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We use Chen’s iterated integrals to integrate representations up to homotopy. That is,

we construct an A∞ functor
∫

:Rep∞(A)→ R̂ep∞(Π∞(A)) from the representations up

to homotopy of a Lie algebroid A to those of its infinity groupoid. This construction

extends the usual integration of representations in Lie theory. We discuss several exam-

ples including Lie algebras and Poisson manifolds.

The construction is based on an A∞ version of de Rham’s theorem due to

Gugenheim [15]. The integration procedure we explain here amounts to extending the

construction of parallel transport for superconnections, introduced by Igusa [17] and

Block–Smith [6], to the case of certain differential graded manifolds.

1 Introduction

The purpose of this work is to understand Lie theory for representations up to homotopy.

That is, we study the way in which the L∞ representations of a Lie algebroid are related

to the A∞ representation of the corresponding global object.

Let us first consider the case of ordinary representations. If G is the source

simply connected Lie groupoid integrating the Lie algebroid A, then the categories of
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representations Rep(G) and Rep(A) are naturally equivalent. From the point of view

of differential graded manifolds, this can be seen as an instance of the fact that flat

connections on M correspond to representations of the fundamental groupoid Π1(M).

Indeed, there is a precise sense in which G is the fundamental groupoid of the differen-

tial graded manifold A[1] associated to A. Hence, ordinary representations only capture

information about the fundamental groupoid of the associated differential graded man-

ifold. On the other hand, representations up to homotopy capture information about the

higher homotopy group(oid)s as well.

Igusa [17] and Block–Smith [6] showed that flat Z-graded superconnections on

a smooth manifold M correspond to representations up to homotopy of its infinity

groupoid, namely, the simplicial set of smooth singular chains on M. Building on this,

we will show that, for any Lie algebroid A, there is an A∞ functor
∫

from the category

of representations up to homotopy of A to the category of unital representations up to

homotopy of the infinity groupoid of the differential graded manifold A[1] associated to

A. Moreover, we show that, ultimately, the A∞ functor
∫

relies on an A∞ version of de

Rham’s theorem that is due to Gugenheim [15], which is constructed using the theory of

Chen’s iterated integrals.

It has been observed in [2, 3] that some of the natural representations associated

to Lie groups and Lie algebras appear as representations up to homotopy in the case of

Lie groupoids and Lie algebroids. These constructions provide many examples to which

the A∞ functor
∫

can be applied. We hope to come back to those examples, particularly

in the case of Poisson manifolds, in a sequel.

The paper is organized as follows. In the remaining part of the introduction, we

will make some comments on simplicial sets, describe in more detail the question that

we study and explain in general terms how the A∞ functor
∫

is constructed. In Section 2,

we review Chen’s iterated integrals and give a proof of the A∞ de Rham theorem, orig-

inally due to Gugenheim [15]. In Section 4, we show that general considerations about

A∞ algebras allow one to construct the integration A∞ functor
∫

using the A∞ de Rham

theorem. In Section 5, we discuss some examples to which the construction applies,

including smooth manifolds, Lie algebras, and Poisson manifolds. We also show that,

when applied to ordinary representations, the A∞ functor
∫

specializes to the usual

integration of representations in Lie theory. In the Appendix, we review the definitions

and some general facts concerning representations up to homotopy of Lie algebroids

and A∞-algebras.



3792 C. Arias Abad and F. Schätz

1.1 General comments on simplicial sets

It is well known that the theory of simplicial sets allows one to look at some aspects of

homotopy theory, higher category theory, and Lie theory in a unified way. Let us briefly

recall this point of view. We denote by Δ the category of nonempty finite ordered sets,

and by [n] the ordered set

[n]= {0≤ 1≤ · · · ≤n},

seen as a category. We are interested in simplicial sets that appear via the following

constructions.

Example 1.1. The nerve functor

N : Cat→SetΔ,

from the category of small categories to the category of simplicial sets, is defined by

N(C)n :=HomCat([n], C).

In this way, one can view the category Cat as a full subcategory of the category SetΔ,

and it is easy to characterize precisely the simplicial sets that are nerves of categories

in terms of horn-filling conditions. �

Example 1.2. We will denote by Δn the geometric n-simplex:

Δn := {(t1, . . . , tn) ∈R
n : 1≥ t1 ≥ t2 ≥ · · · ≥ tn≥ 0}.

The sequence of spaces Δ•, together with the usual face and degeneracy maps,

forms a cosimplical space. There is a functor Sing : Top→SetΔ from topological spaces

to simplicial sets given by the formula

Sing(X)n :=HomTop(Δn, X).

The simplicial sets obtained by this procedure are always Kan complexes, also called

infinity groupoids (see, e.g., [7, 19, 20]). This means that they satisfy some horn-filling

conditions similar to those that characterize the nerves of categories. �
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Example 1.3. Let us also consider the spatial realization functor from rational homo-

topy theory introduced by Sullivan [27]. This is a functor

S : DGCA→SetΔ,

from the category of differential graded commutative algebras to simplicial sets. It is

defined by

S(Ω)n=HomDGCA(Ω,Ω(Δn)),

where Ω(Δn) denotes the algebra of differential forms on Δn. �

The homotopy type of a space X can be reconstructed from the simplicial set

Sing(X) and, as we mentioned before, any category can be reconstructed from its nerve.

Thus, one can think of the theory of simplicial sets as a simultaneous generalization of

category theory and homotopy theory. An explanation of the role of simplicial sets in

higher category theory can be found in the first chapter of Lurie [20].

Given a space X, there is always a map of simplicial sets

π : Sing(X)→N(Π1(X)),

which sends a simplex to the sequence of homotopy classes of paths associated to its

edges. Thus, the simplicial set Sing(X) is a refinement of the fundamental groupoid,

which captures information not only about homotopy classes of paths, but also about

the higher homotopy group(oid)s. Because of this, Sing(X) is often denoted by Π∞(X)

and called the infinity groupoid of X.

Observe that the relationship between Examples 1.2 and 1.3 is also very close.

Given a smooth manifold X, denote by Sing(X) the simplicial subset of Sing(X), which

consists of smooth simplices, and by Ω(X) the algebra of differential forms on X.

Clearly, there is a natural isomorphism of simplicial sets

S(Ω(X))∼= Sing(X).

Since the inclusion Sing(X) ↪→ Sing(X) is a homotopy equivalence, one can think

of the spatial realization functor S as a generalization of the singular chain functor.

This point of view is quite useful in Lie theory. First, recall that a Lie algebroid

structure on a vector bundle A is the same as a differential on Ω(A)= Γ (ΛA∗), which, in
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turn, is equivalent to equipping the graded manifold A[1] with a cohomological vector

field. There are natural identifications

HomLie-alg(T M, A)∼=Homdg-man(T [1]M, A[1])∼=HomDGCA(Ω(A),Ω(M)).

With these identifications in mind, it becomes natural to think of the simpli-

cial set S(Ω(A)) as the space of singular chains in the dg-manifold A[1], and to use the

notation

S(Ω(A))= Sing(A[1])=Π∞(A[1]),

which, for simplicity, will be denoted by Π∞(A) in the following.

If instead of looking at the infinity groupoid of A[1], one considers the funda-

mental groupoid Π1(A[1]), one obtains a candidate for the groupoid integrating the Lie

algebroid A. Indeed Π1(A[1]) is always a topological groupoid and in case the algebroid

is integrable, it is the unique source simply connected Lie groupoid integrating A; see

[8, 11, 23, 28] for more details on this construction. The integration of L∞-algebras can

also be interpreted as the computation of higher homotopy groupoids of dg-manifolds;

see [13, 16, 23].

1.2 The problem

Our goal is to understand the relation between the global (A∞) and the infinitesimal

(L∞) version of representations up to homotopy. If A is the Lie algebroid of G, one can

differentiate any unital representation up to homotopy E ∈ R̂ep∞(G) to obtain a repre-

sentation up to homotopy of A. This process is explained in [4], and can be summarized

as follows.

Theorem. Suppose that A is the Lie algebroid of G. Then there is a dg-functor

Ψ : R̂ep∞(G)→Rep∞(A). �

The differentiation functor Ψ is constructed by differentiating along the flows

of vector fields in all possible directions in order to obtain infinitesimal cochains from

global ones. Appropriately, the inverse process of this iterated differentiation is given

by Chen’s iterated integrals.

One is led to ask whether it is possible to integrate a representation up to homo-

topy of A to one of G. The answer to this question is: no, as explained in Section 5.6.
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Indeed, the global counterpart of a representation up to homotopy of A turns out to be

a representation up to homotopy of the infinity groupoid Π∞(A) of A, not of its funda-

mental groupoid G.

Observe that a representation up to homotopy of a groupoid G is essentially—

that is, up to a smoothness condition—an A∞ functor to the dg-category of dg-vector

spaces. These data can be expressed purely in terms of the simplicial structure of the

nerve NG of G, and therefore it is sensible to speak about representations up to homo-

topy of an arbitrary simplicial set.

Alternatively, one can take the adjoint point of view via Cordier’s nerve construc-

tion [10] to define a representation up to homotopy as a map of simplicial sets; see [6,

Appendix].

Our main result is the following theorem.

Theorem 4.19. Let A be a Lie algebroid. The assignments

Rep∞(A) 
 E �→
∫
[E ] ∈ R̂ep∞(Π∞(A))

and

∫
n

: sHom(E1, E0)⊗ · · · ⊗ sHom(En, En−1)→ sHom(En, E0),

φ1 ⊗ · · · ⊗ φn �→ s(Hol(−, φ1, . . . , φn))

define an A∞ functor ∫
:Rep∞(A)→ R̂ep∞(Π∞(A))

between the dg-category of representations up to homotopy of A and the dg-category of

unital representations up to homotopy of Π∞(A). �

The construction of the A∞ functor
∫

is based on and inspired by the paral-

lel transport of superconnections studied by Igusa [17] and Block–Smith [6]. It seems

to us that—beyond the extension to arbitrary Lie algebroids—our contributions are as

follows.

We show that the parallel transport from [6, 17] can be derived from the A∞
version of de Rham’s theorem due to Gugenheim [15]; this allows us to extend parallel

transport to an A∞ functor.
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Moreover, we establish that the integration process lands in the category of uni-

tal representations up to homotopy. Observe that the unitality condition is important for

the construction of Reidemeister torsion of flat superconnections given in [5] and also

comes up naturally in the construction of the differentiation functor Ψ : R̂ep∞(G)→
Rep∞(A) from [4].

2 Simplicial Sets and Representations up to Homotopy

In this section, we give the definition of a representation up to homotopy of a simplicial

set and discuss some examples. Later on, we will be interested in the case where the

simplicial set is the∞-groupoid Π∞(A) of a Lie algebroid A.

2.1 Definitions

Remark 2.1. Let X• be a simplicial set with face and degeneracy maps denoted by

di : Xk→ Xk−1 and si : Xk→ Xk+1,

respectively. We shall use the notation

Pi := (d0)
k−i : Xk→ Xi,

Qi :=di+1 ◦ · · · ◦ dk : Xk→ Xi

for the maps that send a simplex to its ith back and front face. The ith vertex of a simplex

σ ∈ Xk will be denoted by vi(σ ), or simply vi, when no confusion can arise. In terms of

the above operations, one can write

vi = (P0 ◦ Qi)(σ ).

A cochain F of degree k on X• with values in an algebra A is a map

F : Xk→A.

As usual, the cup product of two cochains F and F ′ of degree i and j, respectively, is the

cochain of degree i + j defined by the formula

(F ∪ F ′)(σ ) := F (Qi(σ ))F
′(Pj(σ )). �
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Definition 2.2. A representation up to homotopy of X• consists of the following data:

(1) a graded vector space Ex=
⊕

k∈Z Ek
x, for each zero simplex x∈ X0;

(2) a sequence of operators {Fk}k≥0, where Fk is a k-cochain that assigns to σ ∈ Xk

a linear map

Fk(σ ) ∈Hom1−k(Evk(σ ), Ev0(σ )).

These operators are required to satisfy the following equations:

k−1∑
j=1

(−1) j Fk−1(dj(σ ))+
k∑

j=0

(−1) j+1(F j ∪ Fk− j)(σ )= 0. (1)

A representation up to homotopy is called

(1) unital if

F1(s0(σ ))= id and Fk(si(σ ))= 0 for k> 1.

(2) of finite rank if the sum of dimensions of Ek
x is finite for each x∈ X0. �

We will always assume that we are dealing with representations up to homotopy

of finite rank.

Remark 2.3. The definition of representation up to homotopy of a simplicial set is such

that when applied to the nerve of a category, it is the same as an A∞-functor to the dg-

category of differential graded vector spaces. These equations were first considered by

Sugawara [26]. The structure of a representation up to homotopy can also be described

from the adjoint point of view via Cordier’s nerve construction [10, 20], as explained

in [6, Appendix]. The case where the simplicial set is the nerve of a Lie groupoid was

considered in [2].

Observe that the structure equations of a representation up to homotopy imply

that F0 gives each of the vector spaces Ex the structure of a cochain complex. We will

often write ∂ instead of F0 for this coboundary operator. �

Remark 2.4. The representations up to homotopy of X• form a dg-category: Let E, E ′

be two representations up to homotopy of X•. A degree n morphism φ ∈Homn(E, E ′)
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is a formal sum

φ = φ0 + φ1 + φ2 + · · · ,

where φk is a k-cochain that assigns to a simplex σ ∈ Xk a linear map

φk(σ ) ∈Homn−k(Evk(σ ), E ′v0(σ )
).

