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SUMMARY
The dynamics of sensors operated devices such as
Automated Mobile Robots and more generally autom-
ated target seeking devices is studied in presence of
noise. We introduce a simple and analytically tractable
class of dynamics which permits to classify qualitatively
and somehow quantitatively also the approach to the
targets when fluctuations corrupt the ideal trajectories.
Our model constitute a first evaluation of the feasibility
of an efficient approach when the parameters of the
model (statistics of the noise, lengths of the path and
progressing steps and heading velocity) are known.
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1. INTRODUCTION
Let us consider qualitatively the motion of an
Automated Mobile Robot (AMR) when it is progressing
toward its target. The AMR is equipped with a
navigation system which is able to plan a path connecting
efficiently its present position to a preassigned target.
The path planning process is generally divided into two
stages, i.e. the Global Path Planning (GPP) and the
Local Navigation Planning (LNP).1-2 While the GPP
include a prelearned model of the domain of operation
(walls, corridors, big obstacles . . . ) , the LNP is able to
react to unpredicted obstacles and situations. Hence, the
LNP is designed to control the robot actual displacement
in order that the GPP scheme remains valid. More
specifically, take for instance the sudden arrival of a
human being on the ideal trajectory. This occurrence
temporally invalids the GPP and it is precisely the LNP
which takes care of such an event. The sudden obstacles
are obviously of different sizes. We shall call the "big"
obstacles those detected by the sensors, and the "small"
obstacles those not seen by the local navigation system.
For instance, the presence of gravel on the operating
ground of an AMR, belongs to the class small obstacles
which, despite their sizes, are likely to play an important
role. Indeed, it is intuitively clear that the smaller the
target (and hence the greater required precision) is, the
deeper the influence of random disturbances on access
times will be.

While numerous recent studies devoted to the GPP

* An important part of this work has been done at the Dept. de
Microtechnique of the E.P.F.L. in Lausanne (Switzerland).

and LNP processes1'2 have been reported, little attention
have been given to random disturbances despite their
ubiquity. It is the aim of this paper to explore this
problem by studying a class of dynamics where analytical
results can be obtained. Obviously, the considerations
which follow are idealized in their detailed nature but the
concepts we introduce here, are themselves independent
on the particular assumptions on the noise statistics or
the detailed heading process.

The paper is organized as follows: in the next section,
we introduce the class of dynamical model we want to
study and formulate the main questions which can be
answered. Section 3 is devoted to the calculations of the
size of the so-called circle of confusion and the mean first
access time to the target. The calculations are restricted
to situations with cylindrical symmetry. Finally, we draw
brief conclusions in the last section.

2. AUTONOMOUS TARGET SEEKING DEVICES
AND RANDOM DISTURBANCES
Let us now consider the situation modelized in Figure 1.
The device (D) proceeds from a starting point S to a final
destination T (target) concretized here by a circle of
radius a (the precision circle). D travels toward T by
discrete steps of length / and mean velocity v. Hence the
mean time duration between two steps A is simply
A = lv~l. The motion is stopped when for the first time
the trajectory of D hits the circle T. After each step, the
LNP readjusts (if necessary) the orientation of the
heading. Indeed, random fluctuations induce a random
yaw and then the steps almost never point exactly toward
the center of the target; rather, the direction of the steps
are randomly distributed according to a probability law.
To illustrate these ideas, let us again take the example of
an AMR: The size of the gravel on the road on which the
robot is rolling will strongly influence the statistics of the
errors in the heading and then determine the probability
law.

The above qualitative description is now made more
precise by the introduction of the following mathematical
modelization. Similarly to ref. 3, we specify the
dynamics induced by the LNP is assumed to be
decomposable into two stages, (Figures 1 and 2 specify
the notations). We shall always work in polar
coordinates with the origin at the center of T.

a) During the time duration A = lv~\ D moves a
distance 6(r, 6) toward the center of the target circle T.
The heading 8(r, d) can generally depend on the
location of D. For instance, A = Lu~1 can be larger
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Fig. 1. Geometry of the problem.

when D is far from T, in this case, we have A(r,) > <5(r2)
if r, > r2.

b) Due to the presence of random noise, the
deterministic motion described in a) is corrupted by a
length ox(r, 0 ) Q , V A in the direction pointing toward the
center of T and by o2{r, 0 ) Q 2 V A in the perpendicular
direction. Both Q, and Q2

 a re taken to be independent
Gaussian random variables with zero mean and unit
variance. The above choice of the modelization of the
noise is motivated, on one hand, by the Central Limit
Theorem3 and, on the other hand, by the fact that in the
limit A—*dt infinitesimal; we then obtain a diffusion
behaviour (the variance of the noise proportional to
time). In fact, for a very short time duration A, our noise
converges to the Gaussian White Processes (GWP)
which often constitute a good idealization of real
situations and permit the use of a powerful stochastic
analysis.

