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ABSTRACT

Motivation: Modern data acquisition based on high-throughput
technology is often facing the problem of missing data. Algorithms
commonly used in the analysis of such large-scale data often depend
on a complete set. Missing value imputation offers a solution to this
problem. However, the majority of available imputation methods are
restricted to one type of variable only: continuous or categorical. For
mixed-type data, the different types are usually handled separately.
Therefore, these methods ignore possible relations between variable
types. We propose a non-parametric method which can cope with
different types of variables simultaneously.
Results: We compare several state of the art methods for the
imputation of missing values. We propose and evaluate an iterative
imputation method (missForest) based on a random forest. By
averaging over many unpruned classification or regression trees,
random forest intrinsically constitutes a multiple imputation scheme.
Using the built-in out-of-bag error estimates of random forest, we are
able to estimate the imputation error without the need of a test set.
Evaluation is performed on multiple datasets coming from a diverse
selection of biological fields with artificially introduced missing values
ranging from 10% to 30%. We show that missForest can successfully
handle missing values, particularly in datasets including different
types of variables. In our comparative study, missForest outperforms
other methods of imputation especially in data settings where
complex interactions and non-linear relations are suspected. The
out-of-bag imputation error estimates of missForest prove to be
adequate in all settings. Additionally, missForest exhibits attractive
computational efficiency and can cope with high-dimensional data.
Availability: The R package missForest is freely available from
http://stat.ethz.ch/CRAN/.
Contact: stekhoven@stat.math.ethz.ch;
buhlmann@stat.math.ethz.ch
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1 INTRODUCTION
Imputation of missing values is often a crucial step in data analysis.
Many established methods of analysis require fully observed
datasets without any missing values. However, this is seldom
the case in medical and biological research today. The ongoing
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development of new and enhanced measurement techniques in these
fields provides data analysts with challenges prompted not only by
high-dimensional multivariate data where the number of variables
may greatly exceed the number of observations, but also by mixed
data types where continuous and categorical variables are present.
In our context, categorical variables can arise as any kind ranging
from technical settings in a mass spectrometer to a diagnostic expert
opinion on a disease state. Additionally, such datasets often contain
complex interactions and non-linear relation structures which are
notoriously hard to capture with parametric procedures.

Most prevalent imputation methods, like k nearest neighbours
[KNNimpute, Troyanskaya et al. (2001)] for continuous data,
saturated multinomial model (Schafer, 1997) for categorical data and
multivariate imputation by chained equations [MICE, Van Buuren
and Oudshoorn (1999)] for mixed data types depend on tuning
parameters or specification of a parametric model. The choice
of such tuning parameters or models without prior knowledge
is difficult and might have a dramatic effect on a method’s
performance. Excluding MICE, the above methods and the majority
of other imputation methods are restricted to one type of variable.
Furthermore, all these methods make assumptions about the
distribution of the data or subsets of the variables, leading to
questionable situations, e.g. assuming normal distributions.

The literature on mixed-type data imputation is rather scarce.
Its first appearance was in the developing field of multiple
imputation brought up by Rubin (1978). Little and Schluchter (1985)
presented an approach based on maximum likelihood estimation
combining the multivariate normal model for continuous and the
Poisson/multinomial model for categorical data. This idea was
later on extended in the book of Little and Rubin (1987). See
also Li (1988), Rubin and Schafer (1990) and Schafer (1997).
A more refined method to combine different regression models
for mixed-type data was proposed by Van Buuren and Oudshoorn
(1999) using chained equations. The conditional model in MICE
can be specified for the missing data in each incomplete variable.
Therefore, no multivariate model covering the entire dataset has to
be specified. However, it is assumed that such a full multivariate
distribution exists and missing values are sampled from conditional
distributions based on this full distribution (for more details see
Section 3). Another similar method using variable-wise conditional
distributions was proposed by Raghunathan et al. (2001) called
sequential regression multivariate imputation. Unlike in MICE, the
predictors must not be incomplete. The method is focussed on survey
data and therefore includes strategies to incorporate restrictions on
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subsamples of individuals and logical bounds based on domain
knowledge about the variables, e.g. only women can have a number
of pregnancies recorded.

