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A novel analytical equation for the assessment of the accuracy of filters used for
the interpolation and differentiation of scattered experimental data is presented. The
equation takes into account the statistical nature of the filter output resulting from both
the arbitrary positions of the data points and the randomness and noise present in the
experimental data. Numerical estimation of the accuracy of the filter, using a Monte
Carlo procedure, shows good agreement with the deduced analytical equation. This
numerical procedure was also used to determine the accuracy of variance filters aimed
at calculating the mean-square fluctuation of experimental data. The combination of
the numerical results and analytical equations reveals the exact sources of inaccuracy
arising in scattered point filters, namely: (i) the spectral inaccuracy of the weighting
function; (ii) the noise or stochastic signal amplification; and (iii) the error arising
from the random collocation of points within the filter window. The results also
demonstrate that the use of the local mean in the calculation of the quadratic
fluctuation leads to smaller estimation errors than the central mean. Finally, all these
filters are used and critically evaluated in the framework of the stochastic position,
diameter, and velocity of bubbles in a gas-fluidized bed. It is shown that the empirical
coefficient of bubble coalescence in the two-dimensional bed tested, λ̄, is in the
range 2.0–2.4 when incorporating only the visible flow of bubbles. Here, the vertical
distance over which a bubble survives without coalescing is λ̄Lc, where Lc is the
characteristic separation between neighbouring bubbles in the horizontal direction prior
to coalescence. It was also seen that the relative mean-square-root fluctuation of both
bubble diameter and velocity is more than 50 % at the centre of the bed and remains
nearly constant along the height of the bed.
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1. Introduction
Experimental observations of many scientific and industrial systems often yield

measurements made at discrete points, randomly positioned in temporal and spatial
domains (Wendland 2005). This is especially true in the field of fluid mechanics
measurements. For example, Imaichi & Ohmi (1983) measured the unsteady,
incompressible, twin-vortex flow behind a cylinder using particle tracking velocimetry
(PTV). The instantaneous velocities of the flow were acquired at scattered points
in a two-dimensional section of the flow. More recently, a complete set of spatial
derivatives of velocity in homogeneous turbulence was experimentally obtained by
Lüthi, Tsinober & Kinzelbach (2005). They determined the stochastic trajectories
of particles employing a three-dimensional PTV technique. Using a particle streak
analysis, Orpe & Khakhar (2007) calculated the mean value, the spatial derivative and
the root-mean square (r.m.s.) fluctuations of the particle velocity in a surface granular
flow inside a rotating cylinder. Mattner, Joubert & Chong (2003) characterized the
water velocity field past a sphere in a duct using laser Doppler velocimetry (LDV).
Measurements were taken on grid points that were more concentrated in regions of
large velocity gradients, and radial basis functions were used to produce analytic
surface fits to the experimental velocity data. Other relevant applications concerning
experimental or simulation data distributed at arbitrary points are, for instance, the
study of the rheological behaviour of solid–liquid mixtures (Armanini et al. 2005),
the evaluation of the turbulent diffusion of particles to a perfectly absorbing surface
(Mann et al. 2005) or the characterization of bubble dynamics in liquids (Bunner &
Tryggvason 2002).

In general, to extract information from such observations, the measurements
have to be transformed or manipulated with data filters to allow, most commonly,
interpolation (Imaichi & Ohmi 1983; Powell 1987; Wendland 2005) or, less commonly,
differentiation (Malik & Dracos 1995; Lüthi et al. 2005; Wei & Li 2006; Nakamura,
Wang & Wang 2008) and estimation of fluctuations (Vedula & Adrian 2005; Orpe &
Khakhar 2007).

Although there have been many studies of the design and evaluation of filters
for scattered points (e.g. Shepard 1968; Foley 1986; Agüı́ & Jiménez 1987; Powell
1987; Jackson 1989; Wendland 2005; Stickel 2009), the number concerned with the
statistical accuracy of the filter output has been relatively few (Agüı́ & Jiménez
1987; Spedding & Rignot 1993; Malik & Dracos 1995; Lazzaro & Montefusco 2002;
Vedula & Adrian 2005; Wei & Li 2006; Nakamura et al. 2008). In particular, to the
authors’ best knowledge, there has been no previous attempt to formulate expressions
which elucidate analytically the obscure interactions among the truncation error,
noise amplification and position randomness present in the filtering of experimental
observations made at scattered points. Accordingly, the objective of the research
presented in this paper is to improve the understanding of data filtering from scattered
points by providing a methodology to estimate analytically the statistical accuracy of
various filters. To do this, general closed-form expressions were derived to estimate the
relative error associated with the operations of interpolation and direct differentiation
of observations made at scattered points. Using four different types of filter, the results
have been compared with estimates of error calculated numerically using a Monte
Carlo method. The research also considers filters designed for the estimation of the
mean-square fluctuation of stochastic data placed at scattered points. To illustrate the
techniques applied to a practical system, an analysis was undertaken of experimental
observations of bubbles in a gas–solid fluidized bed.
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2. Filtering of observations made at scattered points
2.1. Interpolation

Without loss of generality, any continuum field, ϕ (e.g. pressure or fluid velocity),
can be decomposed into a linear combination of a set of basis functions. In
fluid mechanics this is typically performed via a Fourier transformation, which is
particularly suited to identifying the different length scales of a flow system. Without
loss of generality, the Fourier decomposition of ϕ is expressed here as a sine series:

ϕ(x)=
∞∑
L=0

ϕ̂L

D∏
i=1

sin(xiFi,li + ψi,li). (2.1)

Here D is the number of dimensions in the data field, x = [x1, x2, . . . , xD] is the
coordinates vector, L = [l1, l2, . . . , lD] is the vector containing the Fourier index for
each coordinate, ψi,li is the phase of the coordinate i for the Fourier component of
index li and

Fi,li =
2π
Si

li = 2π
λi

(2.2)

is the Fourier frequency for the i coordinate and index li. In (2.2), Si is the length of
the domain along the i coordinate and λi = Si/li is its Fourier spatial wavelength. For
example, in a two-dimensional field with x= [x, y] and L= [l, r], (2.1) becomes:

ϕ(x, y)=
∞∑

l,r=0

ϕ̂l,r sin(xFx,l + ψx,l) sin(yFy,r + ψy,r). (2.3)

The data to be filtered are the result of sampling ϕ at Nt randomly positioned
points, xk, where k = 1, 2, . . . ,Nt. This sampling generates a scattered data field, φ,
i.e. the measured data. The result can also be affected by measurement noise or other
stochastic variation, εk, present at xk. Then, for each point, the measured data can be
expressed as:

φk = ϕ(xk)+ εk. (2.4)

Assuming that the noise, or any stochastic component of the data, has zero mean,
〈εk〉ε = 0, and, for the worst case, is uncorrelated for any two different points, i and j,
then:

〈εiεj〉ε =
{
σ 2
ε , i= j

0, i 6= j
(2.5)

where 〈·〉ε indicates the statistical average over all the possible realizations for the
random signal ε, and σε is the standard deviation of ε.

The filtering of data to obtain, for example, its interpolation, differentiation or mean
fluctuating value, at an arbitrary point x, can be undertaken using the local-averaging
filter of Anderson & Jackson (1967) and Jackson (2000):

φ̃(x)=

Np∑
k=1

g∗(xk − x)φk

Np∑
k=1

g∗(xk − x)

(2.6)
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248 A. Acosta-Iborra and others

FIGURE 1. (Colour online) Rectangular window (shaded area ΩF) used by the weighting
function of a two-dimensional filter in a field with scattered data points.

where g∗ is the weighting function used for the filtering and φ̃ the value at the centre
of the filter resulting from the filtering of the measured data φk. In (2.6), Np is the
number of points affected by the filter window, namely points for which g∗ is non-zero.
This is exemplified in figure 1 for a two-dimensional data field and a filter window
covering a domain ΩF of rectangular shape 2LF,x × 2LF,y. In this figure, the centre of
the filter is marked with a cross at the point x= (x, y). The coordinates xk = (xk, yk) of
an arbitrary point represented by a dot are also shown.

For the particular case of interpolation, and following Anderson & Jackson (1967),
the weighting function, gI , can be normalized so that its integral in the D-dimensional
space within the region ΩF, is unity:∫

ΩF

gI(x) dx= 1. (2.7)

This normalization is convenient since, as explained in Anderson & Jackson (1967),
gI directly leads to the local number density of sampling points at the filter centre,
n(x). Besides, provided a sufficiently large number of points is affected by the filter,
the following approximation holds:

n(x)=
Np∑

k=1

gI(xk − x)≈ Np

VF
(2.8)

where VF =
∫
ΩF

dx is the area or volume of the filter window. Implicit in this
approximation is the fact that the randomly positioned points, x, can be in any part
of ΩF with equal probability, namely are homogeneously distributed in ΩF. In other
words, the bulk number density of sampling points on the left-hand side of (2.8) can
be considered equal to the local number density if the macroscopic length scale for the
spatial variation of n(x) is much greater than the size of the filter window (Jackson
2000). Then

φ̃(x)=
VF

Np∑
k=1

gI(xk − x)φk

Np
. (2.9)

Interpolative filters can be readily generated from basic functions. The only
restriction that will be imposed in the present analysis is that gI must be continuous
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FIGURE 2. Examples of basic weighting functions of interpolative filters acting on
rectangular windows: (a) constant; (b) parabolic dome; (c) pyramid; and (d) parabolic peak.

Source h(s), s ∈ [−LF,LF]

Constant profile
1

2LF

Parabolic dome
3

4LF

[
1−

(
s

LF

)2
]

Pyramid
1

LF

[
1−

∣∣∣∣ s

LF

∣∣∣∣]
Parabolic peak

3
2LF

[
1−

∣∣∣∣ s

LF

∣∣∣∣]2

TABLE 1. Examples of basic functions h(s) for interpolative weighting functions.

at all points in the interior of ΩF. Figure 2 and table 1 present some examples of
basic functions, h(s), for the generation of gI in a circular (D= 2) or spherical (D= 3)
window with radius RF, where

gI(xk − x)= h(|xk − x|)
2D−1π

∫ RF

0
h(r)rD−1 dr

. (2.10)

Alternatively, for a rectangular or square-section prismatic window,

gI(xk − x)=
D∏

i=1

h(xi,k − xi), (2.11)
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250 A. Acosta-Iborra and others

in which no normalization is needed, because
∫ LF
−LF

h(s) ds = 1 for the basic functions
presented in table 1. These basic functions are symmetrical with respect to s = 0 so
that gI is also symmetrical along any of the spatial coordinates covered by ΩF.

