test. All tests were 2
tailed.

RESULTS

Impact of MMF on Humoral Immunity
We enrolled 51 transplant recipients for cellular immune assays.
Of these, 2 were lost to follow-up and 2 did not have sufficient
T cells in the postvaccine sample for analysis. Of the remaining
47 patients, the median age was 53.4 years (range, 21–77 years),
and 24 of 47 (51%) were kidney transplant recipients (Table 1).
Patients were under a combination of immunosuppressive
drugs. All transplant recipients had received prior-year influen-
za vaccine and had not previously had microbiologically proven
influenza infection. By HAI assay, the prevaccine seroprotection
rate to influenza A/H1N1 was 46.8% (22 of 47). The postvaccine
seroprotection rate was 68.1% (32 of 47) for influenza A/H1N1,
but only 16 of 47 (34%) demonstrated seroconversion. Trans-
plant recipients receiving MMF at ≥2 g/d showed significantly
lower geometric mean antibody titers than those receiving
<2 g/d (geometric mean titer, 43.1 vs 128.4; P = .03). The medi-
an trough level of tacrolimus and cyclosporine in patients

receiving MMF at ≥2 g/d MMF not significantly different
from that in with those receiving <2 g/d (7.85 vs 6.5 µg/mL
and 68 vs 187 µg/mL, respectively). In lung transplant recipients
compared with non–lung transplant recipients seroconversion
rates did not differ significantly for H1N1 (P = .35).

H1N1-Specific T-Cell Responses After Vaccination
In transplant recipients, H1N1-specific IL-4+CD4+ T cells
showed a significant increase from before to after vaccination

Table 1. Characteristics of Transplant Recipients and Healthy
Volunteers

Characteristic
Transplant

Recipients (n = 47)

Healthy
Volunteers
(n = 11)

P
Value

Age, median (IQR), y 53.4 (16) 33 (10) <.05

Sex, male/female,
No. (%)

33/14 (70.2/29.8) 7/4 (63.6/36.4) NS

Time between
transplantation
and immunization,
median (range), y

4.34 (0.26–22.34) . . . . . .

Type of vaccine, No. (%)

Standard
intramuscular

26 (55) 11 (100) . . .

High-dose
intradermal

21 (44.7) . . . . . .

Seroconversion, No. (%)

Influenza A/H1N1 16 (34.0) 11 (100) <.05

Influenza A/H3N2 12 (25.5) 11 (100) <.05
Influenza B 7 (14.9) 7 (63.6) <.05

Prevaccine titer (GMT)

Influenza A/H1N1 26 66 .06
Influenza A/H3N2 19 55 .01

Influenza B 16 12 NS

Postvaccine titer (GMT)
Influenza A/H1N1 82 345 .02

Influenza A/H3N2 43 206 .001

Influenza B 29 34 NS
Type of graft, No. (%)

Kidney 24 (51.1) . . . . . .

Lung 15 (31.9) . . . . . .
Heart 4 (8.5) . . . . . .

Liver 4 (8.5) . . . . . .

Immunosuppression, No. (%)a

Prednisone 35 (74.5) . . . . . .

Tacrolimus 36 (76.6) . . . . . .

Cyclosporin 9 (19.1) . . . . . .
MMF 34 (72.3) . . . . . .

Sirolimus 5 (10.6) . . . . . .