Hence, the equations of the motion of D take the form
(see Figures 1 and 2):

dr = r - r' = r - [(r - A(r, d)f + o\(r, d)Q\A

where:
A(r, 0) = 8(r, 0) + ax{r, 0)Q,\/A.

and
dd = 6-d'= Atg(o2(r, 0)Q2VA[(r - A(r, 0))2

]-05). (lc)

(la)

(lb)

By a Taylor expansion of equations (la) and (lc) up to
second order, we obtain:

dr = -d(r, 0)A + (2r)~lol(r, 0)Q2A

and
d9 = r~2ox{r, 6)o2(r,

+ r~lo2(r,

where o(A) is such that:

(2a)

(2b)

From now on, we shall consider the regimes for which
the length / and the mean velocity v are such that the
step duration A shrinks to zero, namely we shall have
£±—>dt an infinitesimal time. In this limit, the noise is the
WNP and equations (2a, b) are Stochastic Differential
Equations (SDE) of the Ito type. This process (r, 0) is
therefore a diffusion on the plane.3'4 Hence we can write:

6) + (2r)-lo2
2(r, d)]dt 0)

and

r, 6)dW2j.

(3a)

(3b)

where dWk,; k = l,2 are independent WGP (i.e. formal
derivative of the Wiener process) for which we have:4

E(dWkil) = 0; A: = 1, 2, (4a)

T\); k,l = 1,2, (4b)

where E(-) denotes expectations.
Remark that to write equations (4a, b), we made use

of the property:4

dWk,tdW,,, = (5)

The set of equations (4a, b) defines a diffusion process
whose solutions are Markovian (i.e. once the present
state of the system is known the past and the future are
stochastically independent).4 Therefore, the dynamics is
now completely characterized by the Transition Probabi-
lity Density (TPD) P(r, 0, t \ r0, 0O, t0).

The TPD denotes the probability density to find the
system at the position (r, 0) at time / by knowing that it
was at (r0, 0O) at time t0. For a diffusion process, such as
equations (4a, b), the TPD obeys to a linear partial
differential equation naomely the Fokker-Planck-
Kolmogorov (FPK) equation 4 which here reads as:

lim
A-»0

| n'.e, 1 rQ, 0O) t0) = F(P(r, 0, t \ r0, 0O, t0)). (6a)

circle of confusion.

circle of precision, 7".

Mr, 0)

Fig. 2. One step of the motion.
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where the FPK differential operator is:

and

f{r, 6) = -6(r, 6) + (2r)-loi(r, 6).

(6b)

(6c)

The dynamical model is now completely characterised
by equations (3a, b) at the level of the realizations of
trajectories and by equations (6a, b, c) at the level of
probabilities.

The questions to be answered for this dynamics can be
formulated as follows:

i) What is the probability of the first access time to the
target circle Tl
ii) What the distribution of the impact point on the
target circle 77
iii) How to qualitatively and quantitatively distinguish
between efficient and poorly efficient approaches to the
target circle Tl

3. CHARACTERIZATION OF THE
APPROACHES TO THE TARGET CIRCLE
From now on we shall restrict our discussion to cases
with a cylindrical symmetry, that is to say:

and

With the the above assumptions, it is obvious that
equation (3a) is decoupled from equation (3b). Hence,
the stochastic process r(t) can be discussed independ-
ently of the angle 6(t) a feature which considerably
simplifies the analytical discussion. Since equations (3a,
b) apply to a diffusion process, this enables us to
calculate explicitly the following important quantities:

(a) Stationary probability measure
With the assumptions equations (7a, b, c), the radial part
of the diffusion process equations (3a, b) obeys the FPK
equation:

- P(r, 11 r0, t0) = F- P(r, t \ r0, t0), (8a)
at at

8(r, 6) = 8(r),
ox(r, 6) = a,(r),

O2(r, 6) = O2(r).

(7a)
(7b)

(7c)

with the radial FPK operator:

Fo=— l i l^nn
dr 2 dr2

The stationary (i.e. time-independent) solution of
equation (9) reads:

(8b)

Ps(r) = Na;\r) exp [2 £ oT2(z)f(z) dz\, (9)

where N is a normalization constant, (we assume here
that N <<*>). From equation (9), we can immediately

calculate the most probable radius r* given by:

which using the definition equation (6c) reads as:

(10a)

-8(r) - ~ o?( r ) | w . = 0. (10b)

(b) Mean access time to the target circle 3 5

Starting at a distance R from the center of T, the
moments of the first access time to the target E(r"(R))
obey to the equation:

^-2E(r"(R))+f(R)4EE(r"(R))

with the boundary conditions:

E(r"(R = a)) = 0.