2.2. Differentiation
The differentiation of data from randomly positioned points can be performed by
differentiating the measured data (2.6):

∂φ̃(x)
∂x1

=

Np∑
k=1

∂gI(xk − x)
∂x1

φk

Np∑
k=1

gI(xk − x)

−
Np∑

k=1

gI(xk − x)φk

Np∑
s=1

∂gI(xs − x)
∂x1( Np∑

s=1

gI(xs − x)

)2 (2.12)

where x1 is the coordinate arbitrarily chosen from x for the differentiation. Letting
gD(xk − x)≡ ∂gI(xk − x)/∂x1, the right-hand side of (2.12) can be written:

Np∑
k=1

gD(xk − x)
[
φk − φ̃(x)

]
Np∑

k=1

gI(xk − x)

. (2.13)

However, (2.12) can be greatly simplified using the approximation described by
(2.8). In fact, the second term in the right-hand side of (2.12) is usually smaller than
the first term owing to the symmetry of gI which implies the anti-symmetry of gD and
leads to

∑Np
k=1gD(xk − x)→ 0 when Np→∞. Thus, the following simplification can be

used without affecting the results of filtering markedly:

Np∑
k=1

gI(xk − x)φk

Np∑
k=1

gI(xk − x)

≈

Np∑
k=1

φk

Np
, (2.14)

so that

∂φ̃(x)
∂x1

≈

Np∑
k=1

[
gD(xk − x)

(
φk − 1

Np

Np∑
s=1

φs

)]
Np∑

k=1

gI(xk − x)

. (2.15)

In the above, it becomes clear that gD(xk − x) ≡ ∂gI(xk − x)/∂x1 is the weighting
function for the differentiation filter. Note that (2.14) is obtained by making the
simplification that gI is constant, i.e. it is constructed with the constant-profile basic
function shown in table 1. Alternative approximations for gI in (2.14) are possible by
selecting other basic functions from table 1. In the same way gI in the denominator
of (2.15) may be simplified. Of all the simplifications tested for (2.12), the one shown
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Source h′(s), s ∈ [−LF,LF]a

Constant profile
1

2LF
[δD(x+ LF)− δD(x− LF)]

Parabolic dome − 3
2L2

F

(
s

LF

)
Pyramid − 1

L2
F

|s|
s

s 6= 0

Parabolic peak − 3
L2

F

|s|
s

[
1−

∣∣∣∣ s

LF

∣∣∣∣] s 6= 0

TABLE 2. Examples of basic functions h′(s) for differentiation weighting functions. a For
all the functions h′(0)= 0.

in (2.15) yielded the best results. For the particular case of rectangular or quadrilateral
filter windows, the weighting function can be decomposed using (2.11):

gD(xk − x)=−h′(x1,k − x1)

D∏
i=2

h(xi,k − xi) (2.16)

where h′(s) = dh(s)/ds. Table 2 presents some examples of basic functions h′ for gD

calculated with h taken from table 1. The value of h′ when s = 0 can be equated to
zero when h′ has a discontinuity at that point. It can be seen that when the source
function has a constant profile, the derivative is composed of two Dirac functions δD:
the resulting filter is impracticable since it would produce singularities in the filtered
data.

2.3. Variance
It might be necessary to quantify the variance or mean quadratic fluctuation, υ2, of
the field ϕ over its mean µ. Of course, this depends on how the data mean is
defined and calculated. Here, the case will be considered in which the fluctuation
is: (i) uncorrelated with the data mean; and (ii) is statistically homogeneous within
the region affected by the filter. Then, two possibilities for estimating υ2 arise. One
possibility is the use of a constant value for the data mean, µ0 = φ̃(x), calculated for
the point x placed at the centre of the region Ωυ over which the average of the square
fluctuation is estimated. Another possibility is the utilization of the local mean of the
data, µk = φ̃(xk), individually evaluated at all of the scattered points xk used in the
estimation of the variance. In the latter, the region affected by the local mean filter
is translated so that the centre of ΩF is placed at xk. These two approaches result,
respectively, in

υ2
a =

1
Mp

Mp∑
k=1

(φk − µ0)
2, (2.17)

υ2
b =

1
Mp

Mp∑
k=1

(φk − µk)
2, (2.18)

where Mp is the total number of points within the region Ωυ . It should be noted that
the mean µ can be estimated using an interpolative filter gI in (2.6) and that ΩF
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252 A. Acosta-Iborra and others

used for the evaluation of µ can differ from Ωυ utilized for υ2. Equations (2.17) and
(2.18) can be interpreted as filters aimed at estimating the mean quadratic fluctuation
for which a constant weighting function, equal to unity, has been selected. This is
admissible if the fluctuation is assumed to be statistically homogeneous in regions
equal to, or greater than, Ωυ . Of the two alternatives, (2.17) is the less computationally
demanding. However, in order to avoid the contamination of υ2 by a biased difference
(φk − µ), (2.18) is recommended whenever the data mean µ varies substantially in Ωυ

compared with the fluctuation in the field ϕ.

3. Spectral analysis of accuracy
A means of characterizing the accuracy of the filtered data from homogeneously

distributed, but randomly positioned, points is presented in this section. In order to
do this, a statistical value of the relative error of the filter output is defined, and the
contribution of the sine transformation components to the relative error is assessed.

3.1. Accuracy of interpolative filters
Generalizing the approach by Agüı́ & Jiménez (1987), the accuracy of interpolation
can be characterized in terms of the following definition of the relative total error:

EI =

〈(
ϕ(x)− φ̃(x)

)2
〉1/2

ψ,k,ε〈
ϕ(x)2

〉1/2

ψ

(3.1)

where ϕ(x) is the exact value of the field ϕ at position x (not necessarily coincident
with data points xk), and φ̃(x) is the estimation of ϕ using the interpolative filter gI

in (2.6). The subscripts ψ , k and ε in (3.1) indicate that in EI the statistical average
samples the contributions arising from all possible values of the signal phase, ψ , and
noise, ε, at each of the Np sampled points located at positions k. The signal phases and
the positions of the data points are assumed to have a constant probability distribution
function over their defined ranges, which are [0, 2π] for ψ , and all the region ΩF for
any of the data points xk. No correlation exists between phases at different coordinates
or between different components of the sine transformation. The definition of the
relative error in (3.1) entails some differences with regard to the error of scattered
data interpolation used by Agüı́ & Jiménez (1987). The latter defined the error for a
sampled signal in two dimensions having a single frequency and being unperturbed by
noise. The effect of noise in the analysis of Agüı́ & Jiménez (1987) was incorporated
in the relative error as an independent additive term unaffected by the selection of a
particular weighting function, which in their case was of Gaussian type in a circular
window. Here, the definition of the relative error in (3.1) is extended to include
directly the effect of noise in the quadratic difference of the numerator, as done by
others for filters applied to structured data on a regular mesh (e.g. Nogueira, Lecuona
& Rodrı́guez 1997; Acosta-Iborra 2004). Also, the relative error in (3.1) refers to the
complete spectrum of the sampled signal. Incorporation of the noise together with
the full spectrum of the data has proved to be a very powerful tool in analysing a
broad range of structured data filters (Acosta-Iborra 2004). For scattered data filters,
the inclusion of the noise in (3.1), as will be shown, allows the complex interaction
between the filter weighting function and the signal noise to be characterized.

The relative error defined in (3.1) can be numerically estimated by means of
Monte Carlo simulations as in Agüı́ & Jiménez (1987). In the present work this is
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performed not only for a selected set of the spectral indices L of the data and for
random combinations of ψ and k, but also for all random realizations of the noise ε.
However, it is also possible to obtain an analytical estimate of EI by substituting (2.1),
(2.4)–(2.6) and (2.8) into (3.1) and calculating the statistical average of any given
phase and of any data point location:

〈·〉ψ =
1

2π

∫ 2π

0
(·) dψ, (3.2)

〈·〉k =
1∫

ΩF

dx

∫
ΩF

(·) dxk. (3.3)

After some manipulation detailed in the Appendix (which is available as a
supplement to the online version of this paper at http://dx.doi.org/10.1017/jfm.2013.
401 or on request from the authors), the relative total error of interpolation from
randomly positioned points can be expressed as:

EI ≈

[ ∞∑
L=0

ϕ̂2
Lê2

I,L + 2D GI

Np − 1+ GI
σ 2
ε

]1/2

[ ∞∑
L=0

ϕ̂2
L

]1/2 . (3.4)

Here ϕ̂L is the sine transform component of the data unperturbed by noise, as
presented in (2.1), Np is the number of points affected by the filter and σε is the
standard deviation of the additive noise or stochastic signal contained in the available
data φ. The value of GI is related to the weighting function for the interpolative filter
by:

GI = VF

∫
ΩF

g2
I (x) dx. (3.5)

Finally, êI,L is the relative spectral error of interpolation for the spectral
components L,

êI,L ≈
[
aI,L + bI,L

]1/2
(3.6)

where

aI,L = (1− δL)2

1+ GI

Np − 1

, (3.7)

bI,L = 2 (1− δL)GI

Np − 1+ GI
, (3.8)

with δL being equal to the following pseudo-spectral-transform of the weighting
function centred at the origin of coordinates:

δL =
∫
ΩF

gI(x)
D∏

i=1

cos(xiFi,li) dx, (3.9)
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remembering that the integration domain ΩF in (3.5) and (3.9) is a region of x in
which the filter gI(x) is non-zero. Equations (3.4) and (3.6) are not exact since the
approximation in (2.8) has been used. Therefore, the larger the number of points in
the filter, the more exact is the analytical expression for the relative error. It should
be noted that (3.6) does not reduce to the similar expression when points are regularly
spaced, because here we are averaging for all the possible locations of points, whereas
for regularly spaced points averaging is not required since points are fixed in space
with respect to the centre of the filtering window.

One of the advantages of the expression given in (3.4) is that it allows the relative
error of the interpolation procedure to be estimated without an exact knowledge of
the interpolated field, ϕ (provided that there is prior knowledge of the dominant
frequencies in ϕ). This will be illustrated in § 4. Note that (3.4) is strongly influenced
by the spectral relative error of interpolation êI,L, and therefore it is worth considering
the implications of the terms in êI,L, (3.6).

(i) The term aI,L is related to the spectral inaccuracy of the filter, which consists of a
bias error arising from the attenuation produced by the weighting function in the
amplitude of the sine components of the data, i.e. the Fourier coefficients in (2.1).
This effect is always present unless the weighting function is a Dirac function.
According to (3.9), the higher the data frequency (the larger the value of li) the
smaller is δL and the more pronounced the attenuation of the amplitude of the data.

(ii) The term bI,L relates to the effect of the discrete nature and non-symmetrical
collocation of the data on the accuracy of the filter. The larger the number of data
points used in the filter, Np, the less important this term becomes in the spectral
relative error.