Abbreviations: GMT, geometric mean titer; IQR, interquartile range; MMF,
mycophenolate mofetil; NS, not significant.
a The median doses for prednisone and MMF were 5 mg/d and 2 g/d, and the
median trough levels for tacrolimus, cyclosporin, and sirolimus were 7.4, 78,
and 8.2 µg/mL.
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(median, 0.32%–0.78%; P = .04) (Supplementary Figure 2A). Of
the 47 patients, 25 (53.2%) had an increase in H1N1-specific IL-
4+CD4+ T cells after vaccination. This increase was driven
primarily by seroconverting patients. We observed a significant
induction of postvaccine IL-4+CD4+ T cells only in persons
with seroconversion (Figure 1A). Patients who were receiving
MMF at ≥2 g/d had a lower, nonsignificant increase in their
IL-4+CD4+ T cells, whereas those receiving lower MMF doses
had a significant increase (P = .04; Figure 1B). The frequency
of H1N1-specific IFN-γ+CD4+ and IFN-γ+CD8+ T cells did
not show a significant increase after vaccination (Supplementa-
ry Figure 2B). IFN-γ+ T-cell frequencies were not significantly
associated with seroconversion and did not show any associa-
tion with MMF dose (data not shown). However, the prevac-
cine-postvaccine ratio of IL-4+CD4+ to IFN-γ+CD4+ T cells
was significantly higher in patients with seroconversion, sug-
gesting differences in expansion dynamics of T-cell subsets
(median, 1.7-fold to 1.0-fold; P = .047). Lung transplant recipi-
ents showed a median prevaccine IL-4+CD4+ T-cell frequency
of 0.33% versus 0.35% in non–lung transplant recipients
(P = .26). Similarly, the postvaccine IL-4+CD4+ T-cell frequency
was 0.62% versus 0.86% (P = .58) in lung transplant recipients
versus recipients of other transplant types.

H1N1 Stimulated B-Cell Activation After Vaccination
We measured B-cell activation markers after stimulation with
H1N1 antigen. In transplant recipients, HLA-DR expression
in all B cells (measured by mean fluorescence intensity) did
not significantly increase after vaccination. However, baseline
HLA-DR expression was significantly greater before vaccination

in patients who eventually went on to seroconversion. This was
true for both the naive B-cell subset (CD20+CD27−; P < .001) as
well as memory B cells (CD20+CD27+; P < .001) (Figure 2A).
Table 2 provides an overview comparison of patients in differ-
ent subsets (Table 2).

H1N1-inducible CD86 expression did not significantly chan-
ge after vaccination. However, CD86 expression was signifi-
cantly greater in patients who seroconverted specifically in the
naive B-cell subset (Figure 2B). In addition, after vaccination,
patients receiving MMF at ≥2 g/d had reduced H1N1-stimulated
CD86 expression on naive B cells compared with those receiving
<2 g/d (P = .05) (Figure 2C). Prevaccine (baseline) levels of CD86-
and HLA-DR expression were predictors of seroconversion (area
under the curve for HLA-DR, 0.843). For HLA-DR (CD86)
expression, the highest sensitivity and specificity were 76.5%
(70.6%) and 84.6% (76.9%), respectively (Table 3). We further
explored the role of IL-4+CD4+ T cells on B-cell activation, a
process partially regulated by T-helper cells and Th2 cytokines,
such as IL-4. In patients who seroconverted, the increase in
H1N1-specific IL-4+CD4+ T cells after vaccination was directly
correlated to HLA-DR expression on B cells (P = .02; Figure 2D).

H1N1 Induced Cytokine Profile in Transplant Recipients
Cytokine profiles were measured in supernatants collected from
postvaccine samples in which PBMCs were stimulated with
H1N1 antigen. We explored the differences in cytokine profiles
with or without seroconversion using a heat map and principal
component analysis (Figure 3A). Based on the expression pro-
file of 28 immune markers (including 17 cytokines), the cluster
analysis indicated 3 predominant groups. These 3 clusters

Figure 1. H1N1-specific interleukin 4 (IL-4)+CD4+ T-cell dynamics during vaccination. A, Frequency of H1N1-specific IL-4+CD4+ T cells in patients who
seroconverted to influenza A/H1N1 versus those who did not. Patients who seroconverted had a greater rise in the frequency of IL-4+CD4+ T cells after
vaccination (P = .04). B, Frequency of H1N1-specific IL-4+CD4+ T cells in patients who received mycophenolate mofetil (MMF) at ≥2 g/d versus those who
received <2 g/d. Abbreviation: IQR, interquartile range.
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represent patients without seroconversion but with sero-
protection (cluster 1), patients without seroconversion or sero-
protection (nonresponders) (cluster 2), and patients with both
seroconversion and seroprotection (cluster 3). Figure 3B shows
the mean expression of each marker in the 3 clusters. Cluster 1
showed a relatively high expression of Th2 cytokines and low
expression of Th1 cytokines; this was associated with high
pre- and postvaccine HAI antibody titers to H1N1, even though
these patients did not seroconvert. Cluster 3 identified a popu-
lation of patients with a significant increase in HAI titers after
vaccination; in particular the B-cell activation markers were sig-
nificantly up-regulated in these patients. Two-dimensional
principal component analysis indicated that HLA-DR expres-
sion and Th2 cytokines may be responsible for this clustering
(data not shown).

