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S U M M A R Y
The surface-NMR tomography technique is based on the principles of electromagnetic induc-
tion and proton spin dynamics. Electromagnetic fields emitted by large surface current-driven
loops are employed to locate and quantify groundwater reservoirs. The oscillating magnetic
fields interact with proton spins of water molecules in the electrically conductive subsur-
face. To study the influence of changing subsurface electrical properties on the nuclear spin
response, we consider the spin magnetization as a virtual magnetic dipole receiver. The numer-
ical solutions for the electric and magnetic fields of the transmitter and the virtual receiver in
3-D heterogeneous ground are based on the finite-element method. We explicitly compute the
frequency-domain electromagnetic sensitivities for separate spin magnetizations in a ground-
water aquifer to study the distortion of the NMR response because of electrical heterogeneities
in the medium. Analyses of entire pulse moment sequences yield the cumulative sensitivities
to electrical conductivity and water-content variations in the subsurface. We illustrate the
influence of conductivity on NMR responses using a limited number of models. From these
models we found that electrical conductivity anomalies in the shallow subsurface (<50 m)
having values ≥0.1 S m–1 and volumes with linear dimensions in the order of our loop size
(i.e. edge length 100 m) can have a strong influence on the NMR response and ought to be
taken into account in the inversion of surface-NMR data. The effect increases non-linearly
with increased body size, increased conductivity contrast and decreased anomaly depth.

Key words: Electromagnetic theory; Magnetic and electrical properties; Hydrogeophysics.

1 I N T RO D U C T I O N

Surface nuclear magnetic resonance (NMR) tomography provides
information on water locations and volumes in the earth’s subsur-
face (Weichman et al. 2000; Hertrich 2008). Advances over the past
few years have extended the commonly employed 1-D surface-NMR
sounding approach in a homogeneous resistive earth (Legchenko &
Valla 2002) and 1-D layered conducting media (Shushakov 1996;
Hunter & Kepic 2005) to 2-D surface-NMR tomography of het-
erogeneous distributions of groundwater (Hertrich et al. 2009).
Recently, we devised improved forward and inverse modelling al-
gorithms for surface-NMR tomography to take account of a 3-D
electrically conductive earth, surface topography and arbitrary loop
shapes (Lehmann-Horn et al. 2011).

The use of loops placed at the surface of the object under in-
vestigation is a common practice in biomedical, spectroscopic and
geophysical NMR applications (Chen & Hoult 1989; Levitt 2002).
In medicine, small radio frequency coils are employed to probe and
image small human or animal tissues and organs (Doty et al. 2007).
It is well known that the physical properties of the sample (i.e. elec-
trical conductivity) influence the signal-to-noise ratio of the device.
A conductive body in the immediate vicinity of the coil acts as

an extra impedance element (resistor) in the equivalent circuit and
therefore introduces additional thermal noise. The effectiveness of
the system can be improved by increasing the distance between the
coil and the conductive body. The phenomenon is called the lift-off
effect (Suits et al. 1998). In geophysical applications it is difficult to
lift the loop away from the conductive ground because the surface
coils have diameters of tens to hundreds of metres.

The processing and interpretation of surface-NMR tomogra-
phy data, to reconstruct the water-content distribution of the sub-
surface, requires knowledge of the subsurface electrical conduc-
tivity distribution. In most previous treatments, the conductivity
structure was assumed to be known from accompanying electri-
cal/electromagnetic (EM) surveying (e.g. geoelectric, time-domain
EM) or borehole measurements. Because the surface-NMR tech-
nique is based on the principles of EM induction and spin dy-
namics, the amplitude and phase of the NMR response carries in-
formation about the subsurface conductivity distribution. Braun
et al. (2005) performed inversions of surface-NMR data (amplitude
and phase information) to determine the water content distribu-
tion for a specified conductivity model. Later, they inverted NMR
soundings directly for both electrical conductivity and water-content
(Braun et al. 2008). But difficulties during the inversion process
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may arise because of off-resonance effects which occur when the
transmitter frequency is not exactly equal to the Larmor frequency
(Walbrecker et al. 2011), and instrument phase changes associated
with the generator, amplifier and matching network. Furthermore,
post-processing steps applied to noise-contaminated data can seri-
ously distort the NMR phases. Data recording and post-processing
need to be done very carefully to avoid these effects. Moreover,
surface-NMR sensitivity to electrical conductivity is a highly non-
linear problem and until now has not been fully investigated. In this
contribution, we present a new formulation for calculating the sen-
sitivities explicitly, which could be incorporated into a non-linear
inversion program to recover conductivity and water content simul-
taneously. Alternatively, if the conductivity structure is known from
EM measurements, then the influence can be directly studied. Ei-
ther way, our goal is to enhance understanding of surface NMR
sensitivity to electrical conductivity in the subsurface.