It can also be seen that if δL 6 1, then aI,L and bI,L are always positive.
The second element in the numerator of (3.4) is the noise or stochastic signal

amplification term, and is proportional to the variance of ε, σ 2
ε . Since GI is also

present in this element, it acts as an amplification factor. To see this, it should
be noted that, since gI obeys (2.7), a weighting function with gI homogeneously
distributed in ΩF yields a value of GI smaller than a weighting function with sharp
gradients of gI along one or more directions. This means that the less homogeneous
is the weighting function, the larger is GI and the more amplified is the noise or the
stochastic signal in the filter output. Equation (3.4) also reveals that an increase of the
average number of points affected by the filter reduces the impact of the noise in the
filter output. This is a logical consequence: the larger the number of points, the more
compensated will be the random error in the summation in (2.6). Although not exactly
the same, the closed-form expression for EI and its qualitative behaviour resembles
that for filters acting on points regularly spaced on a fixed mesh (Acosta-Iborra 2004).

To illustrate the above, the relative total error for filtering data in a two-dimensional
field, (2.3), is given by:

EI ≈

[ ∞∑
l,r=0

ϕ̂2
l,rê

2
I,l,r +

4GI

Np − 1+ GI
σ 2
ε

]1/2

[ ∞∑
l,r=0

ϕ̂2
l,r

]1/2 (3.10)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

25
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
40

1

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.401


Statistical accuracy of scattered points filters 255
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Pyramid
Parabolic peak
Analytical estimation
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(b)
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FIGURE 3. Monte Carlo results without noise (εk = 0), and analytical estimation (3.6), of the
relative spectral error of interpolation versus the normalized spatial wavelength of an isotropic
two-dimensional signal: (a) effect of the weighting function; (b) effect of the number of data
points Np, for the constant and parabolic-peak weighting functions only.

Source δl,r GI

Constant profile sinc
(
Fx,lLF,x

)
sinc

(
Fy,rLF,y

)
1

Parabolic dome
9
[
sinc

(
Fx,lLF,x

)− cos
(
Fx,lLF,x

)] [
sinc

(
Fy,rLF,y

)− cos
(
Fy,rLF,y

)](
Fx,lLF,x

)2(
Fy,rLF,y

)2

36
25

Pyramid sinc
(

Fx,lLF,x

2

)
sinc

(
Fy,rLF,y

2

)
16
9

Parabolic peak
36
[
1− sinc

(
Fx,lLF,x

)] [
1− sinc

(
Fy,rLF,y

)](
Fx,lLF,x

)2(
Fy,rLF,y

)2 9

TABLE 3. δl,r and GI for some examples of two-dimensional interpolation filters. The
function sinc(p) refers to sin(p)/p where p is a generic input value.

with êI,l,r =
[
((1− δl,r)

2(Np − 1)+ 2GI(1− δl,r))/(Np − 1+ GI)
]1/2

. The expressions
for δl,r and GI are presented in table 3 for some two-dimensional weighting functions,
gI(x, y) = h(x)h(y), generated from the functions h in table 1. Figure 3 shows êI,l,r for
the four examples of interpolative filters having the weighting functions presented in
figure 2 and table 1. In figure 3, the horizontal axis indicates the spatial wavelength
λ of each frequency of the spectrum of the scattered data in (2.3). This wavelength
has been normalized by dividing it by half the size of the filter window, LF. The
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results correspond to a two-dimensional field having the same normalized wavelength
in each spatial direction. That means the area of the filter window does not need
to be a square, the only requisite being that λx/LF,x = λy/LF,y. For brevity, only this
kind of normalized isotropy will be studied, although the results presented here are
also applicable to anisotropic fields. In this sense, the results showing êI in figure 3
are conservative if the normalized wavelength refers to the smaller of the two spatial
coordinates in an anisotropic field. As figure 3(a) illustrates, the numerical estimation
of êI by Monte Carlo methods, described earlier in this section for an unperturbed data
field with εk = 0, yields similar results to the analytical equation presented in (3.6),
provided the number of scattered points affected by the filter, Np, is not so small as
to violate (2.8). For Np equal to 10 and 5 (figure 3b), the discrepancy with the more
exact Monte Carlo results reaches, respectively, 10 % and 20 % at low values of λ/LF.
The value of êI tends to zero when λ� LF because in that situation the data field

is practically invariant within the window of the filter and the interpolation problem is
trivial. The analytical expression deduced for the spectral relative error, (3.6), shows
this fact: the pseudo-spectral-transform of the weighting function, δL, in (3.9) is equal
to unity in a constant field (L= 0, 0), which implies that the spectral inaccuracy aI and
the error due to the finite number of points bI , both in (3.6), are null.

Obviously, the relative error increases when the spatial wavelength of the data is
diminished. For example, if a normalized wavelength equal to 10 is chosen together
with a number of points Np = 100 within the filter window, figure 3(a) shows that all
the filters tested, with the exception of the constant one, yield a spectral relative error
êI < 10 %. The more homogeneous the weighting function of the filter, the smaller is
δL (i.e. the more intensive is the smoothing effect of the filter) and, consequently, the
larger is êI . For sufficiently small normalized wavelengths of the scattered data field,
the relative spectral error approaches unity. Below a threshold value, λ0, the relative
error oscillates around unity, because the interpolation filter cannot accurately resolve
spatial scales with wavelengths smaller than the size of the window, owing to the
averaging effect always present in filters of finite size. In particular, for the constant
weighting function, figure 3(a) shows that λ0/LF ≈ 2. For the parabolic peak, the least
homogeneous weighting function tested, the threshold of the spatial wavelengths is the
smallest of the four filters, i.e. λ0/LF ≈ 1, because the predominant values of gI in
a parabolic-peak filter window are concentrated in a smaller area than with the other
filters.

The effect of the number of scattered points, Np, within the filter window on
êI is illustrated in figure 3(b) for the two extremes of interpolative filters studied,
namely using either constant or parabolic-peak weighting functions. It can be seen that
reducing Np always increases the spectral relative error of interpolation, with the filter
using a parabolic peak being the more sensitive to Np of the two considered. The
analytical equation for êI explains why this is the case: in (3.6) bL is the term more
affected by Np, being inversely proportional to Np and directly proportional to GI . As
discussed above, GI increases with the degree of non-homogeneity of the interpolative
weighting function. Thus, the relative error of interpolation also increases with the
heterogeneity of the weighting function. The smaller the number of points the more
probable it is that the points do not uniformly fill the window area, leading to a partial
undetermination of the data field covered by the filter. If gI is non-homogeneous, there
is a risk that this partial undetermination might be accentuated. It should be noted,
however, that for a given value of Np the spectral relative error of interpolation always
decreases in the order followed in table 1, that is, from constant to parabolic-peak
filter.
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Constant
Parabolic dome
Pyramid
Parabolic peak
Analytical estimation
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FIGURE 4. Monte Carlo results and analytical estimation (3.10), of the relative total error
of interpolation versus the spatial wavelength of a single-frequency and isotropic two-
dimensional signal perturbed with white noise: (a) effect of the weighting function; (b) effect
of Np and the noise-to-signal ratio rε.

The relative total error of interpolation (3.1) in a scattered data field affected by
noise is presented in figure 4. Results in this figure are composed of Monte Carlo and
analytical estimations of EI . Additive white noise has been selected since it represents
the most unfavourable measurement perturbation affecting the data. To reveal the
contribution to the inaccuracy associated with each spatial wavelength of the data to
be interpolated, a single-frequency field is studied in this figure. Thus, the Monte
Carlo simulations undertaken for figure 4 are similar to figure 3 except that the former
now has noise. The relative error in multi-frequency fields can be extrapolated from
figure 4 by integrating the relative error of each spatial wavelength and assigning a
level of noise or stochasticity to each data frequency. As figure 4(a) demonstrates,
very good levels of agreement are obtained between the numerical results of the total
relative error and the analytical approximation (3.10), even for a reduced number of
data points Np. In figure 4(a), a small value of Np has been chosen in order to enhance
the differences amongst the filters. The main distinction between the curves depicted in
figures 3 and 4 is that the noise content of the signal in the latter figure prevents the
relative total error approaching zero when the original data ϕ are smooth or constant,
namely when λ→∞. Instead, for large wavelengths, it can be seen in figure 4(a) that
EI tends to a minimum limiting value, EI,∞, which is solely a result of the random
white noise added to ϕ. From the analytical expression obtained for EI in (3.4), the
minimum relative error of interpolation can be deduced:

EI,∞ ≈
[

2DGI

3
(
Np − 1+ GI

)]1/2

rε (3.11)
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where rε is the ratio of the maximum amplitude of the white noise, or stochastic
signal, to the amplitude of the data ϕ, or deterministic signal, for each wavelength.
Thus, with ε ∈ [−rεϕ̂L, rεϕ̂L

]
, then σ 2

ε /ϕ̂
2
L = r2

ε/3. Equation (3.11) explains why, in
figure 4(a), the more homogeneous the weighting function of the filter, the more
accurate is the interpolation of a constant, or very smooth, data field affected by
measurement noise. Filters possessing constant, or nearly homogeneous, weighting
functions gI yield smaller values of GI than filters with sharp gradients in gI .
According to (3.11), reducing GI is an effective way of diminishing EI,∞. Nevertheless,
figure 4(a) demonstrates that the price paid when using interpolative filters with small
GI is a larger relative error at medium or small normalized spatial wavelengths.
Equations (3.4) and (3.11) also show the obvious result that increasing the noise
fraction rε increases the total relative error and hence its minimum value. On the
other hand, increasing the mean number of points contained in the filter window, Np,
leads to a decrease in the total relative error. This is also illustrated in figure 4(b)
for the constant and parabolic-peak filters, the former approaching EI,∞ for normalized
wavelengths outside the selected range for the abscissa.

