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An intersection graph of curves in the plane is called a string graph. Matoušek almost

completely settled a conjecture of the authors by showing that every string graph with m

edges admits a vertex separator of size O(
√
m logm). In the present note, this bound is

combined with a result of the authors, according to which every dense string graph contains

a large complete balanced bipartite graph. Three applications are given concerning string

graphs G with n vertices: (i) if Kt �⊆ G for some t, then the chromatic number of G is

at most (log n)O(log t); (ii) if Kt,t �⊆ G, then G has at most t(log t)O(1)n edges,; and (iii) a

lopsided Ramsey-type result, which shows that the Erdős–Hajnal conjecture almost holds

for string graphs.

2010 Mathematics subject classification: Primary 05C35

Secondary 05C62, 52C10

1. Introduction

A graph G = (V , E) is called a string graph if it is the intersection graph of curves in the

plane, i.e., if there is a collection of curves (‘strings’) γv in the plane, one curve for each

vertex v ∈ V , such that two curves γu and γv with u �= v intersect if and only if u and v

are adjacent in G. Note that the two curves are allowed to intersect more than once, and

this results in only one edge (so no parallel edges) in the string graph.

A separator in a graph G = (V , E) is a subset S of the vertex set V such that no

connected component of G \ S has more than 2
3
|V | vertices. Equivalently, S is a separator
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of G if there is a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| � 2
3
|V | such that no vertex in

V1 is adjacent to any vertex in V2.

In [11] we proved that every string graph G with m edges has a separator whose size is

O(m3/4
√

logm), and conjectured that this bound can be improved to O(
√
m).1 This result,

if true, would be best possible. In [9], we proved our conjecture in the special case where

the vertices of G can be represented by curves in the plane with the property that every

pair of them intersect in at most a bounded number of points. The starting point of our

investigations was a recent paper of Matoušek [17], in which he ingeniously adapted some

powerful techniques developed by Feige, Hajiaghayi and Lee [7], using the framework

of multicommodity flows to design efficient approximation algorithms for finding small

separators in general graphs. (See [4] for a similar application.) Matoušek [17] proved our

above conjecture up to a logarithmic factor.

Theorem 1.1 ([17]). Every string graph with m edges has a separator whose size is at most

d
√
m logm, where d is an absolute constant.

The aim of this note is to combine Theorem 1.1 with some previous results of the authors

to substantially improve the best known estimates for various important parameters of

string graphs.

Our first result provides an upper bound on the chromatic number of string graphs

with no complete subgraph of size t, which is polylogarithmic in the number of vertices.

Theorem 1.2. There is an absolute constant C such that every Kt-free string graph on n

vertices has chromatic number at most (log n)C log t.

Previously, it was not even known if the chromatic number of every triangle-free string

graph on n vertices is at most no(1). In the other direction, solving an old problem of Erdős,

for every n, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter and Walczak [21] constructed

a triangle-free intersection graph of n segments in the plane with chromatic number at

least log log n. In particular, it follows that the chromatic number of triangle-free string

graphs cannot be bounded from above by a constant.

A topological graph is a graph drawn in the plane so that its vertices are represented

by points and its edges are represented by (possibly crossing) curves connecting the

corresponding point pairs. We also assume that no edge passes through any point

representing a vertex other than its endpoints. For any integer t � 2, we say that a

topological graph is t-quasi-planar if it has no set of t edges each pair of which crosses.

According to an old conjecture made independently by several people (see, e.g., Problem

6 in [18]), for any integer t � 2, there is a constant ct such that every t-quasi-planar

topological graph on n vertices has at most ctn edges. Any 2-quasi-planar graph is planar,

so it follows from Euler’s polyhedral formula that the conjecture is true for t = 2 with

c2 = 3. For t = 3, extending earlier work of Agarwal, Aronov, Pach, Pollack and Sharir [2],

the conjecture was proved by Pach, Radoičić and Tóth [20]. Subsequently, using the so-

called ‘discharging method’ [22], Ackerman [1] also managed to prove the conjecture for

1 Throughout this paper, all logarithms are base 2. Also, for the sake of simplicity, we systematically omit floor

and ceiling signs whenever they are not crucial.
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t = 4. Theorem 1.2 immediately implies the following result, originally established in [13]

by a more complicated argument.

Corollary 1.3 ([13]). Every t-quasi-planar topological graph on n > 2 vertices has at most

n(log n)c log t edges, for an appropriate constant c.