To compute the sensitivity kernels or Fréchet derivatives, we
make use of a numerical forward modelling algorithm that we re-
cently developed for a 3-D heterogeneous earth having arbitrary
surface topography (Lehmann-Horn et al. 2011). The algorithm is
based on a secondary magnetic vector potential approach that com-
bines a thin wire line integral technique (the Biot–Savart law) with
a finite-element method. The primary potentials are obtained using
a line-integral over the transmitter, which can be of arbitrary shape
lying on an uneven surface topography. The singularity introduced
by the current source can be circumvented in this way (Zhdanov
2009). The finite-element method offers a powerful means to obtain
the numerical solution for the secondary EM field in inhomogeneous
media having complicated internal boundaries (Jin 2002; Davidson
2005; Hand 2008). Edge-based finite elements are employed for
solving the Helmholtz equation for the secondary magnetic vector
potential on an unstructured grid (Rieben et al. 2005).

The structure of this paper is as follows. We first introduce the
principal equations that govern EM induction in the earth and the
evolution of spin magnetization. We then discuss the sensitivity
problem for electrical conductivity and liquid water. The spin mag-
netization is viewed as a virtual magnetic dipole receiver and the
sensitivities are computed for the resulting frequency-domain EM
problem (Fig. 1). This allows us to investigate the influence of
changing electrical rock properties on spin magnetization in the
subsurface and NMR response. Finally, we give a detailed analy-
sis of entire surface-NMR sounding curves for several subsurface
models that provide the cumulative sensitivity to water content and
electrical conductivity variations. The focus of the models is on 3-D

Figure 1. Schematic of the system used to study the distortion of electro-
magnetic fields generated by a transmitter (Tx) and virtual receivers (P1,
P2) because of conductivity anomalies within a groundwater aquifer. The z-
component of the Cartesian coordinate system (x , y, z, or geographic frame)
is rotated in the direction of the static earth’s magnetic field B0, having in-
clination 45◦ and declination 0◦ (x ′, y′, z′, or laboratory local coordinate
frame).

conductivity anomalies, because in future field experiments we are
interested in making surface-NMR measurements in the presence of
electrically conductive features such as (i) salt plumes that contam-
inate freshwater aquifers (Wooding 1997), (ii) freshwater bearing
palaeochannels that are confined by dipping clay layers (Auken et al.
2008) and (iii) Arctic sea ice ridges where NMR signals are likely
to be heavily influenced by the salty sea water (Eiken et al. 1995).

2 T H E O RY

2.1 EM induction

Current-driven transmitter loops generate EM fields in the hetero-
geneous subsurface as well as in the air. Because we deal with a
geophysical technique operating at a frequency ∼2 kHz, we can ap-
ply the quasi-static approximation and describe EM diffusion with
Ampere’s and Faraday’s laws in the following form (Jackson 2006):

∇ × H = JC + JE , (1a)

∇ × E = −∂B/∂t + MS . (1b)

The quantities E (V m–1) and H (A m–1) are the electric and
magnetic field intensities, respectively. The quantity JC = σ · E
(A m−2) is the electric conduction current density and JE (A m–2)
is the external electric current density (i.e. electric source term). The
magnetic current density MS = −μ0∂M/∂t may either be related to
a magnetic dipole (e.g. a small current loop) or a macroscopic spin
magnetization M (A m–1). The magnetic field intensity is associated
with the magnetic flux density B (T = Vs m–2) by B = μH. The
electrical conductivity σ (S m–1) and the magnetic permeability
μ [Vs (Am)–1] define the physical properties of the media. In the
following, μ is set to the magnetic permeability of vacuum μ0.

Recently, we introduced a numerical algorithm (Lehmann-Horn
et al. 2011) to solve eqs (1a) and (1b). In Fig. 2, we present the
magnetic field lines for four separate models from a wide range
of situations investigated. Each model involves an embedded con-
ductive block of conductivity σa and size V ′

a within a uniform host
rock of σ = 0.01 S m–1. The anomalous body heavily distorts the
magnetic field. The degree of distortion is dependent on the size
and conductivity of the anomaly.

2.2 The evolution of the spin magnetization

In geophysical applications, it is common to use a geographical
coordinate system (x , y, z; see Fig. 3a). For our sensitivity analysis,
we introduce a rotated Cartesian coordinate system or laboratory
frame (x ′, y′, z′; see Fig. 3b). The new z′-axis coincides with the
direction of the static earth’s magnetic field B0.

The equilibrium spin magnetization M0 (A m–1) which is parallel
to the static field is given by Curie’s law (Chen & Hoult 1989):

M0 = �
2γ 2 N

4kB T
B0, (2)

where � (Js) is the reduced Planck constant, the quantity γ (Ts–1)
is the gyromagnetic ratio for hydrogen, N is the number of protons
in a unit volume (m–3), kB (J K–1) is Boltzmann’s constant, B0

is the strength of the static magnetic field and T is the absolute
temperature (in K).

The dynamics of M (A m–1) under the influence of an external
magnetic field Be (T) can be described classically by the Bloch
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Figure 2. Magnetic field strength distribution in the subsurface generated by a loop of edge length e = 100 m in the presence of an electrically conductivity
anomaly σa of volume V ′

a . (a) σa = 0.1 S m–1, V ′
a = 503m3, (b) σa = 1.0 S m–1, V ′

a = 503m3, (c) σa = 0.1 S m–1, V ′
a = 1003m3 and (d) σa = 1.0 S m–1,

V ′
a = 1003m3. The conductive body is located 25 m beneath the surface. Field lines are shown in the vertical plane that passes through the loop centre.