3.2. Accuracy of differentiation filters
The statistical relative error for filters devoted to the differentiation of scattered data is
defined in a manner similar to that for interpolating filters in (3.1). However, instead
of determining the value of the exact or deterministic data ϕ, the objective of the filter
is to estimate the exact data differentiated along some coordinate and denoted by ϕd.
Then:

ED =

〈(
ϕd(x)− ˜̃φ(x)

)2
〉1/2

ψ,k,ε〈
ϕd(x)2

〉1/2

ψ

(3.12)

where ϕd(x) = ∂ϕ/∂x1 =
∑∞

L=0ϕ̂LF1,l1 cos(x1F1,l1 + ψ1,l1)
∏D

i=2 sin(xiFi,li + ψi,li) and
˜̃
φ = ∂φ̃/∂x1. Here ∂φ̃/∂x1 is defined by (2.15), with x1 being the coordinate chosen for
the differentiation. As detailed in the online Appendix, using an approach analogous to
that employed to derive the analytical expression for EI , (3.4), the relative total error
involved in differentiating data from randomly positioned points, ED, is given by:

ED ≈

[ ∞∑
L=0

ϕ̂2
LF2

1,l1
ê2

D,L +
2D(1− N−1

p )GD

Np − 1+ GI
σ 2
ε

]1/2

[ ∞∑
L=0

ϕ̂2
LF2

1,l1

]1/2 . (3.13)

In (3.13) êD,L is the relative spectral error of differentiation:

êD,L ≈
[
aD,L + bD,L

]1/2
(3.14)

where

aD,L = (1− δL)2, (3.15)

bD,L = t1δL + t2δ
2
L + t3ξLαL + t4α

2
L

GD

F2
1,l1

+ t5
GD

F2
1,l1

, (3.16)
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in which

t1 = 2
Np
, (3.17)

t2 =
−2+ 4Np − 3N2

p

N3
p

, (3.18)

t3 =−2
(
Np − 1

)2

N3
p

, (3.19)

t4 =
(
Np − 2

) (
Np − 1

)
N3

p

, (3.20)

t5 =
(
Np − 1

)
N2

p

, (3.21)

αL =
D∏

i=1

sinc
(
LF,iFi,li

)
, (3.22)

ξL =
VF

∫
ΩF

g2
D(x)

D∏
i=1

cos
(
xiFi,li

)
dx

F2
1,l1

, (3.23)

GD = VF

∫
ΩF

g2
D(x) dx. (3.24)

It can be seen that GD in (3.13) acts as an amplification factor for the noise,
or stochastic signal, in differentiation filters. However, both (3.13) and (3.14) are
approximate, because ˜̃φ(x) is calculated with the approximation given in (2.15); also, it
has been assumed in the derivation of aD,L and bD,L that the weighting function gI(x)
in (2.15) is symmetrical along the direction of differentiation. As was the case with EI ,
the spectral relative error of the differentiation filter, êD,L, contains two terms:

(i) aD,L, related to the spectral inaccuracy of the filter; and

(ii) bD,L , which accounts for the inaccuracy arising from the finite number of points in
the filter window.

It can be seen that, similar to the case with interpolation, the source of error
in (3.13) due to the noise or stochastic signal amplification is proportional to
σ 2
ε . However, the main difference with interpolation filters is that the error in

differentiation is more sensitive to the noise content or stochastic nature of the
data, since the amplification factor GD is normally greater than GI . Another notable
distinction from interpolative filters is the explicit presence of the data frequency along
the differentiation direction, F1,l1 , dividing GD in ED, which indicates that the data
noise affects the filter output with more intensity if the main frequencies of the data
are small instead of large. This behaviour has been also reported for differentiation
filters applied to structured data in one spatial dimension (Lecuona, Nogueira &
Rodrı́guez 1998) and in multiple dimensions (Acosta-Iborra 2004). However, (3.13)
is definitely more intricate than the analytical total relative error for the differentiation
of structured data (Acosta-Iborra 2004). Also, from (3.23), the higher the frequency
the less sensitive is the spectral error, êD,L, to the number of points.
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Parabolic dome
Pyramid
Parabolic peak
Analytical estimation
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(a)

(b)

FIGURE 5. Monte Carlo results without noise (εk = 0) and analytical estimation (3.13), of
the spectral relative error of differentiation versus the normalized spatial wavelength of an
isotropic two-dimensional signal: (a) effect of the weighting function; (b) effect of Np.

In two dimensions the spectral relative error of differentiation can be written

êD,l,r ≈
[
(1− δl,r)

2 + t1δl,r + t2δ
2
l,r + t3ξl,rαl,r + t4α

2
l,r

GD

F2
x,l

+ t5
GD

F2
x,l

]1/2

(3.25)

where Fx,l = 2πl/Sx is the frequency of the data along the direction of differentiation.
Expressions for ξl,r and GD are presented in table 4 for some examples of
two-dimensional filters with a rectangular window and weighting function (2.16),
constructed using h and h′ from tables 1 and 2, respectively. Figure 5 depicts the
relative spectral error of differentiation for the two-dimensional filters of table 4. In the
figure, the relative spectral error has been evaluated using both a Monte Carlo method,
imposing εk = 0, and the analytical approximation (3.13); it can be seen that the
results are similar using either approach. Most of the comments made about figure 3
for interpolation are applicable to figure 5. Thus: (i) the spectral accuracy improves
with an increase in the spatial wavelength of the data to be differentiated; (ii) results
calculated with the parabolic-peak weighting function at medium spatial wavelengths
are more accurate than the results from other more homogeneous weighting functions,
as seen in figure 5(a); (iii) there is a threshold wavelength indicating that the filter
cannot resolve scales smaller than the size of the window. However, an important
difference arises between the relative spectral error of interpolation and differentiation
filters. Statistically, the relative error of differentiation filters does not vanish for large
wavelengths (namely in smooth data fields) even if they are free of measurement
noise or stochasticity, as shown in figures 5(a) and 5(b). This fact contradicts the
well-known behaviour of consistent filters acting over a regular grid of points, i.e.
non-scattered data (Acosta-Iborra 2004; Ahnert & Abel 2007).
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Source ξl,r GD

Parabolic dome

−162
2 cos

(
Fx,lLF,x

)− 2sinc
(
Fx,lLF,x

)+ Fx,lLF,x sin
(
Fx,lLF,x

)(
Fx,lLF,x

)4

×3 cos
(
Fy,rLF,y

)− 3sinc
(
Fy,rLF,y

)+ Fy,rLF,y sin
(
Fy,rLF,y

)(
Fy,rLF,y

)4

18
5L2

F,x

Pyramid 32
sinc

(
Fx,lLF,x

) [
1− sinc

(
Fy,rLF,y

)](
Fx,lLF,x

)2(
Fy,rLF,y

)2

16
3L2

F,x

Parabolic peak 2592

[
1− sinc

(
Fx,lLF,x

)] [
6sinc

(
Fy,rLF,y

)+ (Fy,rLF,y

)2 − 6
]

(
Fx,lLF,x

)4(
Fy,rLF,y

)4

108
5L2

F,x

TABLE 4. ξl,r and GD for some examples of two-dimensional differentiation filters.

Equation (3.14) can be used to explore the source of this unexpected inaccuracy
when scattered data are differentiated. Since δL → 1 when λ→∞, the spectral
inaccuracy related to aD,L does not contribute to êD,L in these circumstances. Hence,
bD,L is the source of error at long wavelengths so that the inaccuracy arises from
the finite number of points. Despite the example weighting functions h′(s) in table 2
being perfectly anti-symmetrical along s, neither the positions of points nor their
density within the filter window are necessarily symmetrical. This generates a non-zero
value in the result for the differentiation filter even in a data field containing constant
values. Of course, the likelihood of having similar numbers of points placed at nearly
symmetrical positions increases if the number of points covered by the filter window,
Np, increases. Therefore, as figure 5(b) and (3.14) demonstrate, bD,L decreases with Np.
Consequently, this inconsistency of the filter output at large spatial wavelengths (i.e.
small frequencies) is an inherent flaw in differentiating filters dealing with scattered
points. From figure 5(b), it is also clear that the inaccuracy arising from the finite
number of points is less noticeable with weighting functions using a parabolic dome
rather than a parabolic peak. This is because the more homogeneous the weighting
function, the less amplified is the result of an unsymmetrical distribution of points
along the direction of differentiation. Figure 5(b) clearly demonstrates that the result of
differentiating data from scattered points is very sensitive to the number of points used
by the filter, e.g. increasing from 14 % of minimum relative spectral error to more than
40 % when Np is decreased from 100 to 10 in a window of a parabolic-dome filter.
Thus, it is advisable not to differentiate when the number of points is small and the
filter size cannot be increased.

Apart from the inaccuracy introduced by the finite number of points, the result from
a differentiating filter is also very sensitive to the noise or stochastic signal content of
the scattered point data. Figure 6 illustrates this fact. The curves depicted in figure 6
correspond to the relative total error, ED, in differentiating a single-frequency, isotropic
field using the three differentiating weighting functions of table 4. In contrast to the
relative spectral error in figure 5, the total error in figure 6 grows without limit at
large spatial wavelengths λ corresponding to the direction of differentiation. This
is because, in (3.13), the term containing the standard deviation σε of the stochastic
component of the signal, increases with a decrease in F1,l1 ,which, in turn, is inversely
proportional to the normalized λ. In other words, the increase in ED at large data
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Parabolic dome
Pyramid
Parabolic peak
Analytical estimation

102

5 × 102

10–3

10–2
101

10–1

100

101

10–1

100

10–1 100 101 102

(a)

(b)
10–1

FIGURE 6. Monte Carlo results and analytical estimation (3.13), of the relative error
of differentiation versus the spatial wavelength of a single-frequency and isotropic two-
dimensional signal perturbed with white noise: (a) effect of the weighting function; (b) effect
of Np and rε.

wavelengths is produced by the amplification of ε perturbing the data ϕ. For data with
a single frequency and perturbed by white noise, it is readily shown from (3.13) that
the relative total error of differentiation at large values of λ is given by:

ED,λ�LF ≈
[

2D(1− N−1
p )GD

12π2(Np − 1+ GI)

]1/2
λ

LF
rε (3.26)

where LF is half the size of the filter window along the direction of differentiation. In
figure 6(a), results from a Monte Carlo simulation as well as from (3.13) are depicted
for Np = 100 and additive white noise reaching up to 20 % of the harmonic amplitude
of the tested field. At small or medium values of the normalized wavelength, there is
only a reduced effect of the noise, as seen by comparing figures 5(a) and 6(a), because
only the relative spectral error êD,L predominates in that part of the spectrum. As
the normalized wavelength increases, there is a balance between the decrease of êD,L

and the increase in the noise amplification, which can give a minimum in the curves
of ED, as figure 6(a) demonstrates. Thus, for given values of Np and rε, there is an
optimal range of λ defined by the statistical minimum in the ED of a filter. The more
homogeneous the weighting function used in the filter, the more displaced towards
large values is the range of optimum λ, since both the amplification of noise and the
spectral accuracy are smaller. This can be seen in figure 6(a). It should be noted from
figure 6(b) that the minimum does not occur if the number of points affected by the
filter window is too small. Again, the analytical estimation of ED in (3.14) provides
an explanation: a decrease of Np simultaneously enhances the noise amplification and
the spectral error in (3.13), smoothing and translating the minimum towards lower
values of the normalized spatial wavelength until the minimum disappears. Obviously,
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an increase in rε affecting the data elevates the total error, and results, eventually, in
the extinction of optimal regions in ED. This is exemplified in figure 6(b) for the
parabolic-dome weighting function.