Use of Phenomenological Mathematical Model to Predict
Vaccine Response

We developed a dynamic mathematical model of the following
structure (Figure 4A). An assumption for the model was that
IL-4–producing CD4+ T cells activate B cells and up-regulate
HLA-DR expression in a positive feedback loop. This interac-
tion results in antibody production from B cells. MMF serves
as a dose-dependent inhibitor of this feedback loop. The
model describes the evolution over time of the percentage of
H1N1-specific IL-4+CD4+ T cells, HLA-DR expression on B
cells, and serum antibody (HAI) titers as a result of H1N1
vaccination.

Using this model, day 30 (postvaccine) values for each vari-
able as well as dynamics for these variables after vaccination can
be predicted in patients who seroconverted versus those that

Figure 2. H1N1-induced B-cell activation during vaccination. The background (nonstimulated) expression of HLA-DR and CD86 was subtracted. The me-
dian background was 95.9 AU for HLA-DR and 43.7 AU for CD86 (also see Table 2). A, Expression of H1N1-induced HLA-DR expression on naive and memory
B cells before vaccination was greater in patients who seroconverted (n = 15) than in those who showed no seroconversion to influenza A/H1N1 (n = 32). B,
Expression of H1N1-induced CD86 expression on naive and memory B cells was greater in patients who seroconverted (n = 15) than in those who showed no
seroconversion to influenza A/H1N1 (n = 32). C, Expression of H1N1-induced CD86 expression on naive B cells after vaccination based on mycophenolate
mofetil (MMF) dose. Patients receiving MMF at ≥2 g/d had significantly less expression of CD86. In A–C, bars and whiskers represent indicate median
values with interquartile ranges; Mann–Whitney U tests were used to identify significant differences. D, Regression analysis of fold change in interleukin 4
(IL-4)+ T-cell frequencies and their impact on HLA-DR expression on B cells in patients with seroconversion (n = 15). Abbreviations: MFI, mean fluorescence
intensity; PBMCs, peripheral blood mononuclear cells.
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did not. The model was calibrated to conservatively predict
seroconversion, and based on our current data it achieves a sen-
sitivity of 70% and specificity of 100%, as determined by leave-
one-out cross-validation (see Supplementary Information for
details and Supplementary Table 1 for the estimated model
parameters). Figure 4B shows the predicted dynamics of the
IL-4+CD4+ T-cell frequency, HLA-DR expression on B cells,
and H1N1 antibody HAI titer starting from patient baseline val-
ues at day 0 with modulation by actual MMF dosages. These
simulation results illustrate a strong dependency of seroconver-
sion on sufficient prevaccine HLA-DR expression levels. Simu-
lations with hypothetical low (Figure 4C) and high (Figure 4D)
MMF dosages demonstrate an inhibitory effect of MMF that is
especially pronounced at high dosages (≥2 g/d).