Figure 3. Coordinate systems: (a) geographical frame, (b) laboratory frame,
z′-axis is parallel to static magnetic field B0 and (c) positively rotating frame.
The latter is coincident with the laboratory frame at time t = 0.

equations (Bloch 1946):

∂M

∂t
= γ (M × Be) − Mx ′

T2
x′ − My′

T2
y′ − Mz′ − M0

T1
z′. (3)

The quantities T1 and T2 are known as the longitudinal and trans-
verse relaxation parameters, respectively. They depend on the rock
and fluid properties of the porous medium. The external magnetic
field Be here comprises two parts, the alternating magnetic field B1

of the transmitter and the static earth’s field B0:

Be = B1 + B0. (4)

The transmitter operates at the Larmor frequency ωL = −γ B0 and
the magnitude of B1 scales linearly with the strength of the input
current. When the alternating magnetic field B1 is applied for a time
period τ , the proton spin magnetization is tilted to a certain flip
angle (into the x ′- and y′-plane) and oscillates (precesses) around
the z′-axis at frequency ωL . The negative sign in the ωL formula
above indicates that the precession around B0 is a left-hand rotation.
It is common practice to neglect the z′-component of the B1 field
because B1z′�B0z′ (Levitt 2002). Following the approach of Hoult

(2000), the magnetic field x′- and y′-components of the transmitter
can be written in complex notation as:

B1x ′ = I Cx ′ eiα, (5a)

B1y′ = I Cy′ eiβ . (5b)

The parameters Cx ′ and Cy′ are the position-, frequency- and loop
size-dependent attenuation factors, and α and β are the phase
changes produced by the conduction currents. For simplicity, the
phase of the transmitter current I is set to zero.

The evolution of spin magnetization is treated in a reference frame
(x̃ , ỹ, z̃; see Fig. 3c) that rotates around the z′-axis at frequency ωL

(denoted by tildes). The axes of the rotating frame are set to coincide
with the laboratory frame at t = 0. Note that this rotating frame is
common to all spins throughout the subsurface, independent of their
location.

In Fig. 4, we present an illustrative example of the evolution of the
three components of spin magnetization in the positively (denoted
by(+)) rotating frame (M̃ (+)

x ′ , M̃ (+)
y′ , M̃ (+)

z′ ). The pulse duration τ is
set to 0.04 s. We distinguish between the excitation process (solid
lines) and the relaxation process (dashed lines) of the spin experi-
ment as a function of time for two different excitation fields. In the
first case of a (real) magnetic field B1x ′ = 360 nT without phase shift
α = 0 (non-conductive ground, black lines), the spin magnetization
contains only ỹ- and z̃-components. In the second case of an atten-
uated transmitter magnetic field B1x ′ = 200 + i50 nT with phase
shift α 	= 0 (conductive ground, grey lines), the spin magnetization
contains also an x̃-component. Moreover, there is a change in the
M̃ (+)

z′ component compared to the first case. In the general case,

Figure 4. Evolution of spin magnetization M̃ (+) in the positively rotating frame: excitation (solid lines) and relaxation process (dashed lines) because of an
external magnetic field without a phase shift α = 0 (black) and with phase shift α 	= 0 (grey) based on a constant pulse duration of τ = 0.04 s. The phase shift
arises as a result of conductive structures.
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the loop magnetic fields will exhibit spatial variations in direction,
magnitude and phase throughout the subsurface (Fig. 2).

3 S E N S I T I V I T Y F O R M U L AT I O N

3.1 A virtual receiver

Although the NMR method is directly sensitive to hydrogen pro-
tons, the electrical conductivity of the earth affects the behaviour
of the transmitted and received EM fields. Several EM methods
are routinely used in marine or land-based surveys to determine
the electrical conductivity distribution in the subsurface (Nabighian
1992). Inverse theory techniques are required to extract this infor-
mation from the observed data (Tarantola 2004). A major compo-
nent of any non-linear local search inversion scheme is the ability
to compute the sensitivities or Fréchet derivatives to update the
medium parameters at each iteration. The sensitivities describe the
perturbations in the measured quantity to perturbations in the model
parameters. McGillivray & Oldenburg (1990) present a review of
commonly used methods for sensitivity calculations. In a later pa-
per, McGillivray & Oldenburg (1994) give a simple derivation of
the Fréchet derivatives for the frequency-domain EM problem. Their
approach exploits the principle of reciprocity, whereby the sensitiv-
ity of a receiver can be computed by assuming the receiver to be an
adjoint source.