Proof (using Theorem 1.2). Consider a t-quasi-planar graph G with n vertices and m

edges. Remove the endpoints of the edges, and take the intersection graph of the (open)

edges as curves. We obtain a Kt-free string graph with m vertices. By Theorem 1.2, its

vertices can be coloured by at most (logm)C log t colours so that no two vertices of the

same colour are adjacent. Therefore, the curves corresponding to vertices of any given

colour class form a plane graph. Hence, the size of each colour class is at most 3n. This

implies that m, the total number of edges of G, satisfies the inequality

m � 3n · (logm)C log t � 3n · (2 log n)C log t,

as required.

A family of graphs is called hereditary if it is closed under induced subgraphs. The

Erdős–Hajnal conjecture [6] states that for every hereditary family F of graphs which is

not the family of all graphs, there is a constant c = cF such that every graph in F on n

vertices contains a clique or independent set of size nc. A weaker estimate, with ec
√

log n

instead of nc, was established by Erdős and Hajnal.

The Erdős–Hajnal conjecture is known to be true only for a few special classes of

graphs; see the recent survey by Chudnovsky [5] for partial results. Obviously, the

families of intersection graphs of finitely many convex bodies, balls, curves, or other kinds

of geometric objects in a given space, are hereditary. In many cases, it has been verified

that these families satisfy the Erdős–Hajnal conjecture; see [10] for a survey. However,

it is not known whether the Erdős–Hajnal conjecture holds for string graphs. Our next

theorem represents the first progress on this problem. It is a lopsided statement: every

string graph contains an independent set of size at least nc or a complete subgraph with

at least nc/ log log n vertices.

Theorem 1.4. For every ε > 0, there is a constant c = cε > 0 such that the following holds.

Every string graph on n > 2 vertices contains a complete subgraph with at least nc/ log log n

vertices or an independent set of size n1−ε. That is, every collection of n > 2 curves in

the plane contains a subcollection of at least nc/ log log n pairwise intersecting curves or a

subcollection of at least n1−ε pairwise disjoint curves.

Proof (using Theorem 1.2). Let c = ε
C
. Applying Theorem 1.2 with t = nc/ log log n, we

obtain that the chromatic number of any Kt-free string graph G with n vertices is at most

(log n)C log t = tC log log n = nε.

Thus, G has an independent set of size at least n/nε = n1−ε.
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The classical Kővári–Sós–Turán theorem [15] states that any Kt,t-free graph with

n vertices has at most n2−1/t + tn/2 edges. Pach and Sharir [19] conjectured that, for

string graphs, this upper bound can be replaced by a bound linear in n. That is, every

Kt,t-free string graph on n vertices has at most ctn edges. They verified this conjecture

up to a polylogarithmic factor in n. In [11], it was proved that the conjecture is true

with ct � tc log log t. The authors further conjectured that the statement also holds with

ct = ct log t, which would be best possible. We get close to this conjecture, proving the

upper bound ct � t(log t)O(1).

Theorem 1.5. There is a constant c such that, for any positive integers t and n, every Kt,t-

free string graph with n vertices has O(t(log t)cn) edges.

The celebrated crossing lemma of Ajtai, Chvátal, Newborn and Szemerédi [3] and,

independently, Leighton [16] states that in every drawing of a graph with n vertices and

m � 4n edges, there are at least Ω
(
m3

n2

)
pairs of crossing edges. This is easily seen to be

equivalent to the existence of one edge that crosses Ω
(
m2

n2

)
other edges. Indeed, by the

crossing lemma, the average number of edges a single edge crosses is Ω
(
m2

n2

)
. In the other

direction, by repeatedly pulling out one edge at a time that crosses Ω
(
m2

n2

)
of the remaining

edges, a total of Ω(m) edges are pulled out that each cross Ω
(
m2

n2

)
other edges. This gives

Ω
(
m · m2

n2

)
pairs of crossing edges, and hence implies the crossing lemma.

Can the crossing lemma be strengthened to show that every graph drawn with n vertices

and m � 4n edges contains two sets E1, E2 of edges, each of size Ω
(
m2

n2

)
, such that every

edge in E1 crosses every edge in E2? In [14], the authors and C. Tóth proved that,

although the answer is no, the statement is true up to a polylogarithmic factor. It is not

hard to see that this result is an immediate consequence of Theorem 1.5.

Corollary 1.6 ([14]). In every topological graph G with n vertices and m � 4n edges, there

are two disjoint sets edges, each of cardinality at least

m2

n2
(
log m

n

)c ,
such that every edge in one set crosses all edges in the other. Here c > 0 is a suitable absolute

constant.