Healthy Volunteer Response to Vaccine
Humoral and cellular vaccine responses were also evaluated in
11 healthy volunteers. Healthy volunteers were significantly
younger than the transplant recipients and did not receive im-
munosuppressive drugs. All volunteers had received influenza
vaccine in prior years and did not have a history of microbio-
logically proven influenza infection. A significant increase in
HAI titers to H1N1 after immunization (tumor necrosis factor,
66–345; P = .009) was observed (100% seroprotection and sero-
conversion to H1N1). Geometric mean titers were significantly
higher in healthy controls than in transplant recipients (83 vs
345; P = .02). Similar to transplant recipients, healthy volunteers
also showed a significant increase in the frequency of H1N1-
specific IL-4+CD4+ T cells after vaccination. However, unlike
transplant recipients, healthy volunteers did show an increase
in IFN-γ+CD4+ T cells after vaccination (Supplementary Fig-
ure 2B). H1N1-induced B-cell activation markers were high in
healthy volunteers and were similar to those in transplant recip-
ients (data not shown); healthy volunteers also had no signifi-
cant changes in HLA-DR- and CD86 expression from before to
after vaccination (data not shown). The postvaccine cytokine
profile showed that healthy controls had significantly greater
levels of fractalkine, IFN-γ, MCP-3, interleukin 1β, interleukin
6, and MIP-1α (Supplementary Figure 2C). The results of the
cytokine profile are shown in Supplementary Table 2. These
findings should be interpreted in the context of the significantly
younger age of the healthy volunteers compared with the trans-
plant recipients.

DISCUSSION

We performed a detailed analysis of H1N1-induced B- and T-
cell responses to assess factors associated with successful sero-
conversion after influenza vaccination in the organ transplant
population. We show that Th2 cytokines are associated with
H1N1-induced B-cell activation in terms of HLA-DR (antigen
presentation) and CD86 (costimulatory signaling) expression,Ta
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as well as antibody secretion. MMF reduced IL-4+CD4+ T-cell
frequencies and B-cell activation. The type of graft (lung vs
nonlung transplant) did not have an effect on T-cell responses.
We used several analytical techniques to formulate sensitive and
specific predictive models to discriminate vaccine responders
from nonresponders.

The influenza vaccine stimulates the Th1- and Th2-pathway
in order for B-cell differentiation to occur [23]. One of our key
findings was the increase in H1N1-specific IL-4+CD4+ T cells
after vaccination. IL-4 is involved in humoral immunity and,
to our knowledge, has not previously been explored in the con-
text of vaccination of transplant recipients. IL-4 (originally
termed B-cell stimulatory factor 1) is a cytokine produced by
Th2 cells and has been shown to increase HLA-DR expression
on resting B cells, thereby increasing production of immuno-
globulin G (IgG) [24, 25]. Th2 responses have also been
shown to be important in mice immunized with a universal in-
fluenza vaccine [26].

We did not observe a significant rise in IFN-γ+CD8+ T-cell
frequency after vaccination in transplant recipients, contrary
to that seen in the healthy volunteer cohort. The frequency
of H1N1-specific IFN-γ+CD4+ and IFN-γ+CD8 T cells was con-
sistent with findings in previous studies of influenza vaccine
[27]. These results were also similar to results shown by
Cowan et al [28], who showed a significantly greater increase
in IFN-γ responses in healthy controls compared with kidney
transplant recipients. Another study in lung transplant

Table 3. ROC Curve Statistics for Prevaccine HLA-DR and CD86
Expression on All B Cells for the Prediction of Successful
Seroconversion

Variable

AUC,
Mean
(SE) P Value 95%CI

Best
Cutoff
Value,
MFI

Sensitivity,
%

Specificity,
%

HLA-DR 0.843
(0.060)

<.001 .72–.97 123 76.5 84.6

CD86 0.700
(0.083)

.01 .58–.89 213 70.6 76.9

Abbreviations: AUC, area under the curve; CI, confidence interval; MFI, mean
fluorescence intensity; ROC, receiver operating characteristic; SE, standard
error.