Starting from our eqs (1a) and (1b), they consider the primal
problem for specified source distributions as well as an auxiliary
problem (denoted by the overbars on the quantities) for a different
electric and magnetic source specification. The primal problem is
used to describe the EM field of the surface transmitter, whereas
the auxiliary problem describes the receiver field. The combination
permits one to derive the sensitivity of the receiver to electrical
conductivity. Each boundary-value problem can be solved once
the conditions appropriate to the source terms are specified on the
boundary. The main result from McGillivray & Oldenburg (1994)
can be written as:∫

D

(
M̄S · ∂H

∂σk
+ J̄E · ∂E

∂σk

)
d3r′ =

∫
D

Ē · Eψkd3r′, (6)

where M̄S (V m–2) and J̄E (A m–2) are the externally imposed mag-
netic and electric sources, for the auxiliary problem. The quantity
Ē is the electric field intensity given by the auxiliary Helmholtz
equation, whereas E and H represent the electric and magnetic field
intensities for the primal problem. The subsurface can be repre-
sented by L cells each of constant conductivity. Each cell D is a
finite volume of discrete conductivity σk . The conductivity distri-
bution is then determined by the function:

σ =
L∑

k=1

σkψk, (7)

where ψk is the boxcar function (i.e. ψk = 1 in cell k, zero else-
where). The derivatives ∂H/∂σk and ∂E/∂σk in the integrand of eq.
(6) are the sensitivities of the magnetic and electric fields to conduc-
tivity variations in region k. Eq. (6) shows that they are obtained by
appropriately specifying the sources for the auxiliary fields and by
integrating the dot product of the primal and auxiliary electric fields
over the region in which ψk is non-zero. To compute the (electrical)
sensitivities for a given subsurface receiver position (e.g. P1 and
P2 in Fig. 1) requires solutions of eqs (1a) and (1b) for the electric

field intensity E generated by the current in the transmitter loop
JE and the auxiliary field Ē generated by the receiver, or adjoint
source M̄S . Obviously, we do not consider real or actual subsur-
face receivers. In what follows, they will be referred to as virtual
receivers.

Because only magnetic fields perpendicular to B0 influence the
evolution of spin magnetization, we only consider components per-
pendicular to the z′-direction. For a virtual magnetic receiver in the
x ′-direction, M̄S = δ(r′ − r)x′ and setting J̄E = 0, the sensitivity
terms ∂H/∂σk in eq. (6) simplify to:

∂ Hx ′

∂σk
=

∫
D

Ē · Eψkd3r′. (8)

Similarly, we obtain for M̄S = δ(r′ − r)y′ in the y′-direction:

∂ Hy′

∂σk
=

∫
D

Ē · Eψkd3r′. (9)

For the given virtual receiver positions P1 and P2 and directions
x ′ andy′, the sensitivities ∂ Hx ′/∂σk and ∂ Hy′/∂σk are displayed in
Fig. 5. The conductivity of the ground is assumed to be constant
(σ = 0.01 S m–1). If there was a conductive anomaly present in
the blue region (negative sensitivity) of Fig. 5(d), then the magnetic
field at position P2 would have decreased. In contrast, a conductiv-
ity anomaly in the red area (positive sensitivity) would result in a
magnetic field increase at the virtual receiver position P2.

In surface-NMR measurements, one deals with hydrogen protons
in water (ensemble of spins –1/2; Levitt 2002) that can be considered
as virtual magnetic receivers distributed throughout the subsurface.
Because we are interested in the sensitivity of the magnetic field
rather than the magnetic field intensity, we rewrite eqs (8) and (9) in
terms of ∂ Bx ′/∂σk and ∂ By′/∂σk by multiplying with μ0. Moreover,
the auxiliary field Ē in eqs (8) and (9) has to be computed for
the spin magnetization vector after the pulse has been switched
off.

3.2 NMR voltage strength calculation

The voltage signal induced in the receiver loop (here, the receiver
coincides with the transmitter) by a spin magnetization in the sub-
surface (at position r), after normalizing for the number of turns, is
given by [Hoult 2000, p. 184, eq. (27)]:

K = 2ωLM̃(+)B̂(−)∗
1 . (10)

This function K is the product of (i) M̃(+), the complex magneti-
zation for the positively (+) rotating frame (denoted by tildes) and
(ii) B̂(−)∗

1 , the complex conjugate (denoted by a star) of the receiver
magnetic field in the negatively (–) rotating frame at unit current
(denoted by circumflex). An Argand diagram in which real num-
bers are defined along the x̃-axis and imaginary numbers along the
ỹ-axis is used to simplify the mathematics. The spin magnetization
M̃(+) is a function of the transmitter current I which generates the
magnetic field B̃(+)

1 and the pulse duration τ (see Section 2.2). The
product of current strength and pulse duration is defined as the pulse
moment q = I ·τ . Therefore, the voltage K is a function of position
and pulse moment K = K (q, r). The various quantities appearing
in eq. (10) are defined as follows:

B̃(−)
1 = 1

2
(B1x ′ − i B1y′ )∗, (11)

M̃(+) = M̃ (+)
x ′ + i M̃ (+)

y′ (12)
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Figure 5. Electromagnetic sensitivity function ∂ H/∂σk computed for two virtual receiver positions (white dots) P1 close to the surface in the (a) x ′-direction,
(c) y′-direction and P2 at depth in the (b) x ′-direction, (d) y′-direction for a transmitter loop (white circle) with radius r = 50 m (see Fig. 1 for locations).

and ωL was given earlier as the Larmor frequency. The components
of magnetization M̃ (+)

x ′ and M̃ (+)
y′ are a solution of the Bloch eq. (3)

in the positive rotating frame after pulse extinction. The function K
is well known as the kernel function or NMR sensitivity function to
water. In the following, we are interested in the NMR sensitivity to
electrical conductivity.