Our motivation is to introduce a method of imputation which
can handle any type of input data and makes as few as possible
assumptions about structural aspects of the data. Random forest
[RF, Breiman (2001)] is able to deal with mixed-type data and as
a non-parametric method it allows for interactive and non-linear
(regression) effects. We address the missing data problem using
an iterative imputation scheme by training an RF on observed
values in a first step, followed by predicting the missing values
and then proceeding iteratively. Mazumder et al. (2010) use a
similar approach for the matrix completion problem using a soft-
thresholded SVD iteratively replacing the missing values. We choose
RF because it can handle mixed-type data and is known to perform
very well under barren conditions like high dimensions, complex
interactions and non-linear data structures. Due to its accuracy and
robustness, RF is well suited for the use in applied research often
harbouring such conditions. Furthermore, the RF algorithm allows
for estimating out-of-bag (OOB) error rates without the need for a
test set. For further details, see Breiman (2001).

Here we compare our method with k-nearest neighbour
imputation [KNNimpute, Troyanskaya et al. (2001)] and the
Missingness Pattern Alternating Lasso (MissPALasso) algorithm
by Städler and Bühlmann (2010) on datasets having continuous
variables only. For the cases of categorical and mixed type of
variables, we compare our method with the MICE algorithm
by Van Buuren and Oudshoorn (1999) and a dummy variable
encoded KNNimpute. Comparisons are performed on several
datasets coming from different fields of life sciences and using
different proportions of missing values.

We show that our approach is competitive to or outperforms
the compared methods on the used datasets irrespectively of the
variable type composition, the data dimensionality, the source of
the data or the amount of missing values. In some cases, the
decrease of imputation error is up to 50%. This performance is
typically reached within only a few iterations which makes our
method also computationally attractive. The OOB imputation error
estimates give a very good approximation of the true imputation
error having on average a proportional deviation of no more than
10–15%. Furthermore, our approach needs no tuning parameter, and
hence is easy to use and needs no prior knowledge about the data.

2 APPROACH
We assume X= (X1,X2,...,Xp) to be a n×p-dimensional data
matrix. We propose using an RF to impute the missing values
due to its earlier mentioned advantages as a regression method.
The RF algorithm has a built-in routine to handle missing values
by weighting the frequency of the observed values in a variable
with the RF proximities after being trained on the initially mean
imputed dataset (Breiman, 2001). However, this approach requires
a complete response variable for training the forest.

Instead, we directly predict the missing values using an RF trained
on the observed parts of the dataset. For an arbitrary variable Xs

including missing values at entries i(s)
mis⊆{1,...,n} we can separate

the dataset into four parts:

(1) The observed values of variable Xs, denoted by y(s)
obs;

(2) the missing values of variable Xs, denoted by y(s)
mis;

(3) the variables other than Xs with observations

i(s)
obs={1,...,n}\i(s)

mis denoted by x(s)
obs; and

(4) the variables other than Xs with observations i(s)
mis denoted by

x(s)
mis.

Note that x(s)
obs is typically not completely observed since the index

i(s)
obs corresponds to the observed values of the variable Xs. Likewise,

x(s)
mis is typically not completely missing.
To begin, make an initial guess for the missing values in X

using mean imputation or another imputation method. Then, sort
the variables Xs,s=1,...,p according to the amount of missing
values starting with the lowest amount. For each variable Xs, the
missing values are imputed by first fitting an RF with response

y(s)
obs and predictors x(s)

obs; then, predicting the missing values y(s)
mis

by applying the trained RF to x(s)
mis. The imputation procedure is

repeated until a stopping criterion is met. The pseudo Algorithm 1
gives a representation of the missForest method.

Algorithm 1 Impute missing values with RF.