Proof (using Theorem 1.5 and the crossing lemma). It follows from the crossing lemma

that the intersection graph of the edges of G with their endpoints deleted is a string graph

G′ with m vertices and Ω
(
m3

n2

)
edges. Thus, the average degree of the vertices in G′ is

Ω
(
m2

n2

)
. Theorem 1.5 then implies that G′ contains a complete bipartite graph Kt,t as a

subgraph, with

t = Ω

(
m2

n2
(
log m

n

)c
)
.
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The two vertex classes of this bipartite graph correspond to the desired pair of crossing

edge sets in G.

At least one logarithmic factor is needed in Corollary 1.6. In [14], we constructed

topological graphs with n vertices and m � 4n edges for which the largest pair of crossing

sets has cardinality

O

(
m2

n2 log m
n

)
.

In the next two sections, we prove Theorems 1.2 and 1.5, respectively. Apart from

Matoušek’s separator theorem, Theorem 1.1, our other main tool will be the following

result established in [12]. It shows that every dense string graph of n vertices contains a

complete bipartite subgraph such that each of its vertex classes is of size nearly Ω(n).

Lemma 1.7 ([12]). There is a constant b such that every string graph with n vertices and

εn2 edges contains a complete bipartite graph with parts of order at least εb n
log n

.

As mentioned in [12], the construction in [8] shows that the dependence on n is tight,

giving a string graph on n vertices with edge density 1 − o(1) and whose largest balanced

complete bipartite graph has O(n/ log n) vertices.

2. Proof of Theorem 1.2

To prove Theorem 1.2, it suffices to establish the following lemma.

Lemma 2.1. There is an absolute constant C such that every Kt-free string graph on n > 2

vertices contains an independent set of size at least n(log n)−C log t.

Proof of Theorem 1.2 (using Lemma 2.1). The statement is trivial for t � 2, so we may

assume t > 2. We obtain a proper vertex colouring of the Kt-free string graph G on n

vertices by repeatedly pulling out maximum indepedent sets, and giving a new colour

to the elements of each such independent set. It follows from the lower bound on the

independence number, given in Lemma 2.1, that after using at most

n

(n/2)(log(n/2))−C log t
� 2(log n)C log t

different colours, at least half of the vertices of G have been coloured. Therefore, one can

properly colour all the vertices, using at most

log n∑
i=0

2(log(n/2i))C log t � (1 + log n) · 2(log n)C log t � 4(log n)C log t+1

colours. This completes the proof of Theorem 1.2. Note that the constant C in Theorem 1.2

is a bit larger than the constant C from Lemma 2.1.
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Proof of Lemma 2.1. Let d � 1 and b be the constants from Theorem 1.1 and Lemma 1.7,

respectively. We may assume that t > 2, as otherwise the result is trivial. Let C =

max(8d, 6b + 1). Let It(n) denote the maximum α such that every Kt-free string graph

G = (V , E) on n vertices contains an independent set of size α. We will prove by induction

on n and t that

It(n) � n(log n)−C log t, (2.1)

for every n > 2.

In the base cases 3 � n � 24d, G has an independent set of size 1 � n(log n)−C log t, where

we used C � 8d and n, t � 3. The proof splits into two cases, depending on whether the

number m of edges of G is small or large. Let ε = (4d(log n)2)−2. As we may assume

n > 24d, we have ε � (log n)−6.

Case 1: m � εn2. In this case, by Theorem 1.1, the string graph G has a separator S of size

at most d
√
m logm � 2dε1/2n log n = n/(2 log n). Thus, there is a partition V = S ∪ V1 ∪ V2

with |V1|, |V2| � 2n/3 such that no vertex in V1 is adjacent to any vertex in V2. Let ni = |Vi|
for i = 1, 2. The union of the largest independent set in V1 and the largest independent

set in V2 is an independent set. Hence,

It(n) � It(n1) + It(n2) � n1(log n1)
−C log t + n2(log n2)

−C log t

� (n1 + n2)(log 2n/3)−C log t

� n

(
1 − 1

2 log n

)
(log n)−C log t

(
1 − log 3/2

log n

)−C log t

� n(log n)−C log t

(
1 − 1

2 log n

)(
1 − log 3/2

log n

)−1

� n(log n)−C log t,

where the second inequality uses the induction hypothesis. This completes the proof in

this case.