3.3 Sensitivity to electrical conductivity

Of special interest is the function ∂K/∂σ of the induced NMR
voltage to variations in electrical conductivity (see eq. (10)). It is
given by:

∂K

∂σ
= 2ωL

{
∂M̃(+)

∂σ
B̂(−)∗

1 + M̃(+) ∂B̂(−)∗
1

∂σ

}
. (13)

Because we aim to find a closed form solution for the sensitivity
formulation and to simplify the mathematics, we consider the solu-
tion of the Bloch eq. (3) in the positive rotating frame by neglecting
the relaxation terms [which is a common approximation in NMR
applications (Weichman et al. 2000)] and assuming small flip an-
gles [which is strictly only valid for small pulse moments or large
distances to the coil (Hoult 2000)]

M̃(+) ≈ −iγ τ M0B̃(+)
1 , (14)

B̃(+)
1 = 1

2
(B1x ′ + i B1y′ ). (15)

Substituting eqs (14) and (15) into eq. (13) gives:

∂K

∂σ
≈ −iγ τ M0ωL I

{(
∂ B̂1x ′

∂σ
+ i

∂ B̂1y′

∂σ

)
· B̂(−)∗

1

+
(

∂ B̂1x ′

∂σ
− i

∂ B̂1y′

∂σ

)
· B̂(+)

1

}
(16)

We introduce the abbreviation:

G = ∂ B̂1x ′

∂σ
+ i

∂ B̂1y′

∂σ
, (17)

and finally obtain:

∂K

∂σ
≈ −iγ τ M0ωL I

{
G · B̂(−)∗

1 + B̂(+)
1 · G∗

}
. (18)

This expression is the sensitivity of the induced NMR voltage
signal to electrical conductivity variations. In Appendix, two special
cases (B1x ′ = 0 and B1y′ = 0) that result in simplified versions of
eq. (18) are considered.

3.4 Entire surface NMR response

The total surface-NMR signal sensed by the surface receiver loop is
obtained by integrating the product of the water content distribution
f (r) and the spatially dependent function K [eq. (10)] over the
entire volume:

V (q) =
∫

V
f (r) · K (q, r)d3r. (19)

In Fig. 6, the surface-NMR sensitivities and sounding curve are
demonstrated for a homogeneous conductivity model σ = 0.01
S m–1 (our reference model). Different regions in the subsurface
are illuminated by varying the pulse moment q (see Figs 6a–c).
Integrating the function K over the entire volume yields the surface-
NMR sounding curve given in Fig. 6(d). The curve actually consists
of two parts: a real part (shown by circles) and an imaginary part
(shown by crosses). The curve appears smooth over the entire pulse
moment sequence. Equally, it could be plotted as amplitude and
phase.

By contrast, we show in Fig. 7 the equivalent computations for
a model including a large anomaly (block of side length 100 m) at

C© 2012 The Authors, GJI, 189, 331–342
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Figure 6. Surface-NMR sensitivities K (cross sections) of a homogeneous conductivity model (σ = 0.01 S m–1; reference model) for pulse moments (a) q =
0.6 As, (b) q = 2.0 As and (c) q = 11.6 As. (d) Sounding curve for a homogeneous 100 m thick and 25 per cent water-saturated groundwater aquifer.

Figure 7. Same as Fig. 6, but including a conductivity anomaly of σa = 1.0 S m–1 and volume V ′
a = 1003 m3 (shown by white boxes). See Fig. 2(d) for the

equivalent magnetic field distribution.

25 m depth with a high conductivity σ = 1 S m–1 that disturbs the
functions K (Figs 7a–c) and therefore the sounding curve (Fig. 7d).
The function K is based on the EM field distribution shown in
Fig. 2(d). Note the difference in the sounding curves in Figs 6(d)
and 7(d). The perturbation in electrical conductivity results in a
highly non-linear response in the surface-NMR voltage signal.

The entire sensitivity of the surface-NMR response to electrical
conductivity can be obtained by differentiating eq. (19) to give:

∂V/∂σ =
∫

V
f (r) · ∂K/∂σd3r. (20)

The computation of eq. (19) is very expensive, because for each
subsurface cell D a frequency-domain sensitivity problem has to
be solved [see eqs (8) and (9)]. To perform a non-linear inversion
in terms of electrical conductivity and water-content is even more
expensive, because in each iteration of the optimization process all
auxiliary problems have to be solved. The problem could be tackled
on high-performance parallel computers, but at the present time
would be very time consuming on a single workstation. However,
the sensitivity formulation presented in eq. (18) is easily computed
and allows one to estimate the influence of electrical conductivity
anomalies on the NMR response.