Require: X an n×p matrix, stopping criterion γ

1. Make initial guess for missing values;
2. k← vector of sorted indices of columns in X

w.r.t. increasing amount of missing values;
3. while not γ do

4. Ximp
old ← store previously imputed matrix;

5. for s in k do
6. Fit a random forest: y(s)

obs∼x(s)
obs;

7. Predict y(s)
mis using x(s)

mis;

8. Ximp
new← update imputed matrix, using predicted y(s)

mis;
9. end for

10. update γ .
11. end while
12. return the imputed matrix Ximp

The stopping criterion γ is met as soon as the difference between
the newly imputed data matrix and the previous one increases for
the first time with respect to both variable types, if present. Here,
the difference for the set of continuous variables N is defined as

�N =
∑

j∈N(Ximp
new−Ximp

old )2∑
j∈N(Ximp

new)2
,

and for the set of categorical variables F as

�F=
∑

j∈F
∑n

i=1IXimp
new �=Ximp

old

#NA
,

where #NA is the number of missing values in the categorical
variables.

After imputing the missing values, the performance is assessed
using the normalized root mean squared error [NRMSE, Oba et al.
(2003)] for the continuous variables which is defined by

NRMSE=
√

mean
(
(Xtrue−Ximp)2

)
var

(
Xtrue

) ,
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where Xtrue is the complete data matrix and Ximp the imputed data
matrix. We use mean and var as short notation for empirical mean
and variance computed over the continuous missing values only.
For categorical variables, we use the proportion of falsely classified
entries (PFC) over the categorical missing values, �F . In both cases,
good performance leads to a value close to 0 and bad performance
to a value around 1.

When an RF is fit to the observed part of a variable, we also
get an OOB error estimate for that variable. After the stopping
criterion γ was met, we average over the set of variables of the
same type to approximate the true imputation errors. We assess the
performance of this estimation by comparing the absolute difference
between true imputation error and OOB imputation error estimate
in all simulation runs.

3 METHODS
We compare missForest with four methods on 10 different datasets where
we distinguish among situations with continuous variables only, categorical
variables only and mixed variable types.

The most well-known method for imputation of continuous datasets
especially in the field of gene expression analysis is the KNNimpute
algorithm by Troyanskaya et al. (2001). A missing value variable Xj is
imputed by finding its k nearest observed variables and taking a weighted
mean of these k variables for imputation. Thereby, the weights depend on
the distance of the variable Xj . The distance itself is usually chosen to be the
Euclidean distance.

When using KNNimpute the choice of the tuning parameter k can have a
large effect on the performance of the imputation. However, this parameter
is not known beforehand. Since our method includes no such parameter, we
implement a cross-validation (Algorithm 2) to obtain a suitable k.

Algorithm 2 Cross-validation KNN imputation.

Require: X an n×p matrix, number of validation sets l, range of
suitable number of nearest neighbours K

1. XCV← initial imputation using mean imputation;
2. for t in 1,...,l do
3. XCV

mis,t← artificially introduce missing values to XCV;
4. for k in K do
5. XCV

KNN,t← KNN imputation of XCV
mis,t using k nearest

neighbours;
6. εk,t← error of KNN imputation for k and t;
7. end for
8. end for
9. kbest←argmin

k

1
l
∑l

t=1εk,t ;

10. Ximp← KNN imputation of X using kbest nearest neighbours.

In the original paper of Troyanskaya et al. (2001), the data were not
standardized before applying the KNNimpute algorithm. This constitutes no
issue in the case of gene expression data, because such data generally consist
of variables on similar scales. However, we are applying the KNNimpute
algorithm to datasets with varying scales in the variables. To avoid variance-
based weighting of the variables, we scale them to a unit SD. We also centre
the variables at zero. After imputation, the data are retransformed such that
the error is computed on the original scales. This last step is performed
because missForest does not need any transformation of the data and we
want to compare the performance of the methods on the original scales of
the data.