3.3. Accuracy of variance filters
When estimating the variance or mean quadratic fluctuation of stochastic data over
the deterministic part of the data (i.e. the data mean), the statistical relative error
associated with the estimation can be defined as:

Eυ =

〈(
σ 2
ϕ′ − υ2

)2
〉1/2

ψ,k

σ 2
ϕ′

. (3.27)

Here the estimated variance υ2 is calculated either with the central mean (2.17)
or with the local mean (2.18). In (3.27), the exact statistical mean of the quadratic
fluctuation of the data is denoted by σ 2

ϕ′ , which is the variance of the stochastic
component of the data. In the present study of the relative error, only the situation
in which the value of σ 2

ϕ′ is homogeneous along the data field will be considered.
This can also be extended to cases where there is a small variation in σ 2

ϕ′ in the
regions affected by the filter, ΩF and Ωυ . For simplicity, the noise is assumed to be
either negligible compared to the stochastic fluctuation of the data, or, alternatively,
is included in the fluctuation to be estimated. It is possible to derive an analytical
expression for Eυ ; however, the resulting expression is much more cumbersome than
(3.4) or (3.13), and little advantage is gained from using it. For this reason, in the
present study, only Monte Carlo simulations are used to assess the statistical relative
error of variance filters.

Figure 7 presents the relative total error of the variance, Eυ , in a synthetic field
composed of a isotropic data with a single-frequency mean or deterministic signal, ϕ,
plus added stochastic data ϕ′ consisting of white noise:

φk = ϕ(xk)+ ϕ′(xk). (3.28)

Therefore, the purpose of the variance filter is to estimate the standard σ 2
ϕ′ of the

random signal ϕ′. It should be recalled that the deterministic signal ϕ is estimated by
the mean µ of the total data φ by means of an interpolative filter of size ΩF, whereas
the quadratic fluctuation is computed through (2.17) or (2.18) using the points within
a region of size Ωυ .The exact mean quadratic fluctuation is equal to σ 2

ϕ′ = r2
υ ϕ̂

2/3,
where ϕ̂ is the amplitude of the mean value signal and rυ = ϕ̂′/ϕ̂ the ratio between the
maximum amplitude in the fluctuation and the mean of the data.

In figure 7, the horizontal axis represents the normalized spatial wavelength of
the single-frequency deterministic data ϕ. For simplicity, the ratio rL = LF/Lυ has
been chosen to be equal in both spatial directions, where 2LF is the length of the
window for the interpolative filter and 2Lυ is that for the fluctuation calculation. The
four interpolative filters for a rectangular window in table 1 have been employed in
figure 7 for the calculation of µ. A small number of points, Mp, has been selected
in figure 7(a) to enhance the differences between different curves. As figure 7(a)
illustrates, the values of Eυ based on the central mean (2.17), are much larger than
those based on the local mean (2.18). This is always true, except at large normalized
wavelengths, for which the two approaches give similar results. Therefore, the use
of the central mean (2.17) in the variance estimation should be avoided unless the
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Constant
Parabolic dome
Pyramid
Parabolic peak
Constant (central mean)
Parabolic peak (central mean)
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(b)

FIGURE 7. Monte Carlo results for the relative error Eυ in estimating the variance versus the
spatial wavelength of a single-frequency and isotropic two-dimensional signal perturbed with
white noise: (a) effect of the weighting function for µ; (b) effect of rυ , rL and Mp using a
constant weighting function for µ.

scattered field of the mean signal ϕ is smooth or constant. In general the relative error
increases if the normalized wavelength of the mean signal is decreased. This behaviour
can be explained by re-examining figure 4(a), which indicates that the relative error
of interpolation increases with a decrease in the normalized λ owing to the incapacity
of filters to interpolate with accuracy deterministic data at scales close to the size of
the window of the filter. In that situation, the error in estimating the deterministic
data field with interpolative filters, µ = ϕ̃, will contaminate the estimation of the
variance in (2.17) and (2.18). The less homogeneous the weighting function, gI , of
an interpolative filter (e.g. parabolic peak), the smaller is Eυ at small wavelengths
since the spectral accuracy of non-homogeneous filters is better than constant filters.
However, at medium or large wavelengths, the random fluctuations of ϕ′ are wrongly
incorporated in µ, with this effect being accentuated by the non-homogeneity of gI .
These opposing effects at small and large wavelengths can lead to a minimum in the
total error of the variance estimation, as seen in figure 7(a) for parabolic filters.

The effect of increasing the total number of points, Mp, used in (2.17) and (2.18)
for the variance estimation is illustrated in figure 7(b). All the results in this figure
have been calculated using a constant weighting function for the estimation of the
mean data, but similar trends in the results can be obtained employing other kinds of
weighting functions. As more points are used in the calculation of Eυ , the smaller is
its value owing to the increased number of random samples. It should also be noted
that for the same number of points, for example 100, the values of Eυ are clearly
larger than the interpolation error presented in figure 3. Finally an interesting result
in figure 7(b) is that maintaining the number density of scattered points constant,
a reduction of rL leads to a reduction in Eυ . This means that the improvement
of the spectral accuracy arising from a reduction of the interpolative window size
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FIGURE 8. (Colour online) Schematic diagrams of the experimental apparatus employed for
the image acquisition of bubbles in a two-dimensional fluidized bed.

dominates the growth of the uncertainty generated by the subsequent reduction of
points within the interpolative window. Obviously, if the intensity of the random
fluctuations increases with respect to the amplitude of the mean data ϕ in (3.28),
namely rυ increases, the estimation of the variance is less affected by the inaccuracies
associated with µ, and then the relative error Eυ diminishes.

4. Application to bubble behaviour in gas–solid fluidized beds
To illustrate the application of the filters described above to a real system and to

demonstrate how a methodical knowledge of the statistical error (figures 3–7) can
facilitate the appropriate evaluation of experimental results, the spatial distribution,
gradients and variance of the bubble size and velocity in a bubbling fluidized bed are
characterized in the following section.

4.1. Experimental apparatus and image processing
The sizes and velocities of bubbles formed in a bed of particles, fluidized by air
at ambient conditions, were measured. The bed was quasi-two-dimensional and is
depicted in figure 8: it consisted of two vertical parallel plates, one made of glass
the other of stainless steel, placed close to each other over an air distributor. The
space between the two plates was sealed at their vertical edges, creating an internal
volume of 50 cm× 200 cm× 0.5 cm (width W, height H, and thickness t). The plates
were sufficiently close together for most bubbles to bridge the 0.5 cm thickness and
thus being only able to move in two dimensions. The particles were spheres made
of glass with particle density 2500 kg m−3 and diameters in the range 600–800 µm.
When fluidized by air at ambient conditions, these particles manifest Geldart Group
B behaviour. The settled bed height was 30 cm. The distributor consisted of a thin
plate containing 50 equi-spaced holes of 1 mm diameter. At ambient conditions, the
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(a) (b)

FIGURE 9. Example of an instantaneous image of the bubbling two-dimensional bed taken
with a high-velocity CCD camera (a), and the detected bubbles (dark regions) after applying a
threshold to the image (b).

Parameter Value

Mean particle diameter 700 µm
Particle density 2500 kg s−1

Minimum fluidization velocity of air, Umf 0.34 m s−1

Superficial air velocity, U0 0.68 m s−1

Height of the static bed 0.3 m
Total height of the bed container, H 2 m
Bed width, W 0.5 m
Bed thickness, t 5× 10−3 m
Acquisition region dimensions, h1 ×W 0.5× 0.6 m2

Total image size (pixels) 992× 1270
Image exposure time 2 ms
Frames per second 125
Total number of frames recorded, Nim 3271

TABLE 5. Summary of the fluidized bed characteristics and the measurement technique
employed.

superficial velocity of the air required for minimum fluidization, Umf , was determined,
by measurement of pressure drop across the bed, as 0.34 m s−1. In keeping with a
Geldart Group B material, bubbling occurred at superficial velocities just in excess
of this value. In the experiments described here, the superficial velocity was always
U0 = 2Umf = 0.68 m s−1. A summary of the main operating conditions is given in
table 5.

As shown in figure 8, images of bubbles were recorded by a CCD camera (Readlake
Motion pro X3), which took Nim = 3271 sequential pictures (images) of the bed
through the front glass plate, at a rate of 125 frames per second. Two 650 W spotlights
were used to illuminate the particles in the bed. A typical frontal view of the bubbling
bed is shown in figure 9(a), with the dark areas being the bubbles and the light areas
the particulate phase. The dimensions of the images taken by the CCD camera were
992×1270 pixels (width×height): further details of the acquisition of images are given
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in table 5. The images of the bubbling bed were processed using digital image analysis
(DIA) techniques for the capture of bubbles and the quantification of their diameters
and velocities (Sánchez-Delgado et al. 2008). To start with, a threshold filtering on the
image grey levels was used to separate the bubbles from the particulate phase. This is
exemplified in figure 9(b), which shows the threshold image resulting from the original
image in figure 9(a). The DIA technique was able to eliminate the rain of particles
visible inside bubbles in the images (seen in figure 9a). Bubbles of diameter <1 cm
were rejected as their size is comparable to the bed thickness and therefore the bubbles
and their surrounding particles may not be moving in two dimensions. In fact, these
tiny bubbles constituted less than 15 % of the total number of bubbles captured and
they were usually situated very close to the distributor where the fluidized bed cannot
be considered two-dimensional.

After the threshold filtering, the positions of the centroids of the resulting selected
bubbles, and their equivalent diameters Db = √Ab4/π, were determined. Here, Ab is
the frontal area of a bubble as viewed by the camera. The velocity of each bubble was
calculated from the displacement of its centroid between consecutive images using a
standard time differentiation of second-order.

4.2. Bubble number density
A global field can be constructed by collecting all the centroid positions and assigning
to them their equivalent diameter and velocity. Multiple bubbles originated at different
positions along the complete set of images of the bubbling fluidized bed described in
the previous section.

Over a given narrow increment of height above the distributor, the centroids of the
bubbles can be assumed to be stochastic and uniformly distributed since the total time
covered by the set of images was large, and the gas flow was evenly distributed. This
global field was used to generate the results described below.

Figure 10 shows the mean number density of bubbles nb at different vertical
heights, y, above the distributor. Using the global field, the number density of bubbles
was calculated as the total number of bubble centroids accumulated during all the
acquisition time, placed inside a given region, and divided by the area of the region
and the total number of images Nim. This yields an estimation of the most probable
value of the instantaneous number of bubbles encountered per unit of frontal area in a
region of the bed. Two different types of regions are tested in figure 10, all of them
centred on the vertical axis of the bed, 0.25 m from either side. Type A windows were
defined by an elongated region spanning the entire frontal width (0.50 m) of the bed:
Type B regions were square. The dimensions of these regions are given in table 6.