The differential

D : Homn(E, E ′)→Homn+1(E, E ′)

is defined by

D(φ)= D(φ)0 + D(φ)1 + D(φ)2 + · · · ,

where

D(φ)k(σ ) :=
∑

i+ j=k

(−1) jnF ′j ∪ φi(σ )+
∑

i+ j=k

(−1)n+ j+1φ j ∪ Fi(σ )+
k−1∑
j=1

(−1) j+nφk−1(dj(σ )). (2)

If φ′ : E ′ → E ′′ is a morphism of degree m, the composition φ′ ◦ φ ∈Homm+n(E, E ′′)

is given by

φ′ ◦ φ = (φ′ ◦ φ)0 + (φ′ ◦ φ)1 + (φ′ ◦ φ)2 + · · · ,

where

(φ′ ◦ φ)k :=
∑

i+ j=k

(−1) jn(φ′j ∪ φi).

One easily checks that these operators define a dg-category—the category of

representations up to homotopy of X•—which we denote by Rep∞(X•). We implicitly

assume here that the graded vector bundles underlying objects of Rep∞(X•) are of finite

rank.

We will be particularly interested in the category of unital representations up

to homotopy, which we denote by R̂ep∞(X•). This is the sub-dg-category of Rep∞(X•)

whose objects are unital representations up to homotopy and whose morphisms are

unital morphisms, that is, morphisms φ such that φk(si(σ ))= 0. �
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2.2 Some examples

Example 2.5. Let G be a group and NG be the nerve of G. A unital representation up to

homotopy of NG on a graded vector space V , which is concentrated in degree 0, is the

same as a representation of G. �

Example 2.6. Let C be a category and NC be the nerve of C . A representations up to

homotopy of NC is the same as an A∞-functor from the category RC to the dg-category

of complexes of vector spaces. Here RC denotes the dg-category whose objects are those

of C and whose morphisms are the linear spans of morphisms of C . �

Example 2.7. The most important simplicial set for our purposes is the ∞-groupoid

Π∞(A) of a Lie algebroid A, given by

(Π∞(A))k :=HomDGCA(Ω(A),Ω(TΔk)),

that is, the morphisms of differential graded commutative algebras between Ω(A) and

the de Rham algebra of the k-simplex Δk. Observe that this is the same as the set of Lie

algebroid morphisms from TΔk to A. The structure operations for a representation up

to homotopy of Π∞(A) are rules that assign holonomies to simplices, and the structure

equations are compatibility conditions between the holonomies. In the pictures below,

a shaded face of a simplex denotes the holonomy assigned to it. For the 1-simplex γ :

[0,1]→M, we obtain

[∂Hol(γ )] := ∂γ (0) ◦ Hol(γ )− Hol(γ ) ◦ ∂γ (1) = 0; in pictures:

This says that the holonomy assigned to a path should be a chain map between

the chain complexes associated to the endpoints of the paths.(Note that in our conven-

tions Hol(γ ) is a linear map from Eγ (1) to Eγ (0).)

The compatibility condition for a triangle σ : {1≥ t1 ≥ t2 ≥ 0}→M is

[∂,Hol(σ )]=Hol(σ (t,0)) ◦ Hol(σ (1, t))− Hol(σ (t, t)); in pictures:
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requiring that—even though two homotopic paths are assigned different holonomies in

general—any specific homotopy between the two paths induces a homotopy between the

corresponding chain maps.

For a tetrahedron σ : {1≥ t1 ≥ t2 ≥ t3 ≥ 0}→M, one obtains

[∂,Hol(σ )]=Hol(σ (t,0,0)) ◦ Hol(σ (1, t1, t2))− Hol(σ (t1, t2,0)) ◦ Hol(σ (1,1, t))

+ Hol(σ (t1, t2, t2))− Hol(σ (t1, t1, t2)); in pictures:

�

3 Differential Forms and Singular Cochains

In this section, we explain how to use Chen’s iterated integrals to construct a natural

A∞ quasi-isomorphism

ψ : (Ω(M),−d,∧)→ (C (M), δ,∪),

between the algebra of differential forms and the algebra of smooth singular cochains

of a manifold M. This result is originally due to Gugenheim [15]. (Implicitly, the quasi-

isomorphism ψ is also present in [6, 17].) We review the explicit construction of ψ below

and use it to establish the following additional properties, needed in order to apply ψ

to the problem of integrating representations up to homotopy:

(1) The image of ψ is contained in the subcomplex of normalized cochains Ĉ (M);

see Proposition 3.27.

(2) The A∞ morphism ψV := idEnd V ⊗ ψ obtained by tensoring ψ with the endo-

morphism algebra End V of a finite-dimensional graded vector space V

induces a well-defined push-forward map End V ⊗Ω(M)→End V ⊗ C (M);

see Corollary 4.6.

Remark 3.1. Given a differential graded algebra (A,d,∧), the bar complex

B(sA) :=
⊕
k≥1

(sA)⊗k
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carries a coboundary operator D given by

D(sa1 ⊗ · · ·⊗san) :=
n∑

i=1

(−1)[a1]+···+[ai−1]sa1 ⊗ · · · ⊗ sai−1 ⊗ s(dai)⊗ sai+1 ⊗ · · · ⊗ san

+
n−1∑
i=1

(−1)[a1]+···+[ai ]sa1 ⊗ · · · ⊗ sai−1 ⊗ s(ai ∧ ai+1)⊗ sai+1 ⊗ · · · ⊗ san.�

The morphism ψ is constructed out of two maps

B(sΩ(M))
C

�� Ω(PM)
S

�� sC (M).

Here,

B(sΩ(M))
C

�� Ω(PM)

is given by Chen’s iterated integrals, while

Ω(PM)
S

�� sC (M)

is constructed with the help of a certain family of maps

(Θ(k) : I k−1→PΔk)k≥1,

from the cubes to the path spaces of the simplices. The crucial property of this family is

that it relates the cellular structures of the cubes to those of the simplices. Such a family

was already considered by Chen [9]. We will make use of the explicit family constructed

by Igusa [17].

3.1 Chen’s iterated integrals

Here, we explain how Chen’s iterated integrals provide a map

C : B(sΩ(M))→Ω(PM)

from the bar complex of the suspension of Ω(M) to the differential forms on the

path space of M. The most important property of C is that it is almost a chain map
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between B(sΩ(M))—equipped with the bar differential D̄ corresponding to the dg-

algebra (Ω(M),−d,∧)—and Ω(PM)—equipped with the de Rham differential. In fact,

C fails to be a chain map only because of two boundary terms; see Theorem 3.10.

Remark 3.2. We use the conventions from [14], except for the definition of the simplices

Δk, where we follow Igusa [17]. �

Our first task is to introduce the path space PM of M, as well as differential

forms on it.

Remark 3.3. The path space PM of a smooth manifold M is the topological space

C∞(I,M), equipped with the C1-topology. By definition, a map f : X→PM is smooth if

fev : I × X→M, fev(t, x) := ( f(x))(t)

is smooth.

Differential forms on PM are defined as follows:

(i) Denote by C∞(−,PM) the category whose objects are pairs (X, f), with X a

smooth manifold and f a smooth map from X to PM; the morphisms from

(X, f) to (Y, g) are all smooth maps h : X→Y such that f = g ◦ h.

(ii) Let R(−) be the functor from C∞(−,PM) to the category of real vector spaces

Vect, which maps any object in C∞(−,PM) to R and every morphism to the

identity.

(iii) The functor Ω(−) from C∞(−,PM) to Vect is defined via (X, f) �→Ω(X) and

g �→ g∗.

(iv) A differential form on PM is a natural transformation from R(−) to Ω(−).

Put another way: a differential form α on PM is a natural association of a differ-

ential form on X, which we will denote by f∗α, to a pair (X, f : X→PM). The idea is sim-

ply that it suffices to know all the pull-backs of a differential form to finite-dimensional

manifolds in order to know the differential form itself. The wedge product and the de

Rham differential are defined by requiring the pull-back operation to preserve them.

We call a continuous map h : PM→PN smooth if the composition of any smooth

map f : X→PM with h is smooth. Smooth maps induce pull-back maps Ω(PN)→
Ω(PM). Moreover, observe that every smooth map h : M→ N induces a smooth map

Ph : PM→PN on the path spaces via composition. �
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Remark 3.4. Let X be a manifold and Δk be the k-simplex, that is,

Δk := {(t1, . . . , tk) ∈R
k : 1≥ t1 ≥ t2 ≥ · · · ≥ tk≥ 0} ⊂R

k.

We define the push-forward along the projection

π :Δk × X→ X

to be the linear map
π∗ :Ω(Δk× X)→Ω(X)

of degree −k determined by setting

π∗( f(t, x)dti1 · · ·dtir dxj1 · · ·dxjs) :=
(∫

Δk

f(t, x)dti1 · · ·dtir

)
dxj1 · · ·dxjs .

Observe that, for X compact and oriented,

∫
X
π∗(α)=

∫
Δk×X

α

holds for all α ∈Ω(Δk × X). �

Lemma 3.5. The push-forward π∗ :Ω(Δk× X)→Ω(X) is a morphism of left Ω(X)-

modules of degree −k, that is, for every α ∈Ω(X) and every β ∈Ω(Δk× X), we have

π∗(π∗α ∧ β)= (−1)|α|kα ∧ π∗(β).

Furthermore, let ∂π be the composition

∂Δk× X
ι×id

�� Δk× X
π

�� X,

where ∂Δk denotes the disjoint union of the codimension 1 strata of Δk.

Then the following formula holds:

π∗ ◦ d− (−1)kd◦ π∗ = (∂π)∗ ◦ (ι× id)∗.

Here, the push-forward along ∂π is understood as the sum over the push-forwards of

the individual faces that appear as the connected components of ∂Δk. �
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Remark 3.6. Next we define Chen’s iterated integrals for differential forms on a smooth

manifold M. This is a degree 0 linear map:

C : B(sΩ(M)) :=
⊕
k≥1

(sΩ(M))⊗k→Ω(PM).

Let sa1 ⊗ · · · ⊗ san be an element of the bar complex B(sΩ(M)). Given any smooth

map f : I × X→M, we define a differential form on X by the following procedure:

(i) Thinking of Δn as the compactified configuration space of (unordered) points

on the interval I , one obtains an extension of f : I × X→M to

f(n) :Δn× X→M × · · · × M, f(n)(t1, . . . , tn, x) := ( f(t1, x), . . . , f(tn, x)).

We will sometimes omit the subscript (n) if the dimension of the simplex is

clear from the context.

(ii) Pull back the differential form ai to M × · · · × M via the ith projection map

pi : M×n→M,

and pull back the wedge product p∗1a1 ∧ · · · ∧ p∗nan to Δn× X via f(n).

(iii) To obtain a differential form on X, push the differential form f∗(n)(p
∗
1a1 ∧ · · · ∧

p∗nan) forward to X along π :Δn× X→ X.

(iv) Finally, multiply this differential form with the sign

(−1)
∑n

i=1[ai ](n−i),

where [a] denotes the degree of an element sa∈ sΩ(M).

Note that this is exactly the sign by which (s−1 ⊗ · · · ⊗ s−1)(sa1 ⊗ · · · ⊗
san) differs from (a1 ⊗ · · · ⊗ an).

We denote the resulting differential form on X by f∗(C(sa1 ⊗ · · · ⊗ sak)). It is straightfor-

ward to check that this construction is natural and therefore defines a differential form

on the path space PM. Let us write down the whole construction more compactly. �

Definition 3.7. Chen’s map

C : B(sΩ(M))→Ω(PM)
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from the bar complex of the suspension of differential forms to the de Rham complex of

the path space PM is defined by setting

f∗(C(sa1 ⊗ · · ·⊗san)) := (−1)
∑n

i=1[ai ](n−i)π∗(( fev
(n))
∗(p∗1a1 ∧ · · · ∧ p∗nan))

for any object (X, f) in the category C∞(−,PM). �

Remark 3.8. An important property of Chen’s map is that the image of an element sa1 ⊗
· · · ⊗ san of B(sΩ(M)), for which one of the factors ai is a function, is zero. This follows

from the observation that in this case the pull-back f∗C(sa1 ⊗ · · · ⊗ san) by any smooth

map f : X→PM vanishes. Indeed, the differential form

( fev
(n))
∗(p∗1a1 ∧ · · · ∧ p∗nan) ∈Ω(Δn× X)

is annihilated by the vector field ∂
∂ti , where ti denotes the ith coordinate on the simplex

Δn. Hence, the push-forward of the differential form along π :Δn× X→ X vanishes. �

Lemma 3.9. Chen’s map C is natural, that is, for any smooth map h : M→ N the dia-

gram

B(sΩ(M))
C

�� Ω(PM)

B(sΩ(N))
C

��

Bh

��

Ω(PN)

(Ph)∗

��

commutes. Here, Bh denotes the linear map that extends

sa1 ⊗ · · · ⊗ san �→ sh∗(a1)⊗ · · · ⊗ sh∗(an). �

Proof. This is essentially an exercise in unraveling the definitions. The key observation

is that, for any smooth map f : X→PM,

(Ph ◦ f)ev
(n) = (h× · · · × h) ◦ fev

(n)

is satisfied. �
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Theorem 3.10 (Chen). For any element sa1 ⊗ · · · ⊗ san of the bar complex B(sΩ(M)), the

following identity holds:

d(C(sa1 ⊗ · · · ⊗ san))=C(D̄(sa1 ⊗ · · · ⊗ san))+ ev∗1(a1) ∧ C(sa2 ⊗ · · · ⊗ san)

− (−1)[a1]+···+[an−1]C(sa1 ⊗ · · · ⊗ san−1) ∧ ev∗0(an).