Another approach for continuous data, especially in the case of high-
dimensional normal data matrices, is presented by Städler and Bühlmann
(2010) using an EM-type algorithm. In their Missingness Pattern Alternating

Imputation and l1-penalty (MissPALasso) algorithm, the missing variables
are regressed on the observed ones using the lasso penalty by Tibshirani
(1996). In the following E step, the obtained regression coefficients are
used to partially update the latent distribution. The MissPALasso has also
a tuning parameter λ for the penalty. As with KNNimpute, we use cross-
validation to tune λ (cf. Algorithm 2). When applying MissPALasso, the
data are standardized as regularization with a single λ requires the different
regressions to be on the same scale.

In the comparative experiments with categorical or mixed-type variables,
we use the MICE algorithm by Van Buuren and Oudshoorn (1999) based on
the multivariate multiple imputation scheme of Schafer (1997). In contrast to
the latter, the conditional distribution for the missing data in each incomplete
variable is specified in MICE, a feature called fully conditional specification
by Van Buuren (2007). However, the existence of a multivariate distribution
from which the conditional distribution can be easily derived is assumed.
Furthermore, iterative Gibbs sampling from the conditional distributions
can generate draws from the multivariate distribution. We want to point
out that MICE in its default setup is not mainly intended for simple missing
value imputation. Using the multiple imputation scheme, MICE allows for
assessing the uncertainty of the imputed values. It includes features to pool
multiple imputations, choose individual sampling procedures and allows for
passive imputation controlling the sync of transformed variables. In our
experiments, we used MICE with either linear regression with normal errors
or mean imputation for continuous variables, logistic regression for binary
variables and polytomous logistic regression for categorical variables with
more than two categories.

For comparison across different types of variables, we apply the
KNNimpute algorithm with dummy coding for the categorical variables.
This is done by coding a categorical variable Xj into m dichotomous variables
X̃j,m∈{−1,1}. Application of the KNNimpute algorithm for categorical data
can be summarized as:

(1) Code all categorical variables into {−1,1}-dummy variables;

(2) standardize all variables to mean 0 and SD 1;

(3) apply the cross-validated KNNimpute method from Algorithm 2;

(4) retransform the imputed data matrix to the original scales;

(5) code the dummy variables back to categorical variables; and

(6) computed the imputation error.

For each experiment, we perform 50 independent simulations where 10,
20 or 30% of the values are removed completely at random. Each method is
then applied and the NRMSE, the PFC or both are computed (Section 2). We
perform a paired Wilcoxon test of the error rates of the compared methods
versus the error rates of missForest. In addition, the OOB error estimates of
missForest is recorded in each simulation.

4 RESULTS

4.1 Continuous variables only
First, we focus on continuous data. We investigate the following
four publicly available datasets:

• Isoprenoid gene network in Arabidopsis thaliana: this gene
network includes P=39 genes each with n=118 gene
expression profiles corresponding to different experimental
conditions. For more details on this dataset, see Wille et al.
(2004).

• Voice measures in Parkinson’s patients: the data described
by Little et al. (2008) contains a range of biomedical voice
measurements from 31 individuals, 23 with Parkinson’s disease
(PD). There are P=22 particular voice measurements and
n=195 voice recordings from these individuals. The dataset
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Fig. 1. Continuous data. Average NRMSE for KNNimpute (grey),
MissPALasso (white) and missForest (black) on four different datasets and
three different amounts of missing values, i.e. 10, 20 and 30%. Standard
errors are in the order of magnitude of 10−4. Significance levels for the
paired Wilcoxon tests in favour of missForest are encoded as ‘*’ <0.05, ‘**’
<0.01 and ‘***’ <0.001. If the average error of the compared method is
smaller than that of missForest, the significance level is encoded by a hash
(#) instead of an asterisk. In the lowermost dataset, results for MissPALasso
are missing due to the implementations limited capability with regard to high
dimensions.

also contains a response variable giving the health status.
Dealing only with continuous variables, the response was
removed from the data. We will return to this later on.

• Shapes of musk molecules: this dataset describes 92 molecules
of which 47 are musks and 45 are non-musks. For each
molecule P=166 features describe its conformation, but since a
molecule can have many conformations due to rotating bonds,
there are n=476 different low-energy conformations in the
set. The classification into musk and non-musk molecules is
removed.