C© 2012 The Authors, GJI, 189, 331–342
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Figure 8. Synthetic 3-D anomaly model having a conductivity σa and a
volume V ′

a located at depth h in a background conductivity σ = 0.01 S m–1.
The loop edge length is e = 100 m. The aquifer has a thickness of 100 m
and a water content of f = 25 per cent, whereas the aquitard has f = 0 per
cent of water.

4 S Y N T H E T I C M O D E L R E S U LT S

4.1 Applications

Details on the practical aspects of NMR surveying are beyond the
scope of this paper and may be found, for example, in Hertrich
et al. (2007) and Hertrich (2008). In this section, we first briefly
identify and describe the types of hydrogeophysical example we
are going to simulate, restricting the range of model parameters
to those of practical relevance. The examples are illustrative only.
They are intended to show the influence of conductivity structure on
the NMR response. The loop shapes most commonly employed in
surface NMR are circular or rectangular and vary from small loops
of edge length (rectangular) or diameter (circular) e = 10 m up to

e = 100 m. Here, we restrict our discussion to a rectangular loop of
e = 100 m.

Most earth materials of hydrogeological interest have conductiv-
ities in the range of σ = 0.001 S m–1 (e.g. resistive basement) to
σ = 3.0 S m–1 (e.g. saltwater intrusions). The thickness and size
of an electrical conductor can vary from a few tens of metres (e.g.
landfills) to hundred of metres (e.g. clay lens) and kilometres (e.g.
saltwater intrusions). The conductor may be situated anywhere in
the subsurface [several metres below the earth’s surface (e.g. salt-
water intrusion near the coast) down to several hundred metres].
A target for freshwater exploration is palaeochannels that are often
bounded by conductive clay layers.

4.2 A conductive three-dimensional body

In the following examples, we consider the conductor as a saltwater
intrusion into a freshwater aquifer (see Fig. 8 for model descrip-
tion). This is a commonly encountered situation (Wooding 1997).
A rectangular loop is situated directly above a uniformly water-
saturated groundwater layer f = 25 per cent that is 100 m thick and
incorporates a 3-D electrical conductivity anomaly (conductivity σa

and volume V ′
a). The background conductivity σ is 0.01 S m–1. The

transmitter operates at a frequency f = 2 kHz and is situated in the
earth’s magnetic field, having inclination 45◦ and declination 0◦.

Figs 9 and 10 show the computed surface-NMR response voltages
V (q) integrated across the entire probed volume for suites of pulse
moments (sounding curves) for coincident transmitter–receiver con-
figurations. The upper rows (a, b, c) show the real parts and the lower
rows (d, e, f) the imaginary parts. The different figures correspond to
conductive blocks at different depths below the surface and various
block volumes are considered in each case.

In Fig. 9 the NMR responses are distorted by an anomaly of
σa = 0.1 S m–1, whereas in Fig. 10, the conductivity anomaly is

Figure 9. Surface-NMR sounding curves (complex voltage V versus pulse moment q) distorted by a conductive block of various anomaly volumes V ′
a .

Conductivity model: background conductivity (σ = 0.01 S m–1) and anomalous block (σa = 0.1 S m–1) that is situated at (a, d) h = 0 m, (b, e) h = 25 m and
(c, f) h = 50 m below the surface (see Fig. 8 for model description); (a, b, c) real parts and (d, e, f) imaginary parts of sounding curves, each for volumes (R)
V ′

a = 0 (reference), (A) V ′
a = 503 m3, (B) V ′

a = 803 m3 and (C) V ′
a = 1003 m3.
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Figure 10. Same as Fig. 9, but for a higher anomalous conductivity σa = 1.0 S m–1.

increased to σa = 1.0 S m–1. In diagrams (a) and (d) of Figs 9
and 10, the tops of the anomalies are situated at the earth’s surface
h = 0 m. In diagrams (b) and (e), the tops of the bodies are at
h = 25 m, whereas in diagrams (c) and (f) they are located at h =
50 m.

Sounding curve R is our reference curve (homogeneous conduc-
tive half-space), whereas curves A, B and C are for bodies having
volumes V ′

a = 503m3, V ′
a = 803m3 and V ′

a = 1003m3, respectively.
For a deep-seated (h = 50 m), small (V ′

a = 503m3) anomalous
block with low conductivity (σa = 0.1 S m–1) (Figs 9c and f), we
observe very small derivations in the sounding curve relative to the
reference curve. The derivations lie within the range of common
noise levels (20–100 nV). Although larger volumes have a stronger
influence on the response, they would be hard to distinguish under
high noise conditions.

For an intermediate depth (h = 25 m) small body (V ′
a = 503m3)

and a small contrast (σa = 0.1 S m–1) (Figs 9b and e), we again
observe only small derivations in the NMR response. Increasing the
volume (curves B and C) has a significant influence on the curves.
Differences up to 300 nV occur compared to the reference curve.