Case 2: m > εn2. In this case, by Lemma 1.7, the string graph G has a complete bipartite

graph with parts A and B of size s � εbn/ log n � n/(log n)6b+1 � n(log n)−C . As G is Kt-

free, and it contains all edges between A and B, at least one of the subgraphs induced by

A or by B is Kt/2-free. Thus,

It(n) � It/2(s) � s(log s)−C log(t/2) � s(log n)−C log(t/2) = s(log n)C−C log t

� n(log n)−C (log n)C−C log t = n(log n)−C log t,

where the second inequality uses the induction hypothesis. This completes the proof.

3. Proof of Theorem 1.5

The proof relies on the following technical lemma from [9], whose proof is based on a

simple divide and conquer approach. It shows that if every member of a hereditary family

of graphs admits a small separator, then the number of edges of each graph in this family

is at most linear in the number of vertices. Given a non-negative function f defined on
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the set of positive integers, we say that a family F of graphs is f-separable if every graph

in F with n vertices has a separator of size at most f(n).

Lemma 3.1 ([9]). Let n0 � 1 and φ(n) be a monotone decreasing non-negative function for

n � n0 with φ(n0) � 1
12

. If F is an nφ(n)-separable hereditary family of graphs, then every

graph in F with n � n0 vertices has fewer than qn0

2
n edges, where

q =

∞∏
i=0

(1 + φ((4/3)in0)).

Let F be the hereditary family of graphs which consists of all Kt,t-free string graphs. It

follows from Lemma 1.7 that if G is a Kt,t-free string graph with n vertices, it must have

fewer than εn2 edges, where t = εbn/ log n and b � 1 is the constant from Lemma 1.7, so

that we have ε =
(
t log n
n

)1/b
. By Theorem 1.1, G has a separator of size at most

d
√
m logm � 2d

√
m log n � 2dε1/2n log n = nφ(n),

where d � 1 is the constant that appears in Theorem 1.1 and

φ(n) = 2dt
1
2b (log n)1+

1
2b n− 1

2b .

One can easily check by taking the derivative of φ that φ(n) is a monotone decreasing

function for n � e2b+1.

Let n0 = xt(log t)a, where x = (28db)16b and a = 8b. Then we have n0 � e2b+1, and hence

φ(n) is a monotone decreasing function for n � n0. We have

φ(n0) = 2d(t/n0)
1
2b (log n0)

1+ 1
2b = 2dx− 1

2b (log t)− a
2b (log n0)

1+ 1
2b

� 2−63d−7b−8(log t)−4(log n0)
2 = 2−63d−7b−8(log t)−4(log x + log t + 8b log log t)2

� 2−50d−7b−6(log t)−2(log x)2 � 2−40d−7b−4(log t)−2(log(28db))2 � 1

12
.

Note that, for n � n0,

φ((4/3)n)

φ(n)
=

(
1 +

log(4/3)

log n

)1+1/2b

(4/3)− 1
2b �

(
1 +

log(4/3)

log n0

)1+1/2b

(4/3)− 1
2b

�
(

1 +
2−8

b

)1+1/2b

(4/3)− 1
2b �

(
1 +

1

100b

)
(4/3)− 1

2b � 1 − 1

12b
.

Hence,

∞∏
i=0

(1 + φ((4/3)in0) � exp

( ∞∑
i=0

φ((4/3)in0)

)
� exp

( ∞∑
i=0

(
1 − 1

12b

)−i

/12

)
= eb.

Thus, by Lemma 3.1, the number of edges of any graph in F on n vertices, i.e., any

Kt,t-free string graph on n vertices, is at most ebn0

2
n = O(t(log t)an). This completes the

proof of Theorem 1.5.

Final Remarks. Recall that we conjectured that the logarithmic factor in Theorem 1.1

can be removed.
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Conjecture 3.2 ([11]). Every string graph with m edges has a separator of order O(
√
m).

Conjecture 3.2 would imply improvements to the results in this paper. For example, by

modifying the proof of Theorem 1.5, Conjecture 3.2 implies the following conjecture.

Conjecture 3.3 ([12]). Every Kt,t-free string graph on n vertices has at most ct(log t)n edges.

This in turn implies the following conjectured improvement to Corollary 1.6, which

would be tight.

Conjecture 3.4. In every topological graph with n vertices and m � 4n edges, there are two

disjoint sets edges, each of cardinality

Ω

(
m2

n2(log m
n
)

)
,

such that every edge in one set crosses all edges in the other.

Conjecture 3.2 would also imply improved constants in Theorem 1.2, Corollary 1.3, and

Theorem 1.4.
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