• Insulin gene expression: this high-dimensional dataset
originates from an analysis by Wu et al. (2007) of vastus
lateralis muscle biopsies from three different types of patients
following insulin treatment. The three types are insulin-
sensitive, insulin-resistant and diabetic patients. The analysis
involves P=12′626 genes whose expression levels were
measured from n=110 muscle biopsies. Due to computation
time we only perform 10 simulations instead of 50.

Results are given in Figure 1. We can see that missForest performs
well, sometimes reducing the average NRMSE by up to 25% with
respect to KNNimpute. In case of the musk molecules data, the
reduction is even >50%. The MissPALasso performs slightly better
than missForest on the gene expression data. However, there are no
results for the MissPALasso in case of the Insulin dataset, because
the high dimension makes computation not feasible.

For continuous data, the missForest algorithm typically reaches
the stopping criterion quite fast needing about five iterations. The
imputation takes ∼10 times as long as performing the cross-
validated KNNimpute where {1,...,15} is the set of possible
numbers of neighbours. For the Insulin dataset, an imputation takes
on average 2 h on a customary available desktop computer.

4.2 Categorical variables only
We also consider datasets with only categorical variables. Here,
we use the MICE algorithm described in Section 3 instead of the
MissPALasso. We use a dummy implementation of the KNNimpute
algorithm to deal with categorical variables (Section 3). We apply
the methods to the following datasets:

• Cardiac single photon emission computed tomography
(SPECT) images: Kurgan et al. (2001) discuss this processed
dataset summarizing over 3000 2D SPECT images from n=
267 patients in P=22 binary feature patterns.

• Promoter gene sequences in Escherichia coli: the dataset
contains sequences found by Harley and Reynolds (1987) for
promoters and sequences found by Towell et al. (1990) for non-
promoters totalling n=106. For each candidate, a sequence of
57 bp was recorded. Each variable can take one of four DNA
nucleotides, i.e. adenine, thymine, guanine or cytosine. Another
variable distinguishes between promoter and non-promoter
instances.

• Lymphography domain data: the observations were obtained
from patients suffering from cancer in the lymphatic of the
immune system. For each of the n=148 lymphoma, P=19
different properties were recorded mainly in a nominal fashion.
There are nine binary variables. The rest of the variables have
three or more levels.

In Figure 2, we can see that missForest is always imputing the
missing values better than the compared methods. In some cases,
namely for the SPECT data, the decrease of PFC compared with
MICE is up to 60%. However, for the other datasets the decrease is
less pronounced ranging around 10–20%, but there still is a decrease.
The amount of missing values on the other hand seems to have
only a minor influence on the performance of all methods. Except
for MICE on the SPECT data, error rates remain almost constant
increasing only by 1–2%. We pointed out earlier that MICE is not
primarily tailored for imputation performance, but offers additional
possibilities of assessing uncertainty of the imputed values due
to the multiple imputation scheme. Anyhow, the results using the
cross-validated KNNimpute (Algorithm 2) on the dummy-coded
categorical variables is surprising. The imputation for missForest
needs on average five times as long as a cross-validated imputation
using KNNimpute.

4.3 Mixed-type variables
In the following, we investigate four datasets where the first one
has already been introduced, i.e. musk molecules data including the
categorical response yielding the classification. The other datasets
are as follows:

• Proteomics biomarkers for Gaucher’s disease: Gaucher’s
disease is a rare inherited enzyme deficiency. In this dataset,
Smit et al. (2007) present protein arrays for biomarkers
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Fig. 2. Categorical data. Average PFC for cross-validated KNNimpute
(grey), MICE (white) and missForest (black) on three different datasets and
three different amounts of missing values, i.e. 10, 20 and 30%. Standard
errors are in the order of magnitude of 10−4. Significance levels for the
paired Wilcoxon tests in favour of missForest are encoded as ‘*’ <0.05, ‘**’
<0.01 and ‘***’ <0.001.

(P=590) from blood serum samples (n=40). The binary
response distinguishes between disease status.