For the small, low volume body at shallow depth h = 0 m,
V ′

a = 503m3 and σa = 0.1 S m–1 (Figs 9a and d), we find again
relatively small fluctuations in the NMR response, but larger bodies
(V ′

a = 803m3 or V ′
a = 1003m3) have a significant influence on the

curves. Voltage differences rise up to 500 nV.
Highly conductive bodies change the characteristics of the sound-

ing curves. This is highlighted in Fig. 10. For h = 50 m, V ′
a = 503m3

and σa = 1.0 S m–1 (Figs 10c and f), we observe fluctuations in
the sounding curve that lie in the range of common noise levels.
But, compared to Fig. 9, increasing the volumes of the block has a
stronger influence. Real parts are heavily affected by the anomaly
at high pulse moments (5–10 As).

For h = 25 m, V ′
a = 503 m3 and σa = 1.0 S m–1 (Figs 10b and

e), we obtain a slightly distorted sounding curve. Increasing the
volume to 803 m3 and 1003m3 has a strong effect on the signal. Real

and imaginary parts are disturbed, especially at pulse moments 2–4
As.

For h = 0 m, V ′
a = 503m3 and σa = 1.0 S m–1 (Figs 10a and d),

we observe significant influences on the NMR response. Increasing
the anomalous body results in a severely perturbed curve compared
to the reference, with differences of ≥1000 nV.

Fig. 11 shows the surface-NMR electrical sensitivity dV/dσ plots
as a function of pulse moment corresponding to the model B (V ′

a =
803m3) for which the NMR responses are shown in Figs 9 and 10.
This function dV/dσ is computed by the simple difference formula
dV/dσ = (V2−V1)/(σ2−σ1), where the indices indicate the model:
(1) σa = 0.1 S m–1 and (2) σa = 1.0 S m–1. The upper rows (a, b, c)
show the real parts of the NMR sensitivity function and the lower
rows (d, e, f) the imaginary parts. The three different diagrams
in each row correspond to conductive blocks at different depths
below the surface (h = 0 m, 25 m, 50 m). For most pulse moments
(q > 3.5 As) the real part is negative, implying that an increase in
electrical conductivity reduces the real part of the NMR signal (and
conversely a decrease in conductivity increases the NMR signal).
For small pulse moments, the real part of the voltage is positive (see
Figs 11b and c). In contrast, the imaginary part shows a pronounced
change of sign of the sensitivity with respect to the location of the
anomalous body.

In general, we can make the following observation: the deeper the
body, the higher the pulse moment values that show the disturbance
in the sounding curves (see e.g. Figs 10d and e). Similarly, the deeper
the body, the higher the pulse moment at which the minimum (real
part) and maximum (imaginary part) in the electrical sensitivity
function dV/dσ occurs (see Fig. 11). The reason is that higher pulse
moments illuminate the deeper structures. Clearly, the strongest
disturbances appear when the body is situated at shallow depth
directly beneath the loop and the conductivity contrast is high.

If shallow (h ≤ 50 m) electrically conductive anomalies (σa ≥
0.1 S m–1) are not taken into account in the NMR modelling, then the
inversion of such data would yield highly misleading information.
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Figure 11. Surface-NMR (electrical) sensitivity function (complex voltage dV/dσ versus pulse moment q) corresponding to the model B (V ′
a = 803 m3) in

Figs 9 and 10. The function dV/dσ is the difference between the two conductivity models dV/dσ = (V2 − V1)/(σ2 − σ1) and determined by the indices: (1)
σa = 0.1 S m–1 and (2) σa = 1.0 S m–1. The different diagrams correspond to conductive blocks at different depths below the surface. The anomalous block
is situated at (a, d) h = 0 m, (b, e) h = 25 m and (c, f) h = 50 m below the surface.

4.3 A dipping, conductive layer

Here, we investigate a common situation in hydrogeophysics that is
known from time-domain EM measurements (Auken 2008) viz., a
dipping conductive clay or saltwater layer underlying a freshwater
aquifer (see Fig. 12). We want to investigate the influence of the
conductive layer on the NMR response.

The layer dips at an angle of 20◦ (in the y-direction) and has a
thickness of 75 m. Three NMR loops are situated along a profile in
the y-direction. The position of the loop is defined by the quantity
a, which takes on three separate values a = –100 m, a = 0 m and
a = 100 m. The transmitters that operate at 2 kHz are situated in
the local earth’s magnetic field, which has an inclination of 45◦

Figure 12. Synthetic dipping conductive layer model with variable water
content f is situated in a varying background material σ and 75 m beneath
the loop position a = 0 m (normal vector length of the dipping layer). The
layer conductivity is fixed to 1 S m–1. Loops (edge length e = 100 m) centre
points P (0, a, 0) are varying along the y-axis.

and a declination of 0◦ (y-axis is directed towards North). The
conductivity of the conductive layer is fixed at σ = 1 S m–1 for the
following computations, but that of the overlying and underlying
layers is allowed to vary. The water content in the aquifer is fixed
at f = 25 per cent. In the conductive layer, the water content f
is allowed to vary, whereas in the underlying basement the water
content is set to f = 0 per cent for all computations.