Figure 3. H1N1-induced cytokine profile. A, Heat map of cytokines, antibody titers and B-cell activation markers in H1N1-stimulated peripheral blood
mononuclear cells of the total postvaccine transplant cohort. Blue represents seroconversion (n = 15); red, no seroconversion (n = 28; for 4 samples, no
cytokine profile was available). Nonstimulated background samples were subtracted before the normalization algorithm. Relative changes in a marker
are indicated by change in color code (blue, maximum 5.8-fold down-regulation; red, maximum 5.8-fold up-regulation). Markers analyzed (top to bottom):
fractalkine (FRAK), interleukin 13 (IL-13), interleukin 9 (IL-9), interleukin 5 (IL-5), CD4+ T-cell (CD4) interferon (IFN) γ, CD4 interleukin 4 (IL-4), IL-4, memory-
phenotype B-cell (mB) CD69, interleukin 1β (IL-1β), growth regulated oncogene (GRO), soluble CD40L (sCD40L), H1N1 antibody (Ab) titer, IFN-α, interleukin
2 (IL-2), IFN-γ, tumor necrosis factor (TNF) α, interleukin 6 (IL-6), macrophage inflammatory protein 1α (MIP-1α), monocyte chemoattractant protein 3 (MCP-3),
naive-phenotype B-cell (nB) CD69, interferon gamma induced protein 10 (IP-10), mB CD86, nB CD86, monocyte (mo) CD86, nB HLA-DR expression (DR), mB DR,
mo DR, and MCP-1. B, Cluster 1 represents patients without seroconversion but with seroprotection (left); cluster 2, patients without seroconversion or sero-
protection (middle); and cluster 3, patients with both seroconversion and seroprotection (right). Relative changes are indicated by changes in color code (see A).
Markers analyzed (top to bottom): FRAK, mo DR, IL-13, CD4 IFN-γ, IL-9, IL-5, CD4 IL-4, IL-1β, IL-4, mB CD69, sCD40L, H1N1 antibody titer, GRO, IFN-α, IFN-γ, IL-
6, MIP-1α, MCP-3, IL-2, TNF-α, mo CD86, nB CD86, mB CD86, nB CD69, MCP-1, nB DR, mB DR, and IP-10. One-way analysis of variance (ANOVA; performed
with GeneSpring software) was calculated to indicate that a cytokine is differentially expressed in ≥1 of the 3 groups analyzed; ANOVA used the mean of the
sum of squared deviates as an aggregate measure of variability for the selected group of genes, applying parametric testing for equal group sizes and inde-
pendent samples, without post hoc testing. Principal component (PC)1, PC2, and PC3 had weights of 54.6%, 31.9% and 13.5% respectively.
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recipients also did not show an increase in influenza vaccine–
related IFN-γ after influenza vaccination [17]. Previous studies
in transplant recipients have not found a relationship between
IFN-γ and humoral responses. For example, in a kidney trans-
plant cohort, although an increase in IFN-γ was seen after vac-
cination, this was not associated with humoral responses [16].
The study by Cowan et al [28] also did not show a correlation
between IFN-γ T-cell responses and influenza-specific IgG
responses. Virus-specific CD8+ T cells typically recognize
peptides derived from internal components of the virus [29].

Thus, during influenza replication, cytotoxic T cells could re-
spond to a broader spectrum of possible expressed epitopes
and proteins in comparison to strain-specific antibodies to the
viral hemagglutinin (HA) and neuraminidase (NA) glycopro-
teins [30]. However, inactive vaccines do not replicate, and
therefore they contain only a limited spectrum of proteins,
namely HA and NA glycoproteins; the induced CD8+ T-cell re-
sponse may not directly correlate with an antibody response.
Nevertheless, if an IFN-γ response develops, it could promote
the induction of HA-specific neutralizing antibodies and may

Figure 4. Mathematical model. A, Overview of the structure of the phenomenological mathematical model. Interleukin 4 (IL-4)–producing T cells and
HLA-DR–expressing B cells activate each other in a mutual feedback loop that is inhibited by mycophenolate mofetil (MMF). Antibody production is modeled
in a HLA-DR expression–dependent manner. B–D, Dynamics of the ordinary differential equation model for IL-4+ T-cell frequency, HLA-DR expression on
naive B cells, and H1N1 antibody hemagglutination inhibition titer starting from patient baseline values on day 0 for nonseroprotected patients and dis-
tinguishing between patients who seroconverted (black) and those who did not (red ). Simulations were performed with patient-specific MMF dosage (B )
and 2 hypothetical situations where patients receive no MMF (C) or a 3-g daily dose (D ).
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in fact help with broadening responses to heterologous influen-
za viruses [31, 32].