= 0, (11a)

(lib)

In particular, the mean first access-time to the target
circle is the solution of equation (lla, b) for n = 1
which reads as:

E(r(R)) = 2 f [oi(co)Ps(co)]-l\ f Ps(z) dz] do. (12)
Ja L J(O -I

(c) Joint distribution of the first access time and impact
angle on the target circle T3

Starting at distance R from the center of T at time t = 0
and angle 6 = 0, the joint distribution of the first
access-time (t(R)) and the contact angles (<!>(/?)) of the
impacts on the target circle T will be written as
P(T, $ IR, 6 = 0). The generating function L(s, m\R,6)
defined by:

L(s, m\R,6 = 0)

= L(s, m I R) = £[exp (-ST) COS (m R, 6 = 0). (13)

itself obeys a differential equation of the form:

^ 5 Us, m\R) 1a\{R) - 6(R)]

x TT; L(s, m IR) - [s + (2R2)-1o2
2(R)m2]L(s, m \ R) = 0,

(14)

with the the obvious boundary conditions:

L(s, m\R = a) = l, (15a)

lim L(s, m\R) = 0. (15b)
and

Two types of approaches to the target T can be
characterized by using the most probable radius r*
defined by equation (10b). Indeed, when D is at a
distance r>r*, it has a net tendency to approach the
target circle, while when r<r* this net tendency is
reversed, and due to the noise, D feels, in this last case,
an effective centrifugal force. In the following, the circle
of radius r* is called the circle of confusion.3 Now, we
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Fig. 3. Typical trajectory in an inefficient approach.

can distinguish the following situations:
a) r*>a (i.e. the circle of confusion is larger than the
circle of precision). In this case, D has a pronounced
tendency to travel around the target (Figure 3). The
approach is inefficient.
b) r* <a (i.e. the circle of confusion is smaller than the
circle of precision). Here, D proceeds mostly in a
straightforward way to the target and the tortuous travel
around T is comparatively highly improbable. Hence, in
this regime, the approach is efficient (Figure 4).

More refined information is given by the expression
equations (11), (12) and (14). While the mean
access-time E(r) given by equation (12) is rather easy
to evaluate, the solutions of equations (lla) and (14) are
usually harder to calculate explicitly. For instance, it is
easy to realize that equation (14) is equivalent to a
quantum mechanical stationary Schroedinger equation
with a general potential. Obviously, powerful ap-
proximation techniques are available if a particular
situation has to be analysed.

As an illustration, let us confine our discussion to the
simplest case and probably the most frequent situation
for which we have:

and
(16)

(17)

(18)

where the radius of the circle of confusion r* according
to equation (10b) here reads:

6(r) = d = const,

ot(r) = o2(r) = a = const.

In this case, equation (12) simply reads as:

E(r(R)) = (fi-!)[/? - a + r* log (*)],

r* = a"2(2<5). (19)

In equation (18) the contribution 6 *[/? - a] simply
corresponds to the ideal (noiseless) access time to reach
T; (remember D starts at distance R from T and travels
at heading velocity 6). Therefore the logarithmic
correction present in equation (18) originates from the

noise. The relative magnitude of this term in actual
applications, indicates directly how important the
fluctuations are and hence, whether they should be really
taken into account.

Finally, with the technique reported in ref. 3, the
solution of equation (14) with the assumptions equations
(16) and (17), can also be given explicitly in terms of
hypergeometric functions. Consequently, the distribution
of the impacts on the precision circle T can be explicitly
given for this case. We refrain to write here the explicit
forms of these expressions but mention that the regimes
of approaches introduced earlier are explicitely observed
at the level of the distribution of impacts on T; (i.e.
efficient approach implies a sharply peaked distribution
on the ideal (noiseless) linking direction from S to the
center of T contrary to the inefficient case, for which the
distribution tends to be uniform on T. This is obviously a
consequence of the highly probable travel of the device
before its contact with the target.

4. CONCLUSIONS
We explore the possibility to take into account the
influence of random disturbances on the motion of
automated target-seeking devices, such as automated
mobile robots. Our modelization of the randomness is
made in terms of random white noise which leads us to
formulate a dynamics by simple stochastic differential
equations. The parameters which enter into the
description are the heading mean velocity and the
variance of the (assumed) Gaussian noise which has to
be measured or estimated.

For this type of dynamics, we propose to distinguish
two regimes of approach to the target. To this end, we
use the concept of a confusion circle, the radius of which
is easy to calculate. It depends in a simple manner on the
parameters characterizing the dynamics. When the
precision circle (size of the target) is larger than the
confusion circle, the approach is efficient. On the other
hand, when the precision circle is smaller than the
confusion circle a high tortuous travel probability around

Fig. 4. Typical trajectory in an efficient approach.
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the target is expected, a situation which obviously
characterizes inefficient approaches. We do also provide
an explicit and again easy to calculate expression for the
mean access-time to the target.

Obviously, the model proposed here is in many
respects oversimplified. However, it possesses the great
advantage of providing an estimation prior to computer
simulations which, in any cases, would be unavoidable in
any actual particular realizations.
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