• Gene finding over prediction (GFOP) peptide search: this
dataset comprises mass-spectrometric measurements of n=
595 peptides from two shotgun proteomics experiments on the
nematode Caenorhabditis elegans. The collection of P=18
biological, technical and analytical variables had the aim of
novel peptide detection in a search on an extended database
using established gene prediction methods.

• Children’s Hospital data: this dataset is the product of a
systematic long-term review of children with congenital heart
defects after open heart surgery. Next to defect- and surgery-
related variables, also long-term psychological adjustment and
health-related quality of life was assessed. After removing
observations with missing values, the dataset consists of n=55
patients and P=124 variables of which 48 are continuous and
76 are categorical. For further details see Latal et al. (2009).

The results of this comparison are given in Figure 3. We can see
that missForest performs better than the other two methods, again
reducing imputation error in many cases by >50%. For the GFOP
data, KNNimpute has a slightly smaller NRMSE than missForest but
makes twice as much error on the categorical variables. Generally,
with respect to the amount of missing values the NRMSE tends
to have a greater variability than the PFC which remains largely
the same.

The imputation results for MICE on the Children’s Hospital
data have to be treated cautiously. Since this dataset contains ill-
distributed and nearly dependent variables, e.g. binary variables
with very few observations in one category, the missingness
pattern has a direct influence on the operability of the MICE
implementation in the statistical software R. The imputation error
illustrated in Figure 3 was computed from 50 successful simulations
by randomly generating missingness patterns, which did not include
only complete cases or no complete cases at all within the categories

Fig. 3. Mixed-type data. Average NRMSE (left bar) and PFC (right bar,
shaded) for KNNimpute (grey), MICE (white) and missForest (black) on
four different datasets and three different amounts of missing values, i.e.
10, 20 and 30%. Standard errors are in the order of magnitude of 10−3.
Significance levels for the paired Wilcoxon tests in favour of missForest are
encoded as ‘*’ <0.05, ‘**’ <0.01 and ‘***’ <0.001. If the average error
of the compared method is smaller than that of missForest, the significance
level is encoded by a hash (#) instead of an asterisk. Note that, due to ill-
distribution and near dependence in the Child hospital data, the results for
MICE have to be treated with caution (Section 4.3).

of the variables. Therefore, the actual numbers of simulations
were >50 for all three missing value amounts. Furthermore, nearly
dependent variables were removed after each introduction of missing
values. This leads to an average of seven removed variables in each
simulation. Due to this ad hoc manipulation for making the MICE
implementation work, we do not report significance statements for
the imputation error.

4.4 Estimating imputation error
In each experiment, we get for each simulation run an OOB estimate
for the imputation error. In Figure 4 the differences of true imputation
error, errtrue, and OOB error estimates, êrrOOB, are illustrated for the
continuous and the categorical datasets. Also, the mean of the true
imputation error and the OOB error estimate over all simulations is
depicted.

We can see that for the Isoprenoid and Musk datasets, the OOB
estimates are very accurate only differing from the true imputation
error by a few percents. In the case of Parkinson’s dataset, the OOB
estimates exhibit a lot more variability than in all other datasets.
However, on average the estimation is comparably good. For
the categorical datasets, the estimation accuracy behaves similarly
over all scenarios. The OOB estimates tend to underestimate
the imputation error with increasing amount of missing values.
Apparently, the absolute size of the imputation error seems to play
a minor role in the accuracy of the OOB estimates, which can be
seen nicely when comparing the SPECT and the Promoter data.
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A B

Fig. 4. Difference of true imputation error errtrue and OOB imputation error
estimate êrrOOB for the continuous datasets (A) and the categorical datasets
(B) and three different amounts of missing values, i.e. 0.1, 0.2 and 0.3. In
each case, the average errtrue (circle) and the average êrrOOB (plus) over all
simulations is given.