It can be seen in figure 10 that the number density of bubbles grows rapidly
up to a height slightly just above 0.05 m (i.e. ten times the bed thickness). This
can be interpreted as the height, htr, of a transition region in which bubbles are
created and grow to a size greater than the minimum bubble diameter required by the
image analysis procedure. For heights greater than htr, the bubble density decreases
with the height above the distributor, owing to bubble coalescence. The trend is
reproduced by most of the types of windows tested in figure 10, except for size B3
(2LF,x × 2LF,y = 0.2 m × 0.2 m, from table 6). This is to be expected because htr is
significantly smaller than LF,y for B3 so that the presence of the peak in number
density is not properly described. In general, the larger the size of the window used
for averaging or filtering, the less resolved will be the resulting spatial profiles. In this
sense, it can be seen that the intensity of the peak in nb decreases with the size of LF,y.
It is interesting to note that nb is quite similar for the profiles calculated with window
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FIGURE 10. Experimental results of the bubble number density versus the height above the
distributor of the bed obtained from different filter sizes (see table 6).

Size LF,x (m) LF,y (m)

A1 0.25 2.5× 10−3

A2 0.25 5× 10−3

A3 0.25 1× 10−2

A4 0.25 2.5× 10−2

A5 0.25 5× 10−2

A6 0.25 0.1
B1 2.5× 10−2 2.5× 10−2

B2 5× 10−2 5× 10−2

B3 0.1 0.1

TABLE 6. Dimensions of the rectangular filters used in the processing of
the experimental data.

sizes A3 and B1 except for y very close to htr. The fact that both sizes have nearly
similar vertical widths, 2LF,y, but very different horizontal widths, 2LF,x, suggests that
bubbles are homogeneously distributed along the entire width of the bed and therefore
that the predominant gradient in nb is oriented towards the vertical, rather than the
horizontal, direction. This is corroborated by the map of nb within the plane of the bed
shown in figure 11(a). In this figure, the horizontal distance from the left-hand side is
denoted by x.

Figures 10 and 11(a) can be used to determine the expected number of scattered
data points Np (namely bubble centroids) affected by the filter windows of table 6.
These are calculated using Np = 4nbLF,xLF,yNim. For the smallest sizes of window, Np

reaches a maximum value of ∼2100 data points (for size A2) and 1800 data points
(for size B1) just above the transition region, and falling, for example, to ∼130 points
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FIGURE 11. (Colour online) Experimental maps of bubble number density nb (a), equivalent
diameter Db (b) and vertical velocity Vb (c) calculated with a parabolic-dome filter of size B2.

(for both A2 and B1) at height 0.35 m. Thus, the number of scattered points available
at 0.35 m is still usable for the data filtering.

4.3. Bubble mean diameter and velocity
Figures 11(b) and 11(c) present, respectively, a map of mean bubble diameter Db in
the bed plane and a map of mean vertical velocity Vb of bubbles in the same plane.
The maps have been calculated using an interpolative filter with a parabolic-dome
weighting function from table 1 with window of size B2 (0.1 m× 0.1 m, from table 6)
applied over the global field containing the experimental results from all the images. In
contrast to the number density of bubbles, figures 11(b) and 11(c) show that Db and
Vb vary noticeably along the horizontal direction x, especially in the upper part of the
bed. This also confirmed by the horizontal profiles of Db and Vb, given in figure 12,
depicted for three different heights above the distributor. These mean data maps and
profiles lose their symmetry for y far from the distributor, as noted by others (e.g.
Shen, Johnsson & Leckner 2004). Since the images were collected over 30 s, and the
number of bubbles in the upper regions of the bed is small, the distribution is less
well sampled and the chance of obtaining an asymmetric sample is higher than for the
lower regions of the bed.

The mean equivalent diameter of bubbles, and their mean vertical velocities, are
shown as a function of the height y above the distributor in figure 13. These
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FIGURE 12. Experimental profiles of the mean bubble diameter (a) and vertical velocity (b)
along the horizontal coordinate at three vertical distances from the distributor.
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FIGURE 13. (Colour online) Experimental results for the mean bubble diameter (a) and
vertical velocity (b) as a function of the height above the distributor.

experimental results have been calculated with interpolative filters based on different
weighting functions, with the centre of the filtering window being placed on the
central, vertical axis of the bed. Therefore, for the case of square filter windows of
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type B, the results are representative of the data at the centreline of the bed and
not in regions close to the lateral walls. For filters of type A, spanning the entire
frontal width of the bed, the results correspond to data averaged along the horizontal
direction. As figure 13 illustrates, both Db and Vb increase with height for both types
of window. It is well known that the growth of bubble diameter with height observed
in figure 13(a) is primarily due to bubble coalescence (Darton et al. 1977), which is
also corroborated by the decrease in the number density of bubbles in figure 10. The
increase of Db causes a corresponding increase in bubble velocity, cf. figures 13(a) and
13(b).

All the filters applied in figure 13 yield closely similar results up to heights of
∼0.25 m for Db and 0.20 m for Vb. However, at heights greater than these, the mean
values of the equivalent diameter and the bubble velocity are dependent on the size
and nature of the weighting function employed. For example, at a height of 0.34 m, it
is clear that, for filters of size B2, the constant weighting function gives curves with
fewer oscillations and smaller maximum values of Db and Vb than the parabolic-peak
weighting function. This also happens with a constant weighting function used with
windows of size B1 and A3, compared with the same function used with size B2.
These observations can be interpreted in the light of the relative error curves for
interpolation presented in figure 4. As explained in § 3, the spectral accuracy of
constant filters is lower than peak filters, indicating that the differences encountered
between different filters in figure 13 arise from the presence of rates of change of Db

and Vb with height in the upper part of the bed being significant over distances close
to, or smaller than, the size of the filter window B2. These gradients appear both in
the vertical and the horizontal directions, since the results in figure 13 for the filter of
size A3 present a smaller gradient and peak value in the upper half of the bed. Owing
to these gradients, the results of bubble velocity based on local square filter windows
(e.g. B2) in the upper half of the fluidized bed are clearly different to those involving
the horizontal average (e.g. size A3), as figure 13 demonstrates.

Once the bubbles reach the free surface of the bed, at height hbf ≈ 0.34 m, they
disappear from the measurements after eruption at the surface. This generates an
apparent diminishing of the bubble diameter, since the centroid of small bubbles can
reach higher values of y prior to eruption than can occur with large bubbles. This
mechanism is reflected in figure 13, which shows a maximum in the curves for the
mean bubble diameter and velocity. For example, taking the results from parabolic-
dome filters shown in figure 13, the peak values of the bubble diameter and velocity
are D∗b ≈ 7.5 cm and V∗b = 0.8 cm, occurring at a similar distance from the distributor
h∗ ≈ 0.34–0.35 cm. An abrupt decay of the mean equivalent diameter is observed in
figure 13(b) at y= 0.34 m for all the filters tested. As this sharp decrease in the value
of Db is unambiguously defined and concentrated in a small range of vertical distances,
it could be used as a novel means of defining the mean height hbf of a bubbling bed.
Thus, the bed height is defined by the height for which the extrapolated bubble size
reaches zero diameter.

Using the Monte Carlo results or the analytical equation obtained for EI , an estimate
of the total relative error implicit in figure 13 was made. For example, according
to figures 11(b) and 11(c), the smallest spatial scales (i.e. the largest gradients)
are encountered near the peak values of Db and Vb at y = 0.35–0.4 m. A rough
estimate of the size of these scales can be made by assuming that the dominant
spatial wavelength, λ, in the global field for Db and Vb is the horizontal distance
between two nearby peaks in figures 11(b) and 11(c), and twice the vertical distance
between a peak and the freeboard. This gives a value between 0.10 and 0.3 m for the
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horizontal wavelength, λx, and ∼0.1 m for the vertical wavelength, λy. Consequently,
interpolative filters of size B2 (LF = 0.05 m) have a normalized wavelength between
2 and 6. As noted earlier, the number of bubbles at the height where the smallest
scales are placed is approximately equal to 130. Selecting an intermediate wavelength
λ/LF ≈ 4 and Np = 100, the statistical relative error in the absence of measurement
noise, from figure 3, is 25 % for the parabolic-dome filters, but 60 % if constant filters
are used. Of course, the estimated relative error can increase with the presence of
noise or the stochastic component of the data. Nevertheless, figure 4 indicates that the
relative level of noise or stochasticity, rε, required to perturb the results at λ/LF ≈ 4 is
high, especially for constant filters. It should be noted that filters of size A are nearly
one-dimensional, as their height is much smaller than their width. Using (3.10), it is
readily demonstrated that their embedded error in estimating the local value of Db and
Vb is principally affected by the gradients in the horizontal direction rather than in the
vertical direction.

The interpolated results in figure 13 can be used to adjust parameters from
theoretical models of Db and Vb. Following a procedure analogous to the one used
by Darton et al. (1977) for three-dimensional beds, it is possible to estimate the
bubble diameter as a function of the height over the distributor in two-dimensional
beds. This was done by Shen et al. (2004). However, a slightly different approach
will be presented here, which explicitly accounts for the fraction, ψ̄ , of the excess
gas, U0 − Umf , that passes through the bed as observable bubbles (Kunii & Levenspiel
1991), and for the virtual origin h0 of bubble diameter. The following explains this new
approach. There is a direct link between the equivalent diameter of each bubble in the
bed and its velocity in the absence of other bubbles (Davidson & Harrison 1963), thus

Vb = µ̄
√

gDb (4.1)

where µ̄ = 0.71 is a coefficient for an isolated bubble and g = 9.81 m s−2 is the
gravity acceleration constant. This coefficient has been experimentally determined by
Shen et al. (2004) for two-dimensional bubbling beds, as being between 0.8 and 1.0.
Other recent investigations in two-dimensional beds, however, seem to indicate that
µ̄ may be smaller than 0.71 (Busciglio et al. 2008), suggesting that the walls can
reduce the bubble velocity over that for a single bubble far from walls or other bubbles
(Glicksman, Lord & Sakagami 1987). Equation (4.1) was used by Darton et al. (1977),
as well as by Lim, Gururajan & Agarwal (1993) and Shen et al. (2004), to build an
analytical model describing the growth of bubbles as a function of their distance from
the distributor. This was done in combination with the assumptions that the distance
between two consecutive bubbles in the vertical direction is equal to 2ᾱDb, with
ᾱ = 0.63 for hemispherical bubbles, and that the vertical distance over which a bubble
survives without coalescing is λ̄Lc, where Lc is the characteristic separation between
neighbouring bubbles in the horizontal direction. In two-dimensional beds Lc =W/Ntb

if bubbles are evenly distributed. Clearly, Lc is a function of the vertical distance above
the distributor, y, because the instantaneous number of bubbles, Ntb, passing through a
horizontal plane in the bed decreases with y owing to bubble coalescence.