Here:

(1) D̄ is the differential corresponding to the differential graded algebra

(Ω(M),−d,∧).
(2) The maps ev0 and ev1 : PM→M are given by γ �→ γ (i) for i = 0 or 1, respec-

tively. �

Proof. It suffices to establish the formula for the pull-back of C(sa1 ⊗ · · · ⊗ san) by any

smooth map f : X→PM. Using Lemma 3.5, one sees that f∗dC(sa1 ⊗ · · · ⊗ san) is equal to

(−1)n(π∗d( f∗(n)(p
∗
1a1 ∧ · · · ∧ p∗nan)))+ (−1)n+1((∂π)∗(ι× id)∗ f∗(n)(p

∗
1a1 ∧ · · · ∧ p∗nan))

times the sign (−1)
∑n

i=1[ai ](n−i). The first term gives

n∑
i=1

(−1)[a1]+···+[ai−1] f∗C(sa1 ⊗ · · · ⊗ s(−dai)⊗ · · · ⊗ san),

while the second one yields

n−1∑
i=1

(−1)[a1]+···+[ai ] f∗C(sa1 ⊗ · · · ⊗ s(ai ∧ ai+1)⊗ · · · ⊗ san)

+ (ev1 ◦ f)∗a1 ∧ f∗C(sa2 ⊗ · · · ⊗ san)

− (−1)[a1]+···+[an−1] f∗C(sa1 ⊗ · · · ⊗ san−1) ∧ (ev0 ◦ f)∗an.
�

Definition 3.11. The set

C∞+ (I, ∂ I ) := {φ : I→ I smooth and monotone : φ(0)= 0, φ(1)= 1}
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is a monoid under composition and acts on C∞(X,PM) via reparameterizations, that

is, via

C∞+ (I, ∂ I )× C∞(X,PM)→ C∞(X,PM),

(φ, f) �→ (φ • f)ev(t, x) := fev(φ(t), x).

A differential form α ∈Ω(PM) is reparameterization invariant if, for any smooth

map f : X→PM and any reparameterization φ ∈ C∞+ (I, ∂ I ), the equation

f∗α = (φ • f)∗α

holds. We denote the subcomplex of invariant differential forms by Ωinv(PM). �

Lemma 3.12. The image of Chen’s map

C : B(sΩ(M))→Ω(PM)

is contained in the subcomplex Ωinv(PM) of reparameterization invariant differential

forms on PM. �

Proof. Pick f : X→PM and φ ∈ C∞+ (I, ∂ I ) arbitrary. We have to check that

f∗C(sa1 ⊗ · · · ⊗ san)= (φ • f)∗C(sa1 ⊗ · · · ⊗ san)

holds for any a1, . . . ,an∈Ω(M).
Using

(φ • f)ev
(n) = fev

(n) ◦ (φ × · · · × φ × id) :Δn× X→M×n,

one sees that it suffices to prove the equation

π∗ = π∗ ◦ (φ × · · · × φ × id)∗ :Ω(Δn× X)→Ω(X),

where π denotes the projection Δn× X→ X. This equation can be deduced inductively

from the behavior of one-dimensional integrals under substitution. �



3808 C. Arias Abad and F. Schätz

Remark 3.13. Later on, we will use the reparameterization invariance of differential

forms in the image of Chen’s map C under piecewise linear reparametrizations. In order

to handle these kind of reparameterizations correctly, one should introduce the space

of piecewise smooth paths P̃M of M. By definition, a smooth map from X to P̃M is a

continuous map F ev : I × X→M together with a finite partition ([ai,bi]) of I such that the

restriction of F ev to X×]ai,bi[ is smooth. The set C∞(X, P̃M) is acted upon by the monoid

of piecewise smooth reparameterizations of I (still monotone and endpoints preserving).

Observe that the definition of Chen’s map C extends to smooth maps X→ P̃M and still

yields smooth differential forms on X. Furthermore, the reparameterization invariance

continues to hold in the piecewise smooth setting. �

3.2 Igusa’s map

In this paragraph, we construct a map

S :Ω(PM)→ sC (M)

from the differential forms on PM to the suspension of the singular cochains on M. We

will need a sequence of maps from the cubes to the simplices, which relate their cellular

structures. These maps were originally considered by Adams [1] and—later on—by Chen

[9]. We will use a construction due to Igusa [17].

Remark 3.14. As mentioned before, we use the following definition of the k-simplex Δk:

Δk := {(t1, . . . , tk) ∈R
k : 1≥ t1 ≥ t2 ≥ · · · ≥ tk≥ 0} ⊂R

k.

In this convention, the face and degeneracy maps that equip {Δk} with the structure of

a cosimplicial set are given by

∂i :Δk→Δk+1, (t1, . . . , tk) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1, t1, . . . , tk) for i = 0,

(t1, . . . , ti−1, ti, ti, ti+1, . . . , tk) for 0< i < k+ 1,

(t1, . . . , tk,0) for i = k+ 1,

and

εi :Δk→Δk−1, (t1, . . . , tk) �→ (t1, . . . , ti−1, t̂i, ti+1, . . . , tk), respectively.
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The ith vertex vi of Δk is the point

(1, . . . ,1︸ ︷︷ ︸
itimes

,0, . . . ,0︸ ︷︷ ︸
k−itimes

) ∈Δk.

The simplicial set of (smooth) singular chains Sing(M) of M is given by

Singk(M) := C∞(Δk,M).

The simplicial structure maps {di} and {si} are defined via di := ∂∗i and si := ε∗i .

Observe that the maps Pi and Qi, which send an element Sing(M) to its back and

front face, respectively, are equal to the pull-backs of

Ui :Δi→Δk, (t1, . . . , ti) �→ (1, . . . ,1, t1, . . . , ti) and

Vi :Δi→Δk, (t1, . . . , ti) �→ (t1, . . . , ti,0, . . . ,0), respectively. �

Definition 3.15. Let M be a manifold. The dg-algebra of (smooth) singular cochains

(C (M), δ,∪) consists of:

(1) the graded vector space C (M) of linear functionals on the vector space gen-

erated by Sing(M) over R;

(2) the differential δ defined by

(δφ)(σ ) :=
k∑

i=0

(−1)i(d∗i φ)(σ ) :=
k∑

i=0

(−1)iφ(∂∗i σ);

(3) the cup product ∪ defined by

(φ ∪ ψ)(σ) := φ(V∗i σ)ψ(U ∗j σ). �

Definition 3.16. For each k≥ 0, the map

Θ(k) : I k−1→PΔk

is defined to be the composition

I k−1

λ(k)

�� PI k
Pπk

�� PΔk.
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Here πk : I k→Δk is given by πk(x1, . . . , xk) := (t1, . . . , tk), with components

ti :=max{xi, . . . , xk}.

The map λ(k) : I k−1→PI k is defined by sending a point (x1, . . . , xk−1) to the path which

goes backward through the following k+ 1 points:

0← x1e1← (x1e1 + x2e2)←· · ·← (x1e1 + · · · + xk−1ek−1)← (x1e1 + · · · + xk−1ek−1 + ek),

where (e1, . . . , en) denotes the standard basis of R
n. In other words, for j = 0, . . . ,k, we set

λ(k)(x1, . . . , xk−1)

(
k− j

k

)
= x1e1 + · · · + xjej,

where xk= 1, and interpolate linearly.

By convention, Θ(0) is the map from a point to a point.

We shall denote the map adjoint to Θ(k) by Θk : I k→Δk. �

Remark 3.17. Let us mention some properties of the maps Θ(k):

(1) The maps Θ(k) are piecewise linear but not smooth. However, one can smooth

them via reparameterizations. The reparameterization invariance of ele-

ments in the image of Chen’s map then guarantees that, for all our purposes,

the maps Θ(k) behave as if they were smooth.

(2) One can check that the degree of the map Θk : I k→Δk is (−1)k, that is,

∫
I k
Θ∗kα = (−1)k

∫
Δk

α

for every differential form α ∈Ω(Δk).

(3) The image of Θk lies in the subset P(Δk, vk, v0) of paths starting at the last

vertex vk and ending at the zeroth vertex v0.

The key properties of the maps Θ(k) are described in the following lemma from [17]. �

Lemma 3.18. The sequence of maps

Θ(k) : I k−1→PΔk

satisfies the following properties.
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(1) For 1≤ i ≤ k− 1 the diagram

I k−2

Θ(k−1)

��

∂−i
�� I k−1

Θ(k)

�� P(Δk, vk, v0)

P(Δk−1, vk−1, v0)

φ̂i

�� P(Δk−1, vk−1, v0)

P∂i

��

commutes, where the maps are as follows:

(i) ∂−i : I k−2→ I k−1 is (x1, . . . , xk−2) �→ (x1, . . . , xi−1,0, xi, . . . , xk−2);

(ii) φ̂i is the map induced by the following piecewise smooth repa-

rameterization

φi(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kt

k− 1
for 0≤ t≤ k− i − 1

k
,

k− i − 1

k− 1
for

k− i − 1

k
≤ t≤ k− i

k
,

kt− 1

k− 1
for

k− i

k
≤ t≤ 1;

hence, φ̂i ◦Θ(k−1) = φi •Θ(k−1);

(iii) P∂i is the smooth map induced by the ith face map ∂i :Δk−1→Δk.

(2) For 1≤ i ≤ k− 1 the diagram

I k−2

∼=
��

∂+i
�� I k−1

Θ(k)

�� P(Δk, vk, v0)

I i−1 × I k−i−1

Θ(i)×Θ(k−i)

�� P(Δi, vi, v0)× P(Δk−i, vk−i, v0),

μi

��

commutes. Here μi is the concatenation map

μi(α, β)(t) :=

⎧⎪⎪⎨
⎪⎪⎩

Uk−i

(
β

(
kt

k− i

))
for 0≤ t≤ k− i

k
,

Vi

(
α

(
k

i

(
t− k− i

k

)))
for

k− i

k
≤ t≤ 1,
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and ∂+i : I k−2→ I k−1 is given by

(x1, . . ., xk−2) �→ (x1, . . ., xi−1,1, xi, . . ., xk−2). �

Lemma 3.19. Let μi be the ith concatenation map from Lemma 3.18 and sup-

pose a1, . . . ,an are differential forms on Δk. Also, let f : X→P(Δi, vi, v0) and g : Y→
P(Δk−i, vk−i, v0) be smooth maps. Then the following factorization property holds:

∫
X×Y

( f × g)∗(μi)
∗C(sa1 ⊗ · · · ⊗ san)

=
n∑

l=0

(∫
X

f∗C(sV∗i a1 ⊗ · · · ⊗ sV∗i al)

)
×
(∫

Y
g∗C(sU ∗k−ial+1 ⊗ · · · ⊗ sU ∗k−ian)

)
.

Here we extended the map C to the augmented bar complex R⊕ B(sΩ(M)) by

setting

C(1) := 1.
�

Proof. The main observation is that the diagram

Δl ×Δn−l × X × Y
∼=

τ

��

γl×(idX×Y)

��

(Δl × X)× (Δn−l × Y)

( fev)×(gev)

��

Δn× X × Y

(μi◦( f×g))ev ��������������
(Δi)

l × (Δk−i)
n−l

(Vi)
l×(Uk−i)

n−l���������������

(Δk)
n

is commutative, where γl is

γl :Δl ×Δn−l→Δn

(�u, �v) �→
(

i

k
�u+ k− i

k
�1, k− i

k
�v
)
.
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It is easy to check that γl is injective in the interior of Δl ×Δn−l and maps on to

Δn(l) :=
{

1≥ t1 ≥ · · · ≥ tl ≥ k− i

k
≥ tl+1 ≥ · · · ≥ tn≥ 0

}
.

Observe that the interiors of Δn(l) are disjoint for different values of l and that the

union over all l differs from Δn by a set of measure zero only. Moreover, γl is orientation-

preserving.

Now we compute

∫
X×Y

(πX×Y)∗((μi ◦ ( f × g)ev)(n))
∗(p∗1a1 ∧ · · · ∧ p∗nan)

=
∫
Δn×X×Y

((μi ◦ ( f × g)ev)(n))
∗(p∗1a1 ∧ · · · ∧ p∗nan)

=
n∑

l=0

∫
Δn(l)×X×Y

((μi ◦ ( f × g)ev)(n))
∗(p∗1a1 ∧ · · · ∧ p∗nan)

=
n∑

l=0

∫
Δl×Δn−l×X×Y

((γl × idX×Y))
∗((μi ◦ ( f × g)ev)(n))

∗(p∗1a1 ∧ · · · ∧ p∗nan)

=
n∑

l=0

(−1)(n−l)dim X
∫
(Δl×X)×(Δn−l×Y)

(( fev)(l) × (gev)(n−l))
∗

× (((Vi)
l × (Uk−i)

n−l)∗(p∗1a1 ∧ · · · ∧ p∗nan))

=
n∑

l=0

(−1)(n−l)dim X

(∫
Δl×X

( fev
(l) )
∗(p∗1V∗i a1 ∧ · · · ∧ p∗l V∗i al)

)

×
(∫

Δn−l×Y
(gev
(n−l))

∗(p∗1U ∗k−ial+1 ∧ · · · ∧ p∗n−lU
∗
k−ian)

)

=
n∑

l=0

(−1)(n−l)dim X

(∫
X
(πX)∗( fev

(l) )
∗(p∗1V∗i a1 ∧ · · · ∧ p∗l V∗i al)

)

×
(∫

Y
(πY)∗(gev

(n−l))
∗(p∗1U ∗k−ial+1 ∧ · · · ∧ p∗n−lU

∗
k−ian)

)
.