Table 1. Average runtimes (in seconds) for imputing the analysed datasets

Dataset n P KNN MissPALasso MICE missForest

Isoprenoid 118 39 0.8 170 − 5.8
Parkinson’s 195 22 0.7 120 − 6.1
Musk (cont.) 476 166 13 1400 − 250
Insulin 110 12626 1800 NA − 6200

SPECT 267 22 1.3 − 37 5.5
Promoter 106 57 14 − 4400 38
Lymphography 148 19 1.1 − 93 7.0

Musk (mixed) 476 167 27 − 2800 500
Gaucher’s 40 590 1.3 − 130 29
GFOP 595 18 2.7 − 1400 40
Children 55 124 2.7 − 4000 110

Runtimes are averaged over the amount of missing values since this has a negligible
effect on computing time. NA, not available.

4.5 Computational efficiency
We assess the computational cost of missForest by comparing
the runtimes of imputation on the previous datasets. Table 1
shows the runtimes in seconds of all methods on the analysed
datasets. We can see that KNNimpute is by far the fastest method.
However, missForest runs considerably faster than MICE and the
MissPALasso. In addition, applying missForest did not require
antecedent standardization of the data, laborious dummy coding of
categorical variables nor implementation of CV choices for tuning
parameters.

There are two possible ways to speed up computation. The first
one is to reduce the number of trees grown in each forest. In all
comparative studies, the number of trees was set to 100 which offers
high precision but increased runtime. In Table 2, we can see that
changing the number of trees in the forest has a stagnating influence
on imputation error, but a strong influence on computation time
which is approximately linear in the number of trees.

The second one is to reduce the number of variables randomly
selected at each node (mtry) to set up the split. Table 2 shows
that increasing mtry has limited effect on imputation error, but

Table 2. Average imputation error (NRMSE/PFC in percent) and runtime
(in seconds) with different numbers of trees (ntree) grown in each forest and
variables tried (mtry) at each node of the trees

mtry ntree

10 50 100 250 500

1
36.8/35.5 27.4/32.3 20.4/31.3 17.2/30.0 16.0/30.8
2.5 s 3.2 s 3.9 s 5.8 s 9.2 s

2
34.9/31.8 24.8/29.2 18.3/28.8 16.0/28.6 15.5/29.1
6.9 s 11.8 s 15.0 s 25.2 s 39.3 s

4
34.9/31.3 24.4/28.9 17.9/28.2 15.4/28.2 15.8/28.7
16.5 s 25.1 s 35.0 s 49.0 s 83.3 s

8
34.7/31.4 24.3/28.9 18.1/27.8 15.2/27.8 15.7/28.6
39.2 s 57.4 s 84.4 s 130.2 s 190.8 s

16
34.6/30.9 24.3/28.7 18.1/28.0 15.4/27.8 15.6/28.5
68.7 s 99.7 s 172.2 s 237.6 s 400.7 s

Here, we consider the GFOP dataset with artificially introduced 10% of missing values.
For each comparison, 50 simulation runs were performed using always the same missing
value matrix for all number of trees/randomly selected variables for a single simulation.

computation time is strongly increased. Note that for mtry=1 we no
longer have an RF, since there is no more choice between variables
to split on. This leads to a much higher imputation error, especially
for the cases with low numbers of bootstrapped trees. We use for
all experiments 	√p� as default value, e.g. in the GFOP data this
equals 4.

5 CONCLUSION
Our new algorithm, missForest, allows for missing value imputation
on basically any kind of data. In particular, it can handle
multivariate data consisting of continuous and categorical variables
simultaneously. MissForest has no need for tuning parameters nor
does it require assumptions about distributional aspects of the data.
We show on several real datasets coming from different biological
and medical fields that missForest outperforms established
imputation methods like k-nearest neighbours imputation or
multivariate imputation using chained equations. Using our OOB
imputation error estimates, missForest offers a way to assess the
quality of an imputation without the need of setting aside test data
nor performing laborious cross-validations. For subsequent analysis,
these error estimates represent a mean of informal reliability check
for each variable. The full potential of missForest is deployed
when the data include complex interactions or non-linear relations
between variables of unequal scales and different type. Furthermore,
missForest can be applied to high-dimensional datasets where the
number of variables may greatly exceed the number of observations
to a large extent and still provides excellent imputation results.
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