The analytical models for bubble growth of Darton et al. (1977) and Shen et al.
(2004) were deduced under the two-fluid assumption that all the gas in excess
of that required for minimum fluidization, U0 − Umf , appears as bubbles. Further,
in both studies, the expressions presented require knowledge of the conditions at
the distributor, where y = 0. However, if only a proportion of the excess gas,
ψ̄
(
U0 − Umf

)
, is attributed to bubbles, and an arbitrary height, yi, is used as the

position for which the bubble conditions are known (so that yi is not necessarily zero),
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the following expression for the bubble equivalent diameter in a two-dimensional bed
can be deduced, leaving other assumptions made by Darton et al. (1977) unchanged:

D3/2
b =

ᾱψ̄

λ̄µ̄

8
(
23/4 − 1

) (
U0 − Umf

)
πg1/2

[
y− yi + λ̄Ai(

23/4 − 1
)

t

]
. (4.2)

Here, Ai = Wt/Ntb(yi) is the horizontal sectional area of the bed at yi per unit of
bubble, with Ntb(yi) the number of bubbles in that horizontal section, and W and t
are the nominal width and thickness of the bed. Equation (4.2) reveals that there is a
virtual height, h0, for which the bubble diameter is null, with h0 = yi− λ̄Ai/((23/4−1)t).
It can be seen that h0 might be positive or negative and acts as a virtual origin for
the point at which the bubbles first start to grow: of course, it does not necessarily
coincide with bubble formation in reality, because bubbles detach from the distributor
with a non-zero size and their initial behaviour (i.e. for y < htr) might well not follow
all the simplifying assumptions which led to (4.2).

From the point of view of parameter fitting, the expression presented in (4.2) has the
interesting benefit that it permits the independent determination of parameters such as
λ̄, ψ̄ , or Ntb, and that yi can be conveniently chosen on the basis of the experimental
information available or the interest in a particular region of the bed. For example,
figure 13(a) contains the analytical curves of the equivalent diameter, Db, as a function
of y resulting from a linear regression of (4.2) and the experimental results for Db.
The experimental results used for the regression came from: (i) a parabolic-dome filter
of size B2 confined to the vertical line at the middle of the bed width; and (ii) a
constant filter of size A3 representing the transverse average for the whole bed width.
The regression of (4.2) using these filtered results in figure 13(a) provides the value of
ᾱψ̄/λ̄µ̄ as well as h0, and has been limited to the region y 6 0.3 m because it appears
that the local behaviour of the bed (especially for filters of size A3 and B1) deviates
considerably near the upper surface of the bed, as discussed earlier. The regression of
the data obtained from parabolic-dome filters B2 and constant filters A3 indicates that
the virtual origin of bubble diameter is placed very close to the distributor, that is, at
1.29 × 10−2 m for the first filter and at −1.12 × 10−2 m for the second. These values
are summarized in table 7 together with other resulting parameters.

By performing a standard least-squares regression, the experimental results for Db

and Vb presented in figure 13 were used to estimate values of the velocity coefficient
µ̄ ranging from 0.581 to 0.599, as shown in table 8, for y 6 0.2 m, i.e. sufficiently
removed from the surface of the bed. This procedure is not intended for the estimation
of the coefficient relating the instantaneous bubble diameter and velocity (in the
range 0.8–1.0 as indicated previously), but the coefficient connecting their mean value
for each distance over the distributor. Owing to the nonlinearity of (4.1), combined
with the dispersion in bubble size encountered at any selected value of y, these two
different approaches lead to different values. Using the empirically estimated value for
µ̄, figure 13(b) depicts the model-fitted dependence of the mean bubble velocity on
y computed after inserting (4.2) into (4.1). It should be noted that different results
for the model-fitted velocity are obtained, depending on the filter employed in the
estimation of the model parameters. In particular, the use of size A3 filters (transverse
average) yields model parameters leading to smaller bubble diameters and velocities
than filters with size B2 (local average at the bed centre).

Assuming a fraction of visible bubbles ψ̄ ≈ 0.65, characteristic of bubbles formed in
Geldart Group B particles (Kunii & Levenspiel 1991), and a vertical bubble separation,
ᾱ ≈ 0.63 (Darton et al. 1977), the regression of (4.2) in figure 13(b) gives λ̄ ≈ 2.00
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Parameter Value

Bubbling bed height, hbf 0.43 m
Transition region height, htr 0.052 m
Maximum mean bubble diameter, D∗b 7.5× 10−2 m
Maximum mean vertical velocity of bubbles, V∗b 0.79 m s−1

Vertical location of D∗b and V∗b , h∗ 0.34 m

Maximum bubble growth near the activation region,
∂Db

∂y

∣∣∣∣
ac

0.25

Maximum bubble velocity increase near the activation region,
∂Vb

∂y

∣∣∣∣
ac

1.6 s−1

Maximum variance of Db, υ2(Db)
∣∣

max
2.2×10−3 m2

Vertical location of υ2(Db)
∣∣

max
0.4 m

Maximum variance of Vb, υ2(Vb)
∣∣

max
0.2 m2 s−2

Vertical location of υ2(Vb)
∣∣

max
0.35 m

TABLE 7. Main experimental results on bubble kinematics calculated with filters of size
A2 (figure 10) and with parabolic-dome filters of size A5 and B2 (figures 13–15).

Parameter Centre of the bed (size B2) Transversal average (size A3)

µ̄ 0.599 0.581
λ̄ 2.00 2.41
λ̄Shen 9.20 10.8
h0 1.29× 10−2 −1.12× 10−2

Ntb(yi =
0.05 m)

39.6 28.9

TABLE 8. Model parameters fitted with experimental data interpolated at the centre of the
bed (filter of size B2) and data transversally averaged (size A3). ᾱ = 0.63 and ψ̄ = 0.65
have been selected for the calculations.

from the results interpolated with the parabolic-dome filter B2 and λ̄ ≈ 2.41 from the
constant filter A3. Although these values differ by ∼20 %, they are of the same order
as the constant λ̄ ≈ 1.17 obtained by Darton et al. (1977) in their model for three-
dimensional beds. It should be noted that if the fraction ψ̄ ≈ 0.65 of visible bubbles
were incorporated in that model, the results for the three-dimensional field would yield
λ̄ ≈ 0.94, which remains the same order of magnitude as λ̄ from figure 13. In other
studies, Shen et al. (2004) obtained λ̄Shen ≈ 6.5 after applying their model to two-
dimensional beds, and Almendros-Ibáñez et al. (2006), using the same model as Shen
et al. (2004), found λ̄Shen ≈ 9.85. Although these results appear to be unconnected
to those obtained in the present work, by comparing (4.2) with the model presented
by Shen et al. (2004), it is readily shown that both models are equivalent if λ̄Shen

is set equal to πλ̄µ̄/ᾱψ̄ and h0 in (4.2) is substituted by λ̄µ̄Ai/ᾱψ̄
(
23/4 − 1

)
t.

This transformation of h0 demonstrates that, although the models are not exactly
the same, they are very similar on account of h0 usually being small in magnitude.
Therefore, ignoring the difference in h0, the data contained in figure 13 provide
λ̄Shen ≈ 9.20–10.75, which is in excellent agreement with the results of Almendros-
Ibáñez et al. (2006). As commented upon previously, it appears from figure 10 that
bubbles are not completely formed, or their diameter is not large enough to be visible,
in the transition region for y < htr, with htr ≈ 0.05 m. In fact, figure 13(a) shows that
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Parabolic dome, A4
Parabolic dome, A5
Pyramid, A5
Parabolic peak, A5

 

Parabolic dome, B1
Parabolic dome, B2
Parabolic dome, B3

(a)

(b)

y (m)

–0.4

–0.2

0

0.2

0.4

–4

–2

0

2

4

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

FIGURE 14. Experimental results for the mean derivative along the vertical direction of the
bubble diameter (a) and vertical velocity (b) as a function of the height above the distributor.

bubbles have Db ≈ 0.02 m at y = htr. This confirms that it is not advisable to use
(4.2) in the transition region, because the premises concerning two-dimensionality and
gradual coalescence of bubbles do not hold for y < htr. Therefore, htr is the smallest
value of yi for which (4.2) is applicable in a two-dimensional bed. Extracting Ntb from
the experimental value of the coefficient h0 in table 8, the estimated number of bubbles
crossing the horizontal section of the bed at y = htr is 39.6 for parabolic-dome filters
of size B2, and 28.9 for constant filters of size A3. These values seem realistic, since
they are smaller than the number of orifices in the distributor. However, the two values
differ from each other by more than 37 %, suggesting that the results are very sensitive
to the selection of the filter and its size.

4.4. Increment of bubble diameter and velocity with height
The spatial derivative of the bubble diameter and velocity along the vertical direction
for the two-dimensional bed is shown in figure 14. These experimental results have
been calculated for filters of larger size than those used in figure 13. The objective of
increasing the size of window of the filter was to attenuate the stochastic dispersion
of the results. As demonstrated in § 3, the differentiation filters give results which
are more sensitive to noise or other sources of fluctuation than interpolative filters.
This can be seen in figure 14 by comparing the results for the filters of size A4
and A5. It can also be seen that, by examining results for filter windows of size A5,
random fluctuations are damped more when the homogeneity of the weighting function
(e.g. from parabolic peak to parabolic dome) is increased, as expected from results in
figure 6. However, increasing the size of the filter also reduces the spectral accuracy
of the derivative. For example, using filters of size B2 for λ/LF ≈ 4 and Np ≈ 100, an
expected relative spectral error between 30 % and 45 % would be statistically obtained,
as determined from figure 5, in the derivatives near the surface of the bed (y ≈ h∗ in
figure 14). If filters of size B3 are used instead, the estimated relative error increases
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to between 60 % and 90 %. These indicate the sensitivity of the results to the size of
the selected filter. Furthermore, in figure 14, it is clearly seen that the results obtained
with a parabolic weighting function with size B3 (0.2 m × 0.2 m) follow a definite
and smooth trend, whereas for smaller size B1 (0.05 m × 0.05 m) the results have a
dispersed and random character. The only explanation for this observation is that the
filter of size B1 is operating in the spectral region where the stochastic fluctuation
of the data dominates over the mean value of Db and Vb. This region is to the right
of the minimum of ED (figure 6a). In contrast, the filters of size B3 and (to a lesser
extent) B2, are operating in a region in which the spectral error êD is the largest
contributor to the overall error, which is a region to the left of the minimum of ED.
A complete assessment of the relative total error in figure 14 cannot be done unless
some estimate of the level of measurement noise or fluctuation is made. However,
inspection of figure 6(a) reveals that if the noise were 20 % (rε = 0.2), the predicted
statistical error for parabolic-dome filters of size B1 at y ≈ h∗ (i.e. using Np = 100
and λ/LF ≈ 8) would not be very much affected by the random fluctuation in the data
values. Therefore, the level of fluctuation is probably greater than 20 % in that region
of the bed since the size B1 filter shows significant fluctuation.