Taking the additional signs in the definition of Chen’s map C into account yields the

claimed factorization identity. �
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Definition 3.20. The map S :Ω(PM)→ sC (M) is the composition of

Ω(PM)→ C (M),

α �→
(
σ �→

∫
I k−1
(Θ(k))

∗Pσ ∗α
)
,

and s : C (M)→ sC (M). �

Remark 3.21. Let us evaluate the image of C(sa) under S on a k-simplex σ :Δk→M:

S(C(sa))(σ )=
∫

I k−1
(Θ(k))

∗Pσ ∗C(sa)=
∫

I k−1
(Θ(k))

∗C(sσ ∗a)

=
∫

I k
(Θk)

∗(σ ∗a)= (−1)k
∫
Δk

σ ∗a.

Observe that this is valid only for k> 0, since C(s f)= 0 for f a smooth function. �

3.3 An A∞ version of de Rham’s theorem

The aim of this paragraph is to show that the composition

B(sΩ(M))
C

�� Ω(PM)
S

�� sC (M)

yields an A∞ quasi-isomorphism between the differential graded algebras (Ω(M),−d,∧)
and (C (M), δ,∪); see also [15].

Proposition 3.22. Let a1, . . . ,an be differential forms on M. Then the following equation

holds:

S(dC(sa1 ⊗ · · · ⊗ san))= b′1(S(C(sa1 ⊗ · · · ⊗ san)))

+
n−1∑
l=1

b′2(S(C(sa1 ⊗ sal))⊗ S(C(sal+1 ⊗ · · · ⊗ san))).

Here b′1 and b′2 are the maps corresponding—at the level of the suspension—to

the differential and the multiplication of the dg-algebra C (M) of simplicial cochains. �
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Proof. Let α be an arbitrary differential form on the path space PM and σ :Δk→M be

a simplex. We want to compute

∫
I k−1

d(Θ(k))
∗(Pσ)∗α =

∫
∂ I k−1

ι∗(Θ(k))∗(Pσ)∗α.

Let ∂±i be the standard embeddings of I k−2 into I k−1 as the top and bottom faces. Then

the expression above is equal to:

k−1∑
i=1

(−1)i
(∫

I k−2
(∂−i )

∗(Θ(k))∗(Pσ)∗α
)
−

k−1∑
i=1

(−1)i
(∫

I k−2
(∂+i )

∗(Θ(k))∗(Pσ)∗α
)
.

We now take α=C(sa1 ⊗ · · · ⊗ san). Using the commutativity of the first diagram in

Lemma 3.18, reparameterization invariance of differential forms in the image of Chen’s

map C, and naturality of Chen’s map, one concludes

∫
I k−2
(∂−i )

∗(Θ(k))∗(Pσ)∗α=
∫

I k−2
(Θ(k−1))

∗(P∂∗i σ)
∗α=S(α)(∂∗i σ).

Consequently, the strata of I k−1 given by the faces ∂−i I k−1 yield

k−1∑
i=1

(−1)i(S(C(sa1 ⊗ · · · ⊗ san)))(∂
∗
i σ).

On the other hand, commutativity of the second diagram in Lemma 3.18 together

with Proposition 3.19 implies

∫
I k−2
(∂+i )

∗(Θ(k))∗(Pσ)∗α=
n∑

l=0

S(C(sa1 ⊗ · · · ⊗ sal))(V
∗
i σ)S(C(sal+1 ⊗ · · · ⊗ san))(U

∗
k−iσ).

Summing over all the values of i, one obtains

k−1∑
i=1

(−1)i−1

(∫
I k−2
(∂+i )

∗(Θ(k))∗(Pσ)∗α
)

=
n−1∑
l=1

b′2(S(C(sa1 ⊗ · · · ⊗ sal))⊗ S(C(sal+1 ⊗ · · · ⊗ san)))(σ )

+ S(C(sa1 ⊗ · · · ⊗ san))(U
∗
k−1σ)+ (−1)kS(C(sa1 ⊗ · · · ⊗ san))(V

∗
k−1σ).
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=
n−1∑
l=1

b′2(S(C(sa1 ⊗ · · · ⊗ sal))⊗ S(C(sal+1 ⊗ · · · ⊗ san)))(σ )

+ S(C(sa1 ⊗ · · · ⊗ sal))(∂
∗
0σ)+ (−1)kS(C(sa1 ⊗ · · · ⊗ sal))(∂

∗
kσ).

�

Definition 3.23. Given a smooth manifold M and n≥ 1, we define the map

ψn : sΩ(M)⊗n→ sC (M)

as follows.

(1) For n= 1, we set

(ψ1(sa))(σ :Δk→M) := (−1)k
(∫

Δk
σ ∗a

)
.

(2) For n> 1, we set

ψn(sa1 ⊗ · · · ⊗ san) := (S ◦ C)(sa1 ⊗ · · · ⊗ san). �

Remark 3.24. Observe that ψ1(sa) coincides with (S ◦ C)(sa), except for the case when

a is of degree 0, that is, a function. In that case, (S ◦ C)(sa)= 0, while

(ψ1(sa))(σ : {∗}→M) := a(σ (0)). �

We now come to the main result of this section, originally established by Gugen-

heim [15].

Theorem 3.25 (Gugenheim). The sequence of maps

ψn : (sΩ(M))⊗n→ sC (M)

gives an A∞ morphism from (Ω(M),−d,∧) to (C (M), δ,∪). Moreover, this morphism is

a quasi-isomorphism and the construction is natural with respect to pull-backs along

smooth maps. �
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Proof. Let sa1 ⊗ · · · ⊗ san be an element of the bar complex of the suspension of

(Ω(M),−d,∧). By Theorem 3.10, the following equation holds:

d(C(sa1 ⊗ · · · ⊗ san))=C(D̄(sa1 ⊗ · · · ⊗ san))+ ev∗1(a1) ∧ C(sa2 ⊗ · · · ⊗ san)

− (−1)[a1]+···+[an−1]C(sa1 ⊗ · · · ⊗ san−1) ∧ ev∗0(an).

On the other hand, Proposition 3.22 asserts that

S(dC(sa1 ⊗ · · · ⊗ san))= b′1((S ◦ C)(sa1 ⊗ · · · ⊗ san))

+
n−1∑
l=1

b′2((S ◦ C)(sa1 ⊗ · · · ⊗ sal)⊗ (S ◦ C)(sal+1 ⊗ · · · ⊗ san)).

Together, these two equations yield

(S ◦ C)(D̄(sa1 ⊗ · · · ⊗ san))= b′1((S ◦ C)(sa1 ⊗ · · · ⊗ san))

+
n−1∑
l=1

b′2((S ◦ C)(sa1 ⊗ · · · ⊗ sal)⊗ (S ◦ C)(sal+1 ⊗ · · · ⊗ san))

− S(ev∗1(a1) ∧ C(sa2 ⊗ · · · ⊗ san))

+ (−1)[a1]+···+[an−1]S(C(sa1 ⊗ · · · ⊗ san−1) ∧ ev∗0(a0)).

Direct computations lead to

S(ev∗1(a1) ∧ C(sa2 ⊗ · · · ⊗ san))=−b′2(ψ1(sa1)⊗ (S ◦ C)(sa2 ⊗ · · · ⊗ san))

for |a1| = 0 and

S(C(sa1 ⊗ · · · ⊗ san−1) ∧ ev∗0(an))= (−1)[a1]+···+[an−1]b′2((S ◦ C)(sa2 ⊗ · · · ⊗ san−1)⊗ ψ1(san))

for |an| = 0, respectively. For |a1|> 0 (respectively, |an|> 0), the first (second) expression

vanishes. Thus, we obtain

n∑
i=1

(−1)[a1]+···+[ai−1]ψn(sa1 ⊗ · · · ⊗ sai−1 ⊗ s(−dai)⊗ sai+1 ⊗ · · · ⊗ san)

+
n−1∑
i=1

(−1)[a1]+···+[ai ]ψn−1(sa1 ⊗ · · · ⊗ sai−1 ⊗ s(ai ∧ ai+1)⊗ sai+2 ⊗ · · · ⊗ san)
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= (S ◦ C)(D̄(sa1 ⊗ · · · ⊗ san))

= b′1(ψn(sa1 ⊗ · · · ⊗ san))+
n−1∑
l=1

b′2(ψl(sa1 ⊗ · · · ⊗ sal)⊗ ψn−l(sal+1 ⊗ · · · ⊗ san)),

which is precisely the structure equation for an A∞ morphism.

We remark that, strictly speaking, the above argument is not valid for the case

n= 2 with both a1 and a2 of degree 0, that is, smooth functions. However, in this case, the

defining relation for ψ being an A∞ morphism is equivalent to the fact that (a1a2)(x)=
a1(x)a2(x) for every point x∈M.

The fact that the linear component

ψ1 : (sΩ(M))k−1→ (sC (M))k−1,

α �→
(
σ �→ (−1)k

(∫
Δk
σ ∗α

))

of the A∞ morphism ψ induces an isomorphism in cohomology is the content of the

usual de Rham theorem. The naturality of the construction follows from the naturality

of S and C. �

Remark 3.26. Let A be a Lie algebroid. One can use ψ to define an A∞ morphism ψ A

from (Ω(A)= Γ (∧A∗),−d,∧) to (C (A), δ,∪). Here C (A) is the dg algebra of cochains of

the simplicial set (HomLie−alg(TΔk, A))k≥0.

The nth component of ψ A is given by

〈ψ A
n (sα1 ⊗ · · · ⊗ sαn), σ 〉 := 〈ψn(sσ ∗α1 ⊗ · · · ⊗ sσ ∗αn), idΔk〉,

where α1, . . . , αn∈Ω(A) and σ : TΔk→ A is a Lie algebroid morphism.

Observe that if A is not transitive, ψ A fails in general to be an A∞ quasi-

isomorphism. �

Proposition 3.27. The A∞ quasi-isomorphism ψ has the following properties:

(1) ψ1(s f)= s f for every function f ∈Ω0(M);

(2) for n> 1, ψn(sa1 ⊗ · · · ⊗ san) vanishes, whenever one of the elements ai is a

function;
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(3) the image of ψn lies in the subspace Ĉ (M) of normalized simplicial cochains,

that is, the space of cochains that vanish on degenerate simplices. �

Proof. The first two claims are direct consequences of the definition of ψ and the prop-

erties of Chen’s map C. Let us now prove the last claim. We need to show that

ψn(sa1 ⊗ · · · ⊗ san)(ε
∗
l σ)= 0,

where εl :Δk→Δk−1 is the lth degeneracy map. Since

ψn(sa1 ⊗ · · · ⊗ san)(ε
∗
l σ)=±

∫
Δn×I k−1

(Θk)
∗
(n)(ε

×n
l )∗(p∗1σ

∗(a1) ∧ · · · ∧ p∗nσ
∗(an)),

it is sufficient to show that the differential of

Δn× I k−1
(Θk)(n)

�� (Δk)
×n

εl
×n

�� (Δk−1)
×n

is singular almost everywhere.

Fix a point (t1, . . . , tn, x1, . . . , xk−1) ∈Δn× I k−1. We assume without loss of gener-

ality that each of the variables tm lies in an open interval of the form

(
k− im

k
,

k− im + 1

k

)
,

where im is an integer satisfying 1≤ im ≤ k.

Evaluating (Θk)(n) on (t1, . . . , tn, x1, . . . , xk−1) yields an element of (Δk)
n whose pro-

jection on to the mth copy is given by

(max{x1, . . . , xim−1, ym}, . . . ,max{xim−1, ym}, ym, �0),

with ym := k(tm − k−im
k )xim . We can assume without loss of generality that all the variables

(x1, . . . , xn, y1, . . . , yn) are pairwise different.

Now, consider the effect of applying the degeneracy map εl :Δk→Δk−1 to

all the components of (Θk)(n)(t1, . . . , tn, x1, . . . , xk−1). The remaining expressions which
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(potentially) depend on xl and (tm)im=l also depend on xl−1, that is, we get either

expressions of the form

max{xj, . . . , xl−1, xl , . . .} or max
{

xj, . . . , xl−1,k
(

tm − k− l

k

)
xl , �0

}

with j ≤ l − 1, or expressions independent of xl and (tm)im=l . Hence, for

((εl)
n ◦ (Θk)(n))(t1, . . . , tn, x1, . . ., xn)

to depend on (xl , (tm)im=l), we need

xl−1 < k
(

tm − k− l

k

)
xl for all m with im = l, and xl−1 < xl .

Observe that this means that xl−1 can only appear through expressions of the form

max
{
. . . ,k

(
tm − k− l − 1

k

)
xl−1, �0

}
,

where im = l − 1. Therefore, the restriction of the differential of (εl)
n ◦ (Θk)(n) at the point

(t1, . . . , tn, x1, . . . , xk−1) to the subspace spanned by

{
∂

∂xl−1
,

(
∂

∂tm

)
im=l−1

}

is not injective, and neither is the differential on the whole tangent space. �

4 The Integration A∞ Functor

In this section, the integration
∫
[E ] of a representation up to homotopy E , which satis-

fies a certain finiteness condition (see Definition 4.7), is defined. The key concept is the

holonomy map

σ �→Hol(σ, E),

which assigns a linear map Hol(σ, E) ∈Hom1−k(Eσ(vk), Eσ(v0)) to every k-simplex

σ : TΔk→ A.
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The main results are the following.