In the first model (Fig. 13), the water content in the second
layer (conductive layer) is f = 25 per cent. The computed sound-
ing curves along the profile are shown for two different layer-
conductivity models. The first set of curves (A) show the real and
imaginary parts, respectively, for a moderate background conduc-
tivity of σ = 0.01 S m–1. Following the profile from left to right
(a = –100–100 m), we observe a significant difference between the
sounding curves for high pulse moments. The difference appears
because the water layer thickness increases from left to right. The
imaginary parts are negative. The second set of curves (B) show the
real and imaginary parts for a low background conductivity of σ =
0.001 S m–1. The imaginary parts of the curves decrease compared
to those of situation (A) and practically vanish for loop position a =
100 m.

In the second model (Fig. 14), we use the same conductivity
parameters as described for Fig. 13, but change the water-content
model. The water content of the second layer (conductive layer) is
f = 0 per cent. We observe that the voltages are reduced because
less water is available to contribute to the signal strength. Moreover,
the imaginary part in the NMR response is reduced because water
is absent in the conductive layer.

The first set of curves (A) show smaller imaginary parts. For the
second set of curves (B), when the background material is more
resistive, the imaginary parts change sign and are even smaller.

Figs 13 and 14 show the strong interaction between electri-
cal conductivity and the water content. The NMR response is

C© 2012 The Authors, GJI, 189, 331–342

Geophysical Journal International C© 2012 RAS



340 J.A. Lehmann-Horn et al.

Figure 13. Surface-NMR sounding curves (complex voltage V versus pulse moment q) for a dipping conductive layer model as described in Fig. 12. Loops
are located at (a, d) a = –100 m, (b, e) a = 0 m and (c, f) a = 100 m. Diagrams show (a, b, c) real parts and (d, e, f) imaginary parts for a layer conductivity
(A) σ = 0.01 S m–1 and (B) σ = 0.001 S m–1. Water content in conductive layer is f = 25 per cent.

Figure 14. Same as Fig. 13, but water content in conductive layer f = 0 per cent. Layer conductivity (A) σ = 0.01 S m–1 and (B) σ = 0.001 S m–1.

affected in a highly non-linear manner by the conductivity struc-
ture, but scales linearly with the water content. The effect of
conductivity arises from both water-filled and dry conductive
structures. The influence of the latter is smaller but neverthe-
less cannot be neglected. This is especially important for shallow
conductors.

5 C O N C LU S I O N S

Surface-NMR tomography is directly sensitive to subsurface water.
However, high electrical conductivities have a major influence on
the impressed EM field distribution and thus affect the inverse prob-
lem. We have investigated the effects of 3-D electrical conductivity
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anomalies on the NMR response. We employed a finite-element
method and computed the NMR sensitivity in terms of electrical
conductivity and water content. For the former, we assumed that
the nuclear spin magnetization can be considered as a virtual mag-
netic dipole receiver. We gave a mathematical formulation for the
NMR sensitivity to electrical conductivity. This was solved in the
frequency-domain to study the influence of electrical conductiv-
ity on a single spin magnetization. By integrating the response
across the entire water volume distribution model, we analysed en-
tire sounding curves and illustrated the cumulative distortion of the
measured NMR signal voltage. Conductivity anomalies (e.g. saltwa-
ter intrusions) in the order of 0.1–1 S m–1 had a significant influence
on the NMR response, which was in the range of 100–1000 nV for
100 m loops and shallow-seated ≤50 bodies of similar dimension to
the loop size. The influence was highly non-linear and depended on
conductor size, position, depth and electrical conductivity contrast.
The signal strength and phase shift were dependent on the presence
and location of water. We have presented several synthetic mod-
els of hydrogeological relevance to illustrate these effects. A more
complete investigation including loop size and scalability will be
addressed in future studies. The derived NMR sensitivities to elec-
trical conductivity could be incorporated in non-linear inversions to
electrical conductivity and water content in the future.
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A P P E N D I X : S I M P L I F I E D S E N S I T I V I T Y
E X P R E S S I O N S F O R B1x′ = 0 A N D B1 y′ = 0

In the case of B1x ′ = 0, that is a vanishing x ′-component of the
complex magnetic field, we can simplify the sensitivity expression
using the relations:

B̂(−)∗
1 = −i B̂1y′/2, (A1a)

B̂(+)
1 = +i B̂1y′/2, (A1b)

such that eq. (18) becomes:

∂K

∂σ
≈ −iγ τ M0ωL I

{
∂ B̂1y′

∂σ
B̂1y′

}
. (A2)

In the case of B1y′ = 0, that is a vanishing y′-component of the
complex magnetic field, we can simplify the sensitivity expression
using:

B̂(−)∗
1 = B̂1x ′/2, (A3a)
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B̂(+)
1 = B̂1x ′/2, (A3b)

such that eq. (18) becomes:

∂K

∂σ
≈ −iγ τ M0ωL I

{
∂ B̂1x ′

∂σ
B̂1x ′

}
. (A4)

In both cases only one of the component x ′ or y′ contributes to the
sensitivity functions. In the second case B1y′ = 0, the sensitivity
∂K/∂σ has the same shape as shown in Figs 5(a) and (b) (at two
different spin locations P1 and P2) but scaled by the complex factors
given in eq. (A4).
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