As figure 14 illustrates, the vertical derivatives of both Db and Vb have the same
trend. Up to y ≈ h∗ (0.34 m from table 7) the derivative along the vertical direction is
positive, indicating the coalescence and growth of bubbles coupled with their increase
in velocity. For larger values of y, both derivatives in figure 14 become negative, so
that both the mean bubble diameter and velocity decrease with increasing height above
the distributor. As discussed earlier, this is probably due to larger bubbles erupting
sooner than smaller ones. Obviously, the value of y at which the derivatives change
sign coincides with the height, h∗, at which the peak values in Db and Vb are located.
Although not easy to see in figure 13(a), there appears to be a consistent reduction
in the rate of growth of the mean bubble diameter with height, which can be clearly
appreciated from figure 14(a). This reduction is probably the result of the fall in the
bubble coalescence frequency, due to the increase in the horizontal separation between
bubbles produced after each bubble coalescence (Darton et al. 1977) and which can
be seen in (4.2). The reduction in bubble coalescence frequency is also in agreement
with the progressively smaller gradient in the curve of nb as y increases, as seen in
figure 10. However, the derivative of the mean vertical velocity of bubbles with respect
to y, shown in figure 14(b), does not manifest a clear trend for y < h∗. In fact, an
interesting feature derived from figure 14(b) is that the vertical velocity of the bubbles
does not seem to follow the progressive relaxation in the deceleration predicted by
(4.1) for y near h∗. This occurs despite the fact that, as commented previously, (4.2)
fits very well the mean bubble diameter. One possible reason, not reflected in (4.1)
and (4.2), is that, on coalescence, the new bubble does not immediately begin to rise
with its new velocity, but has to accelerate, as discussed by Müller et al. (2007). Since
the time between successive coalescences increases with height (Darton et al. 1977),
bubbles in the lower part of the bed have less time available to adjust their velocity
according to their new volume after coalescence. This translates into derivatives of
velocity in figure 14(b) that are smaller than those which would be obtained if the
adjustment in the bubble velocity were instantaneous.

4.5. Variance of bubble diameter and velocity
As discussed earlier, the random values encountered in the experimental data for
the bubble diameter and velocity can be produced by measurement noise or by
the intrinsic stochastic behaviour of bubbling fluidized beds. Figure 15 presents the
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FIGURE 15. Experimental results for the variance of the bubble diameter (a) and vertical
velocity (b) as a function of the height above the distributor.

vertical profiles of the mean quadratic fluctuation or variance of Db and Vb at the
middle of the bed (i.e. far from the lateral walls), calculated using (2.17) and (2.18)
with rL = 1. The profiles can be used to understand the cause of fluctuations in
the experimental data in the fluidized bed studied. Figure 15 shows that there is a
clear trend increase in the level of quadratic fluctuation of both diameter and bubble
velocity with height up to y ≈ 0.40 m for Db and y ≈ 0.35 m for Vb. These vertical
distances define a maximum of variance for bubble diameter υ2(D∗b) ≈ 2 × 10−3 m2

and for velocity υ2(V∗b ) ≈ 0.2 m2 s−2. Despite the variance of Db being two orders
of magnitude smaller than the variance of Vb, their values relative to the mean
presented in figure 13 are certainly similar. For example, comparing figures 13 and 15,
the relative peak values of the mean square-root fluctuation are:

√
υ2(D∗b)/D

∗
b ≈ 0.6

and
√
υ2(V∗b )/V

∗
b ≈ 0.56, whereas at y = 0.1 m they respectively become 0.52 and

0.62. Therefore, the data dispersion in the bed, far from the walls, reaches a value
of more than 50 % relative to their mean value, which translates to a dispersion
range of rυ ≈ 0.5

√
3 ≈ 0.87 if the probability distribution of the data values is

assumed constant. This means that the bubble diameter and velocity constitute a highly
stochastic phenomenon, and that this level of stochastic behaviour, relative to the mean
value, does not depend on the height above the distributor. The qualitative similarity
between the relative amounts of variance for Db and Vb is due to the dependence of
the bubble velocity on its diameter.

Figure 15 also indicates that the level of data variance attenuates near the walls,
because the quadratic fluctuation for a filter covering the entire frontal width of the
bed (size A6) is less intense than for local filters of smaller size in horizontal width,
x (size B2). If the data variance were homogeneous in the x direction, the filters of
larger size would yield greater quadratic fluctuation than filters of smaller size as a
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consequence of the incorrect prediction of the data mean µ. A rough estimation of the
accuracy in the calculation of the variance of Db and Vb can be done with the Monte
Carlo results presented in figure 7. Since the quadratic fluctuation is contaminated by
the abrupt change in the mean data gradient at h∗, seen in figure 13, it is appropriate
to use a filter of size B2 (0.05 m × 0.05 m). Thus, with rL = 1, Np = 100, λ/LF ≈ 4,
and rυ ≈ 0.87, figure 7 shows that Eυ ≈ 0.3 at h∗. This is a conservative estimate,
since the changes in the spatial gradients of the mean Db and Vb are less steep in
the x direction than in the y direction. Besides, a smaller value of Eυ is expected
since the effective rυ that can be used in figure 7 is lower than 0.87 owing to
the fact that the values of Db and Vb possibly do not follow a constant probability
function but a more realistic one concentrated towards their mean values. In agreement
with the theoretical relative error of variance filters depicted in figure 7, the use of
non-homogeneous weighting functions for the estimation of the mean µ in (2.17)
or (2.18) yields in figure 15 lower values of the quadratic fluctuation than using a
constant weighting function. For both υ2(Db) and υ2(Vb), the quadratic fluctuation
based on the global mean, υ2

a , is very similar to that based on the local mean, (νb)
2,

which indicates that the means µ do not vary significantly through the filter area when
compared with the significant fluctuations in Db and Vb. As the bubble diameter and
velocity are obtained by different processing techniques, it is unlikely that the level of
fluctuation presented in figure 15 is caused by measurement and processing errors. In
fact, random error caused by measurement noise and sub-pixel inaccuracy in placing
the bubble centroid in the images is typically independent of the bubble size and
position within the bed, so that it should be more homogeneously distributed than the
fluctuations seen in figure 15.

5. Conclusions
The statistical accuracy of interpolation, differentiation and fluctuation filters acting

on scattered data has been studied in this work. Novel analytical equations have been
deduced for the estimation of the relative spectral and total error of interpolative
and differentiation filters when applied to scattered data perturbed by noise or other
sources of random signals. These analytical equations compare well with the results
obtained from Monte Carlo simulations for the four examples of filter weighting
functions considered: constant, parabolic dome, pyramid and parabolic peak.

Both the analytical and Monte Carlo results show that the relative spectral error of
scattered data filters for interpolation and differentiation decreases if the higher values
of the weighting function are concentrated towards the centre of the filter window.
Using the analytical equations for the relative error, it has been possible to identify
not only the sources of spectral inaccuracy, but also the noise amplification factors
always present in the interpolation and differentiation of scattered data. In contrast to
the behaviour of interpolative filters, the results have shown that the relative spectral
error of differentiation filters does not vanish when the spatial wavelength is much
larger than the filter window. To the authors’ knowledge, the exact source of this
unexpectedly resilient error has not been previously reported. It is produced by the
random collocation of points within the filter window, which precludes the complete
compensation of the null frequency terms to be differentiated, leading to inaccuracies
that persist even for the trivial case in which the values of the sampled data are
uniform. This inconsistency of the filter output, which becomes relevant at large spatial
wavelengths (i.e. small frequencies), is inherent in differentiating filters dealing with
scattered points. With regard to filters for estimating the variance of stochastic data,
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the results demonstrate that the local mean approach (2.18) yields estimates of Eυ
subject to less relative error than the approach based on the central mean (2.17).

The scattered data filters were applied to a study of the distribution of bubble
density, diameter and velocity in a two-dimensional gas-fluidized bed. Application of
the filters has shown that bubbles are homogeneously distributed along the frontal
width of the bed and that there is a transition region, close to the distributor, of height
∼10 times the bed thickness, in which departure from the standard two-dimensional
behaviour occurs. A simple means of assessing the mean bed height hbf of a bubbling
bed has been proposed, making use of the sharp decrease observed in the mean bubble
diameter at the upper surface of the bed. The results from the scattered data filters
have also allowed the experimental evaluation of model parameters characterizing
the bubble velocity and coalescence. To do this, the model of Darton et al. (1977)
describing bubble growth has been modified to account explicitly for the fraction, ψ̄ ,
of the excess gas passing through the bed as observable bubbles. The modified model
has led to the definition of a concept: the virtual origin of bubble diameter, h0. The
fitting of the model to experimental results has shown that the velocity coefficient,
µ̄, i.e. the ratio between the rise velocity of an isolated bubble in a two-dimensional
bed and

√
gDb, has a value in the range µ̄ = 0.59–0.61 using mean diameter and

velocity. Also, the coalescence constant λ̄ in the two-dimensional bed studied is of
the same order as the value obtained by Darton et al. (1977) for three-dimensional
beds. However, discrepancies between results obtained using different filters, reaching
20 % in λ̄ and 37 % in the number of bubbles at a height 0.05 m from the distributor,
indicate that there is sensitivity to the selection of the filter weighting function, and
the size of its window. In this respect, the model adjusted with scattered points at the
centre of the bed predicts slightly greater growths of bubble diameter and velocity than
the one adjusted using interpolation data over the entire width of the bed.

The variance filters have revealed that the level of stochasticity of bubble diameter
and velocity in the two-dimensional bed tested increases with the height above the
distributor beyond that corresponding to the height of the unfluidized bed of particles.
However, the relative level of stochasticity (i.e. square root of the variance divided by
the mean values of diameter and velocity) is nearly constant with the vertical distance,
having a value of order 50–60 % on the vertical central line of the bed, but attenuating
near the lateral walls.

In conclusion, it has been shown that the observed behaviour of fluidized beds
depends on the scattered point filter used and that previous knowledge of the statistical
accuracy of scattered data filters is advisable for the adequate interpretation of the
results. In fact, the analytical expressions and Monte Carlo results presented in this
work could be used for the design of optimum interpolation and differentiation filters
for a given frequency spectrum of a scattered data field.
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