(1) The assignment

σ �→Hol(σ, E)

defines a unital representation up to homotopy of Π∞(A) (Theorem 4.14).

(2) The integration map

∫
:Rep∞(A)→ R̂ep∞(Π∞(A)),

E �→Hol(−, E)

can be extended naturally to an A∞ functor of dg-categories (Theorem 4.19).

Before proving these results, we need to establish one more property of the A∞
quasi-isomorphism

ψ : (Ω(M),−d,∧)→ (C (M), δ,∪).

4.1 Gauge invariance

Let M be a smooth manifold and V be a finite-dimensional graded vector space. We

denote by ψV the A∞ morphism

ψV := idEnd V ⊗ ψ : End V ⊗ (Ω(M),−d,∧)→End V ⊗ C (M).

In this paragraph, we will show that this A∞ morphism is natural with respect

to the gauge action. It turns out that this is a consequence of general arguments regard-

ing A∞ morphisms between differential graded algebras. This fact will imply that the

holonomies Hol(σ, E), associated to elements of Π∞(A), are independent of the trivial-

ization of the graded vector bundle σ ∗E .

Remark 4.1. Let A and B be differential graded algebras with unit. A Maurer–Cartan

element u∈A1 gives rise to a differential graded algebra Au with the same multiplication

and twisted differential

du(a) :=da+ u∧ a− (−1)|a|a∧ u.

Observe that this is a special instance of the twisting procedure of A∞-algebras

described in Appendix A.2.
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Given an A∞ morphism ψ : A→B, we set

ψ(u) := s−1

(∑
k≥1

ψk(su⊗k)

)
,

provided the sum converges. By Proposition A.13, ψ(u) is a Maurer–Cartan element of B.

As explained in Appendix A.2, there is an A∞ morphism

ψu : Au→Bψ(u),

with structure maps (ψu)n given by

(ψu)n(sa1 ⊗ · · · ⊗ san) :=
∑

l0≥0,...,ln≥0

ψn+l0+···+ln((su)⊗l0 ⊗ sa1 ⊗ · · · ⊗ san⊗ (su)⊗ln).

We assume the convergence of this sum. �

Definition 4.2. Let A× be the group of invertible elements of A that are of degree 0 and

let MC(A) be the set of Maurer–Cartan elements of A. �

Remark 4.3. Observe that there is a map

A×→MC(A),

f �→uf := f−1df.

Conjugation by f ∈A×

φ f (a) := f−1af

yields an isomorphism of differential graded algebras

φ f : A→Auf . �

Proposition 4.4. Let ψ : A→B be an A∞ morphism between two differential graded

algebras with unit and let I be a subgroup of A×. Assume that:

(1) the map ψ1 sends the unit to the unit;

(2) for n> 1, ψn(sa1 ⊗ · · · ⊗ san) vanishes whenever one of the ai lies in I.
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Then, for any element f ∈ I, the following properties are satisfied:

(1) the element ψ1( f) has an inverse given by ψ1( f−1);

(2) ψ(uf ) equals uψ1( f).

(3) the diagram

A
ψ

��

φ f ∼=
��

B

φψ1( f)∼=
��

Auf

ψuf

�� Buψ1( f)

is commutative. �

Proof. For the first claim, we use the fact that ψ is a morphism to compute

0= b′1ψ2(s f, s f−1)+ b′2(ψ1( f)⊗ ψ1( f−1))− ψ2(sdf ⊗ s f−1)+ ψ2(s f ⊗ sd( f−1))

− ψ1(b2(s f ⊗ s f−1))

= b′2(ψ1( f)⊗ ψ1( f−1))− ψ1(b2(s f ⊗ s f−1))= b′2(ψ1( f)⊗ ψ1( f−1))+ s1.

In order to establish the second claim, we first have to show that

uψ1( f) =ψ1( f)−1d(ψ1( f)) and ψ(uf )=
∑
k≥1

ψk((s f−1df)⊗k)

are equal. To this end, one observes that evaluating the structure equations for ψ being

an A∞ morphism on the element

s f ⊗ (s f−1df)⊗k

yields

b′2(ψ1(s f)⊗ ψk((s f−1df)⊗k))=ψk+1(sdf ⊗ (s f−1df)⊗k)− ψk(sdf ⊗ (s f−1df)⊗k−1),

and hence ∑
k≥1

b′2(ψ1(s f)⊗ ψk((s f−1df)⊗k))=−ψ1(sdf),

which is equivalent to uψ1( f) =ψ(uf ).
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In a similar manner, one proves the following equations:

∑
l≥0

b′2(ψ1(s f)⊗ ψk+l+1((sf−1df)⊗l ⊗ s( f−1af)⊗ D))=−ψk+1(s(af)⊗ D),

∑
l≥0

ψk′+k+l+2(C ⊗ s(af)⊗ (sf−1df)⊗l ⊗ s( f−1bf)⊗ D)=ψk′+k+2(C ⊗ sa⊗ s(bf)⊗ D),

∑
l≥0

ψk′+l+1(C ⊗ s(af)⊗ (sf−1df)⊗l)= (−1)[C ]+[a]b′2(ψk′+1(C ⊗ sa)⊗ ψ1(s f)),

where C ∈ (sA)k
′
and D ∈ (sA)k are arbitrary homogeneous elements of the bar complex

B(sA)=
⊕
k≥1

(sA)⊗k.

Together, these equations imply

∑
l0≥0,...,ln≥0

b′2(ψ1(s f)⊗ ψl0+···+ln+n((s f−1df)⊗l0 ⊗ s( f−1a1 f)⊗ (s f−1df)⊗l1

⊗ · · · ⊗ s( f−1an f)⊗ (s f−1df)⊗ln))

= (−1)[a1]+···+[an]+1b′2(ψn(sa1 ⊗ · · · ⊗ san)⊗ ψ1(s f)),

which is another way to express

ψuf ◦ φ f = φψ1( f) ◦ ψ. �

Definition 4.5. The gauge action of a differential graded algebra A is the right action

of the group of invertible elements A× of degree 0 on the set A given by

a • f := f−1af + f−1df. �

Corollary 4.6. Let M be a smooth manifold and V be a finite-dimensional graded vector

space. We denote by ψV the A∞ morphism

ψV := idEnd V ⊗ ψ : End V ⊗ (Ω(M),−d,∧)→End V ⊗ C (M),
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given by the tensor product of idEnd V and the A∞ quasi-isomorphism ψ ; see

Appendix A.2.

Then the following conditions are satisfied.

(1) For any a∈End V ⊗Ω(M), the sequence

ψV (a) :=
∑
k≥1

s−1(ψV
k ((sa)⊗k))

converges, in the sense that evaluating every term of the above sum on some

fixed simplex yields a sum of endomorphisms which converges absolutely.

(2) The map a �→ψ E (a) is equivariant with respect to the gauge action restricted

to I := (End V)0 ⊗ C∞(M), namely

ψ E (a • f)=ψ E (a) • f

for all f ∈ I. Here we use the fact that I can be seen as a subgroup of the group

of invertible elements of End V ⊗ (Ω(M),−d,∧) and End V ⊗ C (M), respec-

tively. �

Proof. The first claim follows from a simple bound that one obtains from the fact that

the volume of the n-simplex is 1
n! . The second claim is a formal consequence of Proposi-

tion 4.4, since Proposition 3.27 implies that ψV satisfies the hypothesis there. �

4.2 Integration of representations up to homotopy

In this paragraph, we show that the A∞ quasi-isomorphism ψ from the de Rham algebra

to the algebra of singular cochains, which was constructed in Section 3, can be used to

integrate representations up to homotopy that satisfy a finiteness condition.

Definition 4.7. A representation up to homotopy E is of finite rank if the sum of the

ranks of the homogeneous components Ei is finite. �

For such representations up to homotopy, we use ψ to define the holonomy

Hol(σ, E)
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of a simplex σ ∈Π∞(A) with respect to some representation up to homotopy E of A.

Theorem 4.14 asserts that, in fact, the assignment

σ �→Hol(σ, E)

defines a representation up to homotopy of Π∞(A).

Before that, we have to modify slightly the map ψ , by reversing the orientations

in order to be consistent with Igusa’s conventions in [17], as well as the conventions of

Arias Abad and Crainic [2]. (The need for this change of orientation comes from the fact

that Igusa’s maps Θ(k) are maps from I k−1 to the space of paths in Δk from vk to v0. This

is consistent with the conventions for the nerve of a category in [2], where by a sequence

of composable arrows (g1, . . . , gk) we mean a sequence such that the target of gi is equal

to the source of gi−1. The discrepancy of these conventions with the usual orientations

of simplices and nerves forces us to introduce this change.)

Definition 4.8. Given a manifold M, we denote by C̄ (M) the dg-algebra (C (M), δ̄, ∪̄)
with:

(i) underlying vector space the space of smooth singular cochains C (M),

(ii) differential

δ̄ : C k(M)→ C k+1(M), δ̄ := (−1)kδ,

and

(iii) product given by

α∪̄β := (−1)|α||β|α ∪ β.

Let ī be the natural isomorphism of differential graded algebras

ī : C (M)→ C̄ (M),

α �→ (−1)
|α|(|α|−1)

2 α,

and τ be the natural isomorphism of differential graded algebras

τ : (Ω(M),d,∧)→ (Ω,−d,∧)

η �→ (−1)|η|η.
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We define

ψ̄ := ī ◦ ψ ◦ τ.

Clearly, ψ̄ : (Ω(M),d,∧)→ C̄ (M) is an A∞ quasi-isomorphism. Moreover, its components

ψ̄n : sΩ(M)⊗n→ sC̄ (M) are given by

ψ̄n(sa1 ⊗ · · · ⊗ san)= (−1)
k(k−1)

2 +k+n−1ψn(sa1 ⊗ · · · ⊗ san),

where k= [a1]+ · · · + [an]+ 1. �

Remark 4.9. Let M be a manifold and V be a finite-dimensional graded vector space.

We identify the vector space End V ⊗ C (M) with the space of cochains on M with values

in End V as follows. For an element φ ⊗ η ∈End V ⊗ C k(M) and a k-simplex σ in M, we set

(φ ⊗ η)(σ ) := φη(σ) ∈End V.

A simple computation shows that if α ∈Endl V ⊗ C k(M) and β ∈Endl ′V ⊗ C k′(M), then

(α∪̄β)(σ )= (−1)k(l
′+k′)α(V∗k (σ )) ◦ β(U ∗k′(σ )). �

Proposition 4.10. Let M be a smooth manifold and V be a finite-dimensional graded

vector space.

(a) There is a natural bijective correspondence between

(1) Maurer–Cartan elements in the dg-algebra End V ⊗ C̄ (M);

(2) representations up to homotopy of the simplicial set Π∞(M) :=
Sing(M), such that the graded vector space associated to every

point is V .

The correspondence is given by

α �→ 1+ α ∈End V ⊗ C (M).

Here 1 is the 1-cochain with values in End V , which associates the identity

to every 1-simplex.

(b) Suppose that E and E ′ are representations up to homotopy of Π∞(M) on

trivial vector bundles M × V and M × V ′, respectively. Then there is a natural
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isomorphism of vector spaces:

Hom(V,V ′)⊗ C (M)∼=Hom(E, E ′),

where Hom(E, E ′) denotes the complex of morphisms between E and E ′.

Under this identification, the operator D : Hom(E, E ′)→Hom(E, E ′)

corresponds to the map

Hom(V,V ′)⊗ C (M)→Hom(V,V ′)⊗ C (M)

η �→ δ̄η + α′∪̄η − (−1)|η|η∪̄α,

where α and α′ are the Maurer–Cartan elements corresponding to E and E ′,

respectively, and the product is taken in the algebra End(V ⊕ V ′)⊗ C̄ (M).

Moreover, under the identification, composition corresponds to the product

in the algebra End(V ⊕ V ′ ⊕ V ′′)⊗ C̄ (M).
�

Proof. We write F = 1+ α. The fact that α is a Maurer–Cartan element is equivalent to

δ̄(F − 1)+ (F − 1)∪̄(F − 1)= 0.

Since −1 is a Maurer–Cartan element of End V ⊗ C̄ (M), this equation becomes

δ̄(F )+ (F )∪̄(F )− 1∪̄F − F ∪̄1= 0. (3)

We know that F can be written as a sum of homogeneous components

F = F0 + F1 + F2 + · · ·,

where Fk ∈End1−k
(V)⊗ C̄ k(M). Looking at the homogeneous components, Equation (3) is

equivalent to the sequence of equations

δ̄(Fk−1)+
∑

i+ j=k

F j∪̄Fi − 1∪̄Fk−1 − Fk−1∪̄1= 0.

Using the fact that 1∪̄Fk−1 = (−1)k−1(id⊗ d∗0)(Fk−1) and Fk−1∪̄1=−(id⊗ d∗k)(Fk−1), we

obtain that the equation above is equivalent to

k−1∑
i=1

(−1)k−1+ j(id⊗ d∗i )(Fk−1)+
∑

i+ j=k

F j∪̄Fi = 0.
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This equations are precisely the defining relations of a representation up to homotopy.

This concludes the proof of the first statement.