In the nontransplant literature, the ratio of Th2 to Th1 cyto-
kines has been suggested to be associated with vaccine respons-
es in the elderly. Similar to our study, McElhaney et al [33]
measured interleukin 10 as a marker of Th2 responses and
showed a significant rise after vaccination in PBMCs of elderly
persons stimulated with H1N1. In our cohort we observed a sig-
nificant increase of IL-4–producing CD4+ T cells in patients
with seroconversion. Our cytokine profile also indicated sig-
nificant differences in Th2 cytokines in patients with serocon-
version and seroprotection compared with nonresponding
patients.

We also explored B-cell immunity using HLA-DR and CD86
as markers of activation. HLA-DR acts as a ligand for the T-cell
receptor resulting in antigen presentation and further stimula-
tion of T cells. In addition, CD86 acts as a costimulatory mol-
ecule on B cells and interacts with CD28 on T cells [34]. To our
knowledge, these markers have not previously been explored in
the context of immunization of organ transplant recipients. The
prevaccine expression of these markers was high in patients who
seroconverted, suggesting a role for these markers in prediction
of seroconversion. Indeed, receiver operating characteristic
curve analysis showed that baseline HLA-DR and CD86 expres-
sion had high sensitivity and specificity in predicting serocon-
version. The high responsiveness of memory B-cell subsets
before vaccination may be partially explained by prior illness
or previous vaccination. All transplant recipients and healthy
volunteers had previously received influenza vaccine.

General effects on IgG serum concentration in transplant re-
cipients treated with MMF have been described elsewhere [35].
Several studies have now shown that high doses of MMF reduce
the immunogenicity of influenza vaccination [9–11]. Our co-
hort also had reduced responses by HAI assay in patients receiv-
ing ≥2 g/d. MMF and mycophenolic acid have been shown to
inhibit B-cell activation and proliferation and plasma cell for-
mation [36, 37]. Our study provides insight into a possible
mechanism. We found that high doses of MMF had a deleteri-
ous impact on IL-4+CD4+ T-cell frequencies and was associated
with reduced HLA-DR expression on B cells.

Our results are consistent with those of a previous study,
which showed a dose-dependent reduction of HLA-DR expres-
sion on B cells with increasing mycophenolate [38]. In addition,
the ODE model predicts high, sustained antibody titers in most
patients who seroconverted and low antibody titers (with pos-
sibly high transient titers) in those who did not. Without MMF,
the model predicts that most patients who did not seroconvert
in the study would develop high antibody titers at day 30, and
with a hypothetical MMF dosage of 3 g/d, it predicts that none
of the patients would seroconvert. Large uncertainties in esti-
mated model parameters, however, indicate that more data
(patients and time points) and possibly model extensions will

be required to draw final conclusions on the predictive power
of this modeling approach.

Our study has some limitations. Almost all of our patients
and healthy volunteers had been previously vaccinated, which
may have influenced responses. We used only certain signature
cytokines for the Th1 and Th2 response, and it is possible that
other cytokines may behave differently. In addition, although
the trivalent influenza vaccine contains 2 A strains and 1 B
strain, we used influenza A/H1N1 as a model for vaccine re-
sponses. It is possible that other strains of influenza such as
A/H3N2 and B strains induce differing Th1 and Th2 profiles.
We also had different organ types represented in our popula-
tion, though this allowed us to provide a broad overview of
cellular immunity to vaccine in the transplant recipient popula-
tion. An important point is that our healthy control group was
also significantly younger than the transplant cohort. It has
been well described that aging is an important factor for re-
duced humoral responses [33], and the comparative immuno-
logical responses in transplant and healthy individuals should
be interpreted in this context.

In summary, Th2 responses seem to be key regulators of in-
fluenza vaccine response in transplant recipients. B-cell activa-
tion markers before immunization have the potential to predict
future humoral responses to vaccine. MMF is a key regulator of
these responses at the cellular level. Tailoring immunosuppres-
sion to influence the vaccine response via up-regulation of a
Th2 cytokine profile may be a future strategy to improve out-
comes of vaccination.
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