For the second statement, we take an element

η= η0 + η1 + η2 + · · ·

in (Hom(V,V ′)⊗ C̄ (M))n and evaluate δ̄η + α′∪̄η − (−1)nη∪̄α on a k-simplex σ .

(δ̄η + α′∪̄η − (−1)nη∪̄α)(σ )=
⎛
⎝δ̄ηk−1 +

∑
i+ j=k

α′j∪̄ηi −
∑

i+ j=k

(−1)nη j∪̄αi

⎞
⎠ (σ )

=
⎛
⎝k−1∑

i=1

(−1)k−1+i(id⊗ d∗i )ηk−1 +
∑

i+ j=k

F ′j∪̄ηi

⎞
⎠ (σ )

−
∑

i+ j=k

(−1)n(η j∪̄Fi)(σ )

=
k−1∑
j=1

(−1) j+nηk−1(dj(σ ))+
∑

i+ j=k

(−1) jnF ′j ∪ ηi(σ )

+
∑

i+ j=k

(−1)n+ j+1η j ∪ Fi(σ ).

The last expression is precisely the formula for the differential on the spaces of

morphisms defined in Equation (2). The remaining statements follow from similar

computations. �

Definition 4.11. Let E be a representation up to homotopy of a Lie algebroid A and

suppose that E is of finite rank.

The holonomy Hol(σ, E) of a simplex σ : TΔk→ A of Π∞(A) is the linear map

Hol(σ, E) : Eσ(vk)→ Eσ(v0)

of degree 1− k defined as follows.

(1) Pull back the representation up to homotopy along σ and choose a trivializa-

tion

h : σ ∗E ∼=Δk× V

of the graded vector bundle σ ∗E→Δk.
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(2) By Proposition A.5, the representation up to homotopy on Δk× V corre-

sponds to a Maurer–Cartan element ω of End V ⊗Ω(Δk). Apply the A∞ quasi-

isomorphism

ψ̄V : End V ⊗Ω(Δk)→End V ⊗ C̄ (Δk)

to ω. This yields a cochain ψ̄V (ω) on Δk with values in End V .

(3) Evaluating this cochain on the fundamental cycle [Δk] := (id :Δk→Δk) gives

an element of End V , which we interpret as a linear map from the fiber of

Δk× V over vk to the fiber over v0. Finally, we set

Hol(σ, E) := h−1
v0
◦ 〈ψ̄V (ω), [Δk]〉 ◦ hvk. �

Lemma 4.12. The holonomy Hol(σ, E) of a simplex σ ∈Π∞(A) is well defined. �

Proof. We have to prove that the linear map Hol(σ, E) is independent of the chosen

trivialization h : σ ∗E ∼=Δk × V . Changing the trivialization can be encoded in an auto-

morphism of graded vector bundles

f :Δk × V→Δk× V,

which can also be seen as an invertible element of the dg-algebra End V ⊗Ω(Δk).

If one uses the trivialization f−1 ◦ h, the Maurer–Cartan element ω changes to

ω′ = f−1ω f + f−1df =ω • f.

Using Corollary 4.6, we compute

〈1+ ψ̄V (ω • f), [Δk]〉 = 〈1+ ψ̄V (ω) • f, [Δk]〉

= 〈1+ f−1δ̄ f, [Δk]〉 + 〈 f−1∪̄ψ̄V (ω)∪̄ f, [Δk]〉
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= f−1(v0) ◦ 〈1, [Δk]〉 ◦ f(vk)+ f−1(v0) ◦ 〈ψ̄V (ω), [Δk]〉 ◦ f(vk)

= f−1(v0) ◦ (〈1+ ψ̄V (ω), [Δk]〉) ◦ f(vk).

This means that different choices of trivializations lead to linear maps, which

are related by conjugation. Consequently,

Hol(σ, E) := h−1
vo
◦ 〈ψ̄V (ω), [Δk]〉 ◦ hvk

is independent of the trivialization. �

Remark 4.13. (1) The definition of the holonomy Hol(σ,−) of a simplex σ : TΔk→ A does

not make use of all the defining properties of a representation up to homotopy. In fact,

it only uses the fact that the structure operators of the pull-back σ ∗E ∼=Δk× V can be

naturally assembled into a differential form ω with values in End V . This is possible

because the linear operator

D :Ω(A, E)→Ω(A, E)[1],

which encodes the representation up to homotopy, satisfies the graded derivation rule

D(ωη)=d(ω)η + (−1)|ω|ωD(η).

Hence, our definition of holonomy can be extended to Z-graded A-connections, that is,

linear operators D of Ω(A, E) of degree 1, which satisfy the graded derivation rule, but

do not necessarily square to zero.

(2) Any connection ∇ on a vector bundle E→M gives rise to a Z-graded T M-

connection

d∇ :Ω(A, E)→Ω(A, E),

via the Chevalley–Eilenberg formula

dη(α1, . . . , αn+1)=
∑
i< j

(−1)i+ jη([αi, α j], . . ., α̂i, . . . , α̂ j, . . . , αk+1)

+
∑

i

(−1)i+1∇(αi)η(α1, . . . , α̂i, . . . , αk+1).
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We claim that the holonomy

Hol(γ, E) : Eγ (1)→ Eγ (0)

associated to a path γ is equal to the parallel transport of ∇ along

t �→ γ (1− t).

To see this, we pick a trivialization γ ∗E ∼= I × V and write

γ ∗∇ =d+ a(t)dt.

Evaluating the cochain

ψ̄V
n ((sa)n)= (−1)nψV

n ((sa)n)= (−1)n(S ◦ C)((sa)n)

on the fundamental cycle [I ]= (id : I→ I ) yields

∫
1≥t1≥···≥tn≥0

a(1− t1) ◦ · · · ◦ a(1− tn)dt1 · · ·dtn.

Hence—up to the identification σ ∗E ∼= I × V—Hol(γ, E) is given by

H := idV +
∑
n≥1

(∫
1≥t1≥···≥tn≥0

a(1− t1) ◦ · · · ◦ a(1− tn)dt1 · · ·dtn

)
.

Observe that the 1-parameter family of endomorphisms

Ht := idV +
∑
n≥1

(∫
t≥t1≥···≥tn≥0

a(1− t1) ◦ · · · ◦ a(1− tn)dt1 · · ·dtn

)

satisfies

H0 = idV and
d

dt
Ht= a(1− t) ◦ Ht,

which is the differential equation defining the parallel transport of ∇ along

t �→ γ (1− t). �

Theorem 4.14. Let A be a Lie algebroid and E be a representation up to homotopy of A

which has finite rank.
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The assignments

(Π∞(A))0 
 x �→ Ex,

Π∞(A) 
 σ �→ Fk(σ ) :=Hol(σ, E)

define a unital representation up to homotopy of the∞-groupoid Π∞(A) of A. �

Proof. We can assume that σ ∗E is trivial, that is, σ ∗E ∼=Δk × V . Since ω is a Maurer–

Cartan element of End V ⊗Ω(Δk), so is ψ̄V (ω) for End V ⊗ C̄ (Δk). By Proposition 4.10,

such a Maurer–Cartan element corresponds uniquely to a representation up to homo-

topy of Π∞(Δk)= Sing(Δk). The defining relations of such a representation up to homo-

topy yield the defining relations for Hol(−, E) being a representation up to homotopy,

evaluated on the simplex σ .

Unitality follows from part (3) of Proposition 3.27. �

Definition 4.15. Let A be a Lie algebroid. The integration map

∫
:Rep∞(A)→ R̂ep∞(Π∞(A))

assigns to any representation up to homotopy E of A the representation up to homotopy∫
[E ] of Π∞(A). �

Remark 4.16. Every morphism of Lie algebroids f : A→ B yields a dg-functor

f∗ :Rep∞(B)→Rep∞(A),

as well as a morphism of simplicial sets

Π∞ f :Π∞(A)→Π∞(B),

which, in turn, yields

(Π∞ f)∗ : R̂ep∞(Π∞(B))→ R̂ep∞(Π∞(A)).
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The map
∫

is natural with respect to the pull-back, that is, the diagram

R̂ep∞(Π∞(B))
(Π∞ f)∗

�� R̂ep∞(Π∞(A))

Rep∞(B)
f∗

��

∫ ��

Rep∞(A)

∫��

commutes. �

4.3 The A∞ functor

Next, we extend the map

∫
:Rep∞(A)→ R̂ep∞(Π∞(A))

E �→
∫
[E ] :=Hol(−, E),

which was defined in the previous subsection, to an A∞ functor of dg-categories

∫
:Rep∞(A)→ R̂ep∞(Π∞(A)).

The structure maps

∫
n

: sHom(E1, E0)⊗ · · · ⊗ sHom(En, En−1)→ sHom(En, E0)

of this A∞ functor are given in terms of the holonomy Hol(σ, φ1, . . . , φn) of a simplex

σ : TΔk→ A with respect to a chain of composable morphisms

E0 E1

φ1

�� · · ·�� En−1�� En.

φn

��

Definition 4.17. Let E1, . . . , En be representations up to homotopy of a Lie algebroid A,

each of finite rank, and φi : Ei→ Ei−1 morphisms in Rep∞(A).
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The holonomy Hol(σ, φ1, . . . , φn) of a simplex σ : TΔk→ A is the linear map

Hol(σ, φ1, . . . , φn) : En|σ(vk)→ E0|σ(v0)

of degree [φ1]+ · · · + [φn]− k+ 1 defined as follows.

(1) Pull back the representations up to homotopy Ei and all the morphisms φi

along σ and choose a trivialization

h : σ ∗(E0 ⊕ · · · ⊕ En)∼=Δk × (V0 ⊕ · · · ⊕ Vn)=:Δk × V.

(2) By Proposition A.5, the representations up to homotopy on Δk × Vi corre-

spond to a Maurer–Cartan element ωi of End V ⊗Ω(Δk), while the morphisms

correspond to elements ηi ∈Hom(Vi,Vi−1)⊗Ω(Δk).

(3) Apply the A∞ quasi-isomorphism

ψ̄V : End V ⊗Ω(Δk)→End V ⊗ C̄ (Δk)

to Ω :=ω0 + · · · + ωn+ η1 + · · · + ηn. This yields a cochain ψ̄V (Ω) on Δk with

values in End V .

(4) Evaluating this cochain on the fundamental cycle [Δk] gives an element in

End V . We define Hol(σ, φ1, . . . , φn) to be the composition

En|σ(vk)

hvk
�� V

〈ψ̄V (Ω),[Δk]〉
�� V

h−1
v0

�� E0|σ(v0).�

Lemma 4.18. The holonomy Hol(σ, φ1, . . . , φn) is well defined. �

Proof. The proof is literally the same as the one of Lemma 4.12. �

Theorem 4.19. Let A be a Lie algebroid. The assignments

Rep∞(A) 
 E �→
∫
[E ] ∈ R̂ep∞(Π∞(A))
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and

∫
n

: sHom(E1, E0)⊗ · · · ⊗ sHom(En, En−1)→ sHom(En, E0),

φ1 ⊗ · · · ⊗ φn �→ s(Hol(−, φ1, . . . , φn))

define an A∞ functor ∫
:Rep∞(A)→ R̂ep∞(Π∞(A))

between the dg-category of representations up to homotopy of A and the dg-category of

unital representations up to homotopy of Π∞(A). �

Proof. We need to prove the equations

β ′1 ◦
∫

n
+
∑

i+ j=n

β ′2 ◦
(∫

i
⊗

∫
j

)
=

∑
i+ j+1=n

∫
n
◦(id⊗i ⊗ β1 ⊗ id⊗ j

)

+
∑

i+ j+2=n

∫
n−1
◦(id⊗i ⊗ β2 ⊗ id⊗ j

), (4)

where the operators

β ′1 : sHom
(∫

[En],
∫
[E0]

)
→ sHom

(∫
[En],

∫
[E0]

)
,

β ′2 : sHom
(∫

[Ei],
∫
[E0]

)
⊗ sHom

(∫
[En],

∫
[Ei]

)
→ sHom

(∫
[En],

∫
[E0]

)
,

β1 : sHom(Ei+1, Ei)→ sHom(Ei+1, Ei), and

β2 : sHom(Ei+1, Ei)⊗ sHom(Ei+2, Ei+1)→ sHom(Ei+2, Ei),

are the maps corresponding to the composition and the differential on the spaces of

morphisms at the level of the suspension.

It suffices to show that the right- and left-hand side of (4) evaluate to the same

linear map on all simplices in Π∞(A). Since the construction is natural with respect to

the pull-back, we may assume that A= TΔk and that the simplex σ is the fundamen-

tal cochain [Δk]= (id :Δk→Δk). Moreover, by Lemma 4.18, we can assume that all the

graded vector bundles Ei are trivial, that is, Ei =Δk × Vi.
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In this situation, Propositions A.5 and 4.10 provide natural identifications of

graded vector spaces:

Hom(Ei, E j)∼=Hom(Vi,Vj)⊗Ω(Δk),

Hom
(∫

[Ei],
∫
[E j]

)
∼=Hom(Vi,Vj)⊗ C (Δk).

Under these identifications, composition of operators corresponds to multiplication in

the algebras End V ⊗Ω(Δk) and End V ⊗ C̄ (Δk), respectively. Also, the differentials

δ : Hom(Ei, E j)→Hom(Ei, E j)

and

D : Hom
(∫

[Ei],
∫
[E j]

)
→Hom

(∫
[Ei],

∫
[E j]

)

correspond to

Hom(Vi,Vj)⊗Ω(Δk)s→Hom(Vi,Vj)⊗Ω(Δk),

η �→dη + ω j ∧ η − (−1)|η|η ∧ ωi

and

Hom(Vi,Vj)⊗ C̄ (Δk)→Hom(Vi,Vj)⊗ C̄ (Δk),

μ �→ δ̄μ+ α j∪̄μ− (−1)|μ|μ∪̄αi,

where ωi and αi are the Maurer–Cartan elements corresponding to the representations

up to homotopy Ei and
∫
[Ei].

We observe that the map
∫

n corresponds to

∫̄
n

: s(Hom(V1,V0)⊗Ω(Δk))⊗ · · · ⊗ s(Hom(Vn,Vn−1)⊗Ω(Δk))→ s(Hom(Vn,V0)⊗ C̄ (Δk))

given by the formula

(sη1 ⊗ · · · ⊗ sηn) �→
∑

l0≥0,...,ln≥0

ψ̄V
l0+···+ln+n((sω

0)⊗l0 ⊗ sη1 ⊗ · · · ⊗ sηn⊗ (sωn)⊗ln).
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Let us define ω=ω0 + · · · + ωn∈End V ⊗Ω(Δk) and α = α0 + · · · + αn∈End V ⊗ C̄ (Δk).

Clearly, ω and α are Maurer–Cartan elements and are related by ψ̄V (ω)= α.

Let b2 and b′2 be the operators corresponding to the products on End V ⊗Ω(Δk)

and End V ⊗ C̄ (Δk) at the level of the suspension and b1 and b′1 correspond to the twisted

differentials dω and δ̄α, respectively. We need to prove

b′1 ◦
∫̄

n
+
∑

i+ j=n

b′2 ◦
(∫̄

i
⊗

∫̄
j

)
=

∑
i+ j+1=n

∫̄
n
◦ (id⊗i ⊗ b1 ⊗ id⊗ j

)

+
∑

i+ j+2=n

∫̄
n−1
◦ (id⊗i ⊗ b2 ⊗ id⊗ j

). (5)

For this we note that this is exactly the component in Hom(Vn,V0) of the equations for

the twist ψ̄V
ω of ψ̄V by ω to be an A∞ morphism. �

5 Examples

In the following, we describe some examples of representations up to homotopy of Lie

algebroids to which the A∞ functor

∫
:Rep∞(A)→ R̂ep∞(Π∞(A))

can be applied.

5.1 Parallel transport for superconnections

The situation where the Lie algebroid is the tangent bundle T M of a manifold M has been

studied by Igusa [17] and Block–Smith [6], and was the starting point of our work. In this

case, representations up to homotopy are precisely the Z-graded versions of Quillen’s

flat superconnections [21]. Since

HomDGCA(Ω(T M),Ω(Δk))∼=HomC∞(Δk,M),

we know that

Π∞(T M)∼= Sing(M).

Thus, integrating a representation up to homotopy of the tangent Lie algebroid

T M amounts to assigning holonomies to smooth singular chains on M. As explained
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in [6], this procedure is a generalization of the Riemann–Hilbert correspondence. Just

as flat connections correspond, via holonomy, to representations of the fundamental

groupoid of M, flat superconnections correspond to representations up to homotopy of

the infinity groupoid of M.

5.2 Ordinary representations

Let A be an integrable Lie algebroid with integrating source simply connected Lie

groupoid G. By Lie’s second theorem for Lie algebroids, every 1-simplex

σ ∈HomLie-alg(T I, A)=HomDGCA(Ω(A),Ω(I ))

integrates to a morphism of Lie groupoids

σ̃ : I × I→G

from the pair groupoid of I to G. We set the target (source) map to be the projection on

to the first (second) factor, respectively.

Let τ(σ ) be the value of σ̃ on (1,0) ∈ I × I , that is,

τ(σ ) := σ̃ (1,0).

One obtains a morphism of simplicial sets

π :Π∞(A)→NG

from the∞-groupoid Π∞(A) of A to the nerve NG of the Lie groupoid G by setting

π(σ) := (τ (σ1), . . . , τ (σk)).

Here, σ is a k-simplex in Π∞(A) and σi is the 1-simplex given by the edge joining vi and

vi−1; that is: the 1-simplex given by pre-composing σ with (the tangent map of)

t �→ ( 1, . . . ,1︸ ︷︷ ︸
i−1 times

,1− t,0, . . . ,0).
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The morphism π :Π∞(A)→NG induces a functor of dg-categories

π∗ : R̂ep∞(G) ↪→ R̂ep∞(NG)→ R̂ep∞(Π∞(A)).

The inclusion R̂ep∞(G) ↪→ R̂ep∞(NG) reflects the fact that we require the graded vector

spaces (Ex)x∈M underlying a representation up to homotopy of a Lie groupoid G over M

to fit into a graded vector bundle E .

Proposition 5.1. Let E be an ordinary representation of the Lie algebroid A and denote

by Ẽ the corresponding representation of G.

Then

π∗ Ẽ =
∫
[E ]

holds in R̂ep∞(Π∞(A)). �

Proof. By degree reasons, we know that the only nontrivial structure operator for
∫
[E ]

is F1. Clearly, the same is true for π∗(Ẽ). Let us denote by μ : G→End E the structure

operator for the representation Ẽ . We need to prove that, for any one simplex σ : T I→ A,

one has

F1(σ )=μ(π(σ)).

The naturality of the integration construction—see Remark 4.16—implies

F1(σ )= F E
1 (σ ◦ id)= F σ ∗(E)

1 (id).

We denote by θ : I × I→End(σ ∗E) the structure map corresponding to the representa-

tion that integrates σ ∗E and observe that since θ =μ ◦ σ̃ , we know that

θ(1,0)=μ(σ̃ (1,0))=μ(σ̃1(1,0))=μ(π(σ))

holds. Thus, it is sufficient to prove that

F σ ∗(E)
1 (id)= θ(1,0),
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that is, we may assume without loss of generality A= T I and σ = id. In this case, the

statement reduces to the fact that the holonomy of a path is given by parallel transport

along the direction-reversed path; see Remark 4.13. �

Remark 5.2. The differentiation functor

Ψ : R̂ep∞(G)→Rep∞(A)

constructed in [4] can be extended naturally to a dg-functor. The definition of Ψ involves

iterated differentiation and in a sense it is given by the inverse construction of the inte-

gration procedure described above. Proposition 5.1 shows that, when restricted to ordi-

nary representations, this is indeed the case. However, we would like to point out that

the diagram

R̂ep∞(G)
π∗

��

Ψ

��

R̂ep∞(Π∞(A))

Rep∞(A)

∫

��������������������������

does not commute in general. We expect that it commutes up to homotopy, but this issue

will not be discussed here. �

5.3 Lie algebras and flat connections

Let us fix a finite-dimensional Lie algebra g and denote by G the simply connected Lie

group integrating it. We think of the Chevalley–Eilenberg complex CE(g) as the space of

functions on the dg-manifold g[1] determined by g.

The space of k-simplices on g

Π∞(g)k=HomDGCA(CE(g),Ω(Δk))

can be naturally identified with the space of flat connections on the trivial G bundle over

Δk. In fact, any such map is in particular a map of graded commutative algebras, and
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since CE(g) is free as a graded commutative algebra, one obtains

HomGCA(CE(g),Ω(Δk))∼=HomVect(g
∗,Ω1(Δk))∼= g⊗Ω1(Δk).

One easily checks that the condition of commuting with the differential corresponds to

the Maurer–Cartan equation. We conclude that integrating a representation up to homo-

topy of a Lie algebra amounts to assigning holonomies to the spaces of flat connections

on the trivial G-bundles over the simplices.

5.4 The adjoint representation of a Lie algebroid

Given a Lie algebroid A, there is a representation up to homotopy ad(A) ∈Rep∞(A)—

called the adjoint representation of A—which is well defined up to isomorphism. For

instance:

(1) if A is a Lie algebra, ad(A) coincides with the usual adjoint representation ;

(2) if A is a foliation, ad(A) is quasi-isomorphic to the Bott connection.

The cohomology associated to the adjoint representation measures the deformations of

the Lie algebroid structure, as one would expect from the Lie algebra case—see [3, 4, 12]

for more details.

In order to define the adjoint representation, one has to choose a connection ∇ on

the vector bundle A. The adjoint representation of A induced by ∇ is the representation

up to homotopy of A on the vector bundle A⊕ T M, where A is in degree 0 and T M in

degree 1, given by the following structure operator:

D = ∂ +∇bas + K∇ .

The differential ∂ on the graded vector bundle is the anchor map of A, ∇bas is an A-

connection and K∇ is an endomorphism-valued cochain. The latter two are defined by

the formulae

∇bas
α (β) :=∇ρ(β)(α)+ [α, β],

∇bas
α (X) := ρ(∇X(α))+ [ρ(α), X],

K∇(α, β)(X) :=∇X([α, β])− [∇X(α), β]− [α,∇X(β)]− ∇∇bas
β X(α)+∇∇bas

α X(β).
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This representation up to homotopy is denoted by ad∇(A). The isomorphism class of this

representation, which is independent of the connection ∇, is denoted by ad(A).

5.5 Poisson manifolds

Let P be a Poisson manifold with Poisson bivector field π ∈ Γ (∧2T P ). The cotangent

bundle T∗P has the structure of a Lie algebroid with anchor map T P ∗ → T P given by

contraction with π and bracket determined by the formula

[df,dg]=d{ f, g}.

The Poisson sigma model [8, 18, 22] is a two-dimensional topological field theory

associated to a Poisson manifold, whose perturbative quantization gives Kontsevich’s

formula for a �-product of π . Let us briefly recall the main ingredients of this theory: The

fields on an oriented surface Σ are the vector bundle maps X̂ : TΣ→ T∗P . It is conve-

nient to write X̂ = (X, η), where X :Σ→ P is the base map and η ∈ Γ (Hom(TΣ, X∗(T∗P ))).

The action functional is

S(X, η) :=
∫
Σ

〈η,dX〉 + 1

2
〈π ◦ X, η ∧ η〉.

The classical solutions of this theory are those vector bundle maps that are Lie algebroid

morphisms from TΣ to T∗P .

We conclude that integrating a representation up to homotopy of the Lie alge-

broid T∗P amounts to assigning holonomies to the classical fields of the Poisson sigma

model on the simplex. We hope to make the connection between the integration of repre-

sentations up to homotopy of T∗P and the Poisson sigma model more precise elsewhere.

5.6 Π∞(−) versus Π1(−)

Remark 5.3. In Section 4, the integration
∫
[E ] of a representation up to homotopy E of

a Lie algebroid A was defined. It is a representation up to homotopy of the∞-groupoid

Π∞(A) of A.

Let us assume that A can be integrated to a source simply connected Lie

groupoid G, which is Hausdorff. In Subsection 5.2, a map of simplicial sets

π :Π∞(A)→NG
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was constructed. One might wonder whether the above integrability assumption on A

implies that
∫

factors through π∗, that is, whether it is possible to complete the diagram

R̂ep∞(G)
π∗

�� R̂ep∞(Π∞(A))

Rep∞(A)

∫

��������������������������

∃?

���
�
�
�
�
�
�

in a commutative way. Intuitively, one should not expect this to be the case, since G

only contains information about homotopy classes of A-paths and not about the higher

homotopies. In any case, we present an example that shows that this factorization is not

possible. �

Proposition 5.4. The integration
∫
[E ] of the representation up to homotopy E of T S2

associated to the graded vector bundle E = E0 ⊕ E1 given by the trivial vector bundle

S2 × R in both degrees, equipped with the structure operator

D =d+ η,

where η ∈Ω2(S2) is a volume form, viewed as an element of Ω2(S2,Hom(E1, E0)), is not

quasi-isomorphic to any element of π∗R̂ep∞(G). �

Remark 5.5. In order to prove the proposition, we need to introduce the cohomology

associated to a representation up to homotopy E of a simplicial set X•. �

Definition 5.6. Let E be a representation up to homotopy of X•. The cohomology of X•
with values in E is the graded vector space

H(X•, E) := H(Hom(R, E)),

where R denotes the trivial representation up to homotopy of X• on R. �

We can now proceed with the proof of Proposition 5.4.
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Proof. Observe that the source simply connected Lie groupoid integrating T S2 is the

pair groupoid S2 × S2. Next, suppose that E is a representation up to homotopy of G,

whose pull-back π∗E is quasi-isomorphic to
∫
[E ]. By definition, this implies that the

fiberwise cohomologies are isomorphic, hence

H(Ex)=H((π∗E)x)∼=H
(∫

[E ]x

)
=H(Ex)= Ex=R⊕ R[−1].

Since any representation up to homotopy can be transferred to its cohomology vector

bundle, we may assume without loss of generality that Ex=R⊕ R[−1].

By degree reasons, we know that the structure operator of E is of the form

F1 + F2.

Next, we claim that one can choose an automorphism of the vector bundle E that conju-

gates F1 to the identity. Indeed, choose a point x∈ S2 and define the automorphism

φ : E→ E

by setting

φ(y)= F1(y, x).

Since V is unital, one can easily check that id= φ−1 ◦ F1 ◦ φ. Thus, we can further assume

F1 = id.

The operator F2 ∈ C 2(G) is a closed 2-cocycle of the pair groupoid S2 × S2. Since

the nerve of this groupoid is contractible, we know that F2 is exact and therefore E is

isomorphic to the sum of trivial representations R⊕ R[−1]. This implies

π∗(E)∼=R⊕ R[−1].

We can now compute the cohomology associated to this representation:

H(Π∞(T S2), π∗E)∼= H(Sing(S2),R⊕ R[−1])∼= H(S2)⊕ H(S2)[−1].

In particular, we observe that

H2(Π∞(T S2), π∗E)∼=R.
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Since quasi-isomorphisms induce isomorphisms in cohomology, it is enough to prove

that

H2

(
Π∞(T S2),

∫
[E ]
)

vanishes, in order to contradict our assumption that π∗E and
∫
[E ] are quasi-isomorphic.

Simple degree considerations imply that the only nontrivial structure operator

of
∫
[E ] is F ′2 ∈ C 2(S2). We claim that [F ′2] �= 0 ∈ H2(S2). Indeed

F ′2(σ )=±
∫

I
Θ∗(2)(Pσ)

∗(C(sη))=±
∫
Δ2

σ ∗η.

By de Rham’s theorem, we conclude that F ′2 is a nontrivial cohomology class.

To compute the cohomology of Sing(S2) with coefficients in
∫
[E ], we consider the

filtration of C (Sing(S2),
∫

[E ]) given by the cochain degree. It induces a spectral sequence

that converges to H(Sing(S2),
∫

[E ]) and whose second page is

0 0 0

H2(S2) H2(S2) 0

0 0 0

H0(S2) H0(S2)

d2

		������������������

0

The operator d2 is given by multiplication with [F ′2] and since this class is not

zero, the second cohomology

H2

(
Π∞(T S2),

∫
[E ]
)

vanishes. �
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Remark 5.7. Mimicking the arguments from above, one can prove that there is no rep-

resentation up to homotopy E of G, whose image under the differentiation map

Ψ : R̂ep∞(G)→Rep∞(A)

from [4] equals E . In fact, if such an E would exist, the cohomology class of ω would be

in the image of the van Est map and would hence vanish, since H2(S2 × S2)= 0. �
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during the process of writing this paper.

Funding

This work has been partially supported by SNF Grant 200020-1318131/1, the Forschungskredit
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Appendix

Representations up to homotopy of Lie algebroids

We review the definitions and basic facts regarding representations up to homotopy

of Lie algebroids. More details on these constructions, as well as the proofs of the

results stated here, can be found in [3, 4]. Throughout the Appendix, A denotes a Lie

algebroid over a manifold M and all graded vector bundles are assumed to be of finite

rank.
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Remark A.1. Given a Lie algebroid A, there is a differential graded algebra Ω(A)=
Γ (∧A∗), with differential defined via the Koszul formula

dω(α1, . . . , αn+1)=
∑
i< j

(−1)i+ jω([αi, α j], . . ., α̂i, . . . , α̂ j, . . . , αk+1)

+
∑

i

(−1)i+1Lρ(αi)ω(α1, . . . , α̂i, . . . , αk+1),

where ρ denotes the anchor map and L X( f)= X( f) is the Lie derivative along vector

fields. The operator d is a coboundary operator (d2 = 0) and satisfies the derivation rule

d(ωη)=d(ω)η + (−1)pωd(η),

for all ω ∈Ω p(A), η ∈Ωq(A).

Given a graded vector bundle E =⊕k∈Z Ek over M, we denote by Ω(A, E) the

space

Γ (E ⊗∧A∗),

graded with respect to the total degree. The wedge product gives this space the structure

of a graded commutative module over the algebra Ω(A), that is, Ω(A, E) is a bimodule

over Ω(A) and

ω ∧ η= (−1)kpη ∧ ω

holds for ω ∈Ωk(A) and η ∈Ω(A, E)p. For a detailed explanation of the sign conventions

used in the definition in the wedge product; see [3, Appendix]. In order to simplify the

notation, we will sometimes omit the wedge symbol. �

Definition A.2. A representation up to homotopy of A consists of a graded vector bun-

dle E over M and a linear operator

D :Ω(A, E)→Ω(A, E),

which increases the total degree by 1 and satisfies D2 = 0, as well as the graded deriva-

tion rule

D(ωη)=d(ω)η + (−1)kωD(η)

for all ω ∈Ωk(A), η ∈Ω(A, E). �
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Remark A.3. The representations up to homotopy of A can be naturally organized into

a dg-category Rep∞(A): A morphism φ : E→ F between two representations up to homo-

topy of A is a map

φ :Ω(A, E)→Ω(A, F ),

which is Ω(A)-linear in the graded sense. We denote the space of all morphisms from

E to F by Hom(E, F ). This is a graded vector space and we denote by Homk(E, F ) the

subspace of homogeneous elements of degree k. There is a differential

δ : Homk(E, F )→Homk+1(E, F )

given by the formula

δ(φ)= DF ◦ φ − (−1)kφ ◦ DE .

Let Hom(E,F) be the space of morphisms of degree 0 that commute with the

differentials. Observe that

Hom(E, F )= Z0(Hom(E, F )).

As before, we implicitly assume here that the graded vector bundles underlying

objects of Rep∞(A) are of finite rank. �

Remark A.4. Let E be a graded vector space. The space Ω(A, E)= E ⊗Ω(A) is a differ-

ential left module over the dg-algebra End E ⊗Ω(A). Given ω ∈End E ⊗Ω(A), we denote

the corresponding operator on E ⊗Ω(A) by ω∧. �

One can describe representations up to homotopy on trivial vector bundles as

follows.

Proposition A.5. Let A be a Lie algebroid over M and V be a finite-dimensional graded

vector space.

(a) There is a natural bijective correspondence between

(1) Maurer–Cartan elements of the dg-Lie algebra End E ⊗Ω(A);
(2) representations up to homotopy of A on the trivial vector bundle

M × V .
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The correspondence is given by

ω �→d+ ω ∧ .

(b) Suppose that E and E ′ are representations up to homotopy on trivial vector

bundles M × V and M × V ′, respectively. There is a natural isomorphism

Hom(V,V ′)⊗Ω(A)∼=Hom(E, E ′).

η �→ η ∧ .

Under this identification, the operator δ : Hom(E, E ′)→Hom(E, E ′) corre-

sponds to the map

Hom(V,V ′)⊗Ω(A)→Hom(V,V ′)⊗Ω(A)

η �→dη + ω′ ∧ η − (−1)|η|η ∧ ω,

where ω and ω′ are the Maurer–Cartan elements corresponding to E and

E ′ and the wedge product is taken in the algebra End(V ⊕ V ′)⊗Ω(A). Fur-

thermore, composition corresponds to multiplication in the algebra End(V ⊕
V ′ ⊕ V ′′)⊗Ω(A). �

A∞-algebras and morphisms

The notion of an A∞-algebra was introduced in the 1960s by Stasheff [24, 25], and has

since proved to be important in several areas of mathematics. In order to fix our conven-

tions, we collect here some definitions and basic facts regarding A∞-algebras.

Definition A.6. Let V =⊕k∈Z Vk be a graded vector space. The suspension sV of V is

the graded vector space given by

(sV)k := Vk+1. �

Definition A.7. An A∞-algebra is a graded vector space A, together with a sequence of

linear maps of degree 1

bn : (sA)⊗n→ sA,
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satisfying, for each n≥ 1, the equations

∑
i+ j+k=n

bi+k+1 ◦ (id⊗i ⊗ bj ⊗ id⊗k
)= 0. (A.1)

�

Examples A.8. If the graded vector space A is concentrated in degree 0, an A∞-algebra

on A is the same as an associative algebra. A differential graded algebra is the same as

an A∞-algebra where bn= 0 for n /∈ {1,2}.
Observe that b1 always defines a coboundary operator on the graded vector

space A. �

Remark A.9. An alternative definition of A∞-algebras can be described in terms of

maps b̃n : A⊗n→A. The advantage of using the suspension is that no signs appear in

the structure equations. The definition in terms of the structure maps b̃n requires some

signs that can be determined by requiring the following diagram to commute:

(sA)⊗n
bn

��

(s−1)⊗

��

sA

A⊗n
b̃n

�� A

s

��

Here, the map s : A→ sA is given by s(v)= v ∈ sA. �

Definition A.10. Let A and A′ be two A∞-algebras. A morphism ψ : A→A′ is a sequence

of degree 0 maps
ψn : (sA)⊗n→ sA,

satisfying, for each n≥ 1, the equation

∑
i+ j+k=n

ψi+k+1 ◦ (id⊗i ⊗ bj ⊗ id⊗k
)=

∑
l1+···+lr=n

b′r ◦ (ψl1 ⊗ · · · ⊗ ψlr ). (A.2)

A morphism ψ : A→A′ is an A∞ quasi-isomorphism if the chain map

ψ1 : (A,b1)→ (A′,b′1)

induces an isomorphism in cohomology.
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If ψ : A→A′ and ψ ′ : A′ →A′′ are two morphisms, their composition ψ ′ ◦ ψ is

defined by

(ψ ′ ◦ ψ)n=
∑

i1+···+ir=n

ψ ′r ◦ (ψi1 ⊗ · · · ⊗ ψir ).

The identity morphism id : A→A is defined by setting id1 = id and idn= 0 for n �= 1. �

Remark A.11. In the case where ψ : A→A′ is an A∞ morphism between dg-algebras,

the structure equations (A.2) take the form

b′1 ◦ ψn+
∑

i+ j=n

b′2 ◦ (ψi ⊗ ψ j)=
∑

i+ j+1=n

ψn ◦ (id⊗i ⊗ b1 ⊗ id⊗ j
)

+
∑

i+ j+2=n

ψn−1(id
⊗i ⊗ b2 ⊗ id⊗ j

). (A.3)

�

Definition A.12. Let A be an A∞-algebra such that bn= 0, except for finitely many val-

ues of n. A Maurer–Cartan element of A is an element x∈ (sA)0 satisfying

∑
n≥1

bn(x
⊗n)= 0.

We will sometimes abuse our conventions and say that y∈A1 is a Maurer–Cartan ele-

ment if sy∈ (sA)0 is a Maurer–Cartan element. �

Proposition A.13. Let ψ : A→A′ be an A∞ morphism between A∞-algebras such that bn,

b′n, and ψn are nonzero only for finitely many values of n. If x∈ (sA)0 is a Maurer–Cartan

element of A, then

ψ(x) :=
∑
n≥1

ψn(x
⊗n)

is a Maurer–Cartan element of A′. �

Remark A.14. The hypothesis that only finitely many of the structure operators are

nonzero guarantees the convergence of the infinite sum above. The statement remains

true for arbitrary A∞-algebras and morphisms, provided that the infinite sums converge

appropriately. Similar issues arise in the definition of twisting by a Maurer–Cartan ele-

ment given below. �
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Definition A.15. Let A be an A∞-algebra and x∈ (sA)0 be a Maurer–Cartan element.

The A∞-algebra Ax is given by the structure maps

(bx)n(a1 ⊗ · · · ⊗ an) :=
∑

l0≥0,...,ln≥0

bn+l0+···+ln(x
⊗l0 ⊗ a1 ⊗ x⊗l1 ⊗ · · · ⊗ x⊗ln−1 ⊗ an⊗ x⊗ln).

Here, {bn} denotes the family of structure maps of the original A∞-algebra A.

We say that Ax is obtained from A by twisting by x. �

Definition A.16. Suppose ψ : A→A′ is a morphism of A∞-algebras and let x∈ (sA)0 be

a Maurer–Cartan element. There is a morphism of A∞-algebras

ψx : Ax→A′ψ(x)

between the twisted A∞-structures, given by

(ψx)n(a1 ⊗ · · · ⊗ an) :=
∑

l0≥0,...,ln≥0

ψn+l0+···+ln(x
⊗l0 ⊗ a1 ⊗ x⊗l1 ⊗ · · · ⊗ x⊗ln−1 ⊗ an⊗ x⊗ln).

We say that ψx is obtained from ψ by twisting with x. �

Constructing tensor products of A∞-algebras and morphisms is a complicated

issue in general. For our purposes, we will only need the following special case.

Proposition A.17. Let A and A′ be differential graded algebras and ψ : A→A′ be an A∞
morphism between them. Then, for any graded algebra E , we define a sequence φ of

maps φ1, φ2, . . . , where

φn : s(E ⊗ A)⊗n→ s(E ⊗ A′)

is defined by the formula

φn((e1 ⊗ sa1)⊗ · · · ⊗ (en⊗ san)) := (−1)
∑n

i=1[ai ](|ei+1|+···+|en|)(e1 . . . en)⊗ ψn(sa1 ⊗ · · · ⊗ san).

Here, we see e⊗ sa as an element of s(E ⊗ A) via

s(E ⊗ A)∼= E ⊗ sA, s(e⊗ a) �→ (−1)|e|e⊗ sa.
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The family φ defines an A∞ morphism from E ⊗ A to E ⊗ A′, which we denote by

idE ⊗ ψ . �

Remark A.18. The notion of an A∞ algebra generalizes naturally to that of an A∞-

category in such a way that an A∞-algebra is an A∞-category with only one object. For

the purpose of the present paper, we will only need to consider A∞ functors between

dg-categories. �

Definition A.19. Let C and C′ be differential graded categories. An A∞ functor ψ : C→
C′ consists of the following data:

(1) a function f : Ob(C)→ Ob(C′);

(2) for n≥ 1 and any sequence of objects v0, . . . vn, a degree 0 map

ψn : sHom(v1, v0)⊗ · · · ⊗ sHom(vn, vn−1)→Hom( f(vn), f(v0)),

satisfying Equation (A.3), as well as ψ1(s(id))= s(id) and ψn(· · · ⊗ s(id)⊗
· · · )= 0 for n> 1. �
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