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ABSTRACT

Summary: SPSens is a software package for the efficient computation

of stochastic parameter sensitivities of biochemical reaction networks.

Parameter sensitivity analysis is a valuable tool that can be used to

study robustness properties, for drug targeting, and many other pur-

poses. However its application to stochastic models has been limited

when Monte Carlo methods are required due to extremely high com-

putational costs. SPSens provides efficient, state of the art sensitivity

analysis algorithms in a single software package so that sensitivity

analysis can be easily performed on stochastic models of biochemical

reaction networks. SPSens implements the algorithms in C and

estimates sensitivities with respect to both infinitesimal and finite per-

turbations to system parameters, in many cases reducing variance by

orders of magnitude compared to basic methods. Included among the

features of SPSens are serial and parallel command line versions, an

interface with Matlab, and several example problems.

Availability: SPSens is distributed freely under GPL version 3 and can

be downloaded from http://sourceforge.net/projects/spsens/. The

software can be run on Linux, Mac OS X and Windows platforms.

Contact: mustafa.khammash@bsse.ethz.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Stochastic models are used now more than ever to study, to ana-

lyse, and to predict the complex dynamics occurring in biology,
chemistry and ecology. When the discrete and random nature of

the system is not accurately captured by deterministic or stochastic

differential equation models, stochastic reaction networks are

often modeled in the framework of stochastic chemical kinetics
(Gillespie, 1976, 1977). A stochastic chemical kinetic model cannot

be solved exactly except in the simplest cases and precludes the use

of simulation and analysis methods commonly available for de-

terministic or stochastic differential equation models. One such

analysis tool that is of particular importance is parameter sensi-
tivity analysis, which quantifies how system output variables are

affected by perturbations in model parameters. The stochastic

model depends upon a set of reaction rate parameters, and it is

of great interest to assess the dependence of system behaviour on

these models via parameter sensitivity analysis. Such knowledge

has wide applications, but the computation of the stochastic sen-

sitivity coefficients is burdensome. In particular Monte Carlo

(MC) methods are used, but are very often computationally de-

manding because they require large numbers of simulations to be

performed in order to generate accurate statistics.
Although software packages have been developed for sensitiv-

ity analysis using the linear noise approximation and Fisher

Information Matrix (Komorowski et al., 2012), such an ap-

proach is not appropriate for systems with particularly large

fluctuations in molecular populations, such as those exhibiting

bistability. Several MC methods for efficiently estimating sto-

chastic parameter sensitivities of biochemical reaction networks

have been reported recently (Anderson, 2012; Plyasunov and

Arkin, 2007; Rathinam et al., 2010; Sheppard et al., 2012).

Existing software packages have been developed to increase ef-

ficiency of stochastic simulations; however, such packages do not

include methods for sensitivity analysis. To perform sensitivity

analysis one must either write custom code or make significant

modifications to existing code. SPSens addresses this problem by

including efficient, state of the art parameter sensitivity analysis

methods in a single software package. The capabilities, imple-

mentation and features are described in what follows.

2 METHODS

2.1 Stochastic sensitivity analysis

In stochastic chemical kinetics, a model is defined by specifying a list of

species whose populations at time t40 are described by the discrete state

vector, X(t). These species interact with one another through a number of

reaction channels, each of which is defined by a stoichiometry vector and

a propensity function. The propensity functions depend on a set of reac-

tion rate parameters, �. The objective of sensitivity analysis is to quantify

how an output function of the form f(X(t;�)) changes with perturbations

to the components of �. The sensitivity coefficients estimated by SPSens

are analogous to first order sensitivity coefficients commonly computed

for deterministic systems. Owing to the stochastic nature of the system,

sensitivities of the expected value of the output—E[f(X(t;�))]—with

respect to perturbations of a particular system parameter are considered.

These are defined as,

zj ¼
@

@�j
E fðXðT; �Þ½ �, ð1Þ

where �j2� is the jth system parameter and T40 is a fixed time of inter-

est. Although (1) can be derived directly from the Chemical Master

Equation (CME), solutions to these equations are intractable except for

the simplest examples. However, one can use MC methods and stochastic

simulation algorithms (SSA) to estimate zj.*To whom correspondence should be addressed.
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For MC methods, a sensitivity estimator, denoted Ẑj, is constructed

and computed via stochastic simulation. A large number of samples (N)

of the estimator are simulated, and the sample average, ẑj :¼ 1
N

PN
i¼1 Ẑ

ðiÞ
j ,

is then taken as the sensitivity estimate. Its accuracy can be assessed by

taking into account its bias (when present) and by constructing confidence

intervals of the point sensitivity estimate in terms of the sample variance.

Estimators with no or little bias and low variance are thus desired for

the most accurate estimates. Several different sensitivity estimators

have been proposed, each differing in its bias and variance properties.

Finite difference (FD) estimators are among the most straightforward

and generally applicable estimators. FD estimates are computed by first

simulating the system at a nominal parameter set and then at a parameter

set perturbed by a small but finite amount and then taking the FD quo-

tient. The resulting estimate given by the sample average of many FD

quotient samples has a bias that depends on the particular discretization

scheme implemented. The variance of the estimates depends on how the

samples are generated. A direct approach is to generate samples using

independent and identically distributed random numbers (IRN), but this

estimate often has high variance and requires many samples. This vari-

ance can be reduced significantly by instead generating samples that are

correlated in an appropriate manner. Using common random numbers

(CRN) can reduce variance significantly to increase efficiency. Although

this approach combined with the direct method SSA (Gillespie, 1977) can

be easily applied to reduce variance considerably, further gains in effi-

ciency can be achieved by using the common reaction path (CRP) method

(Rathinam et al., 2010). CRP implements CRN with an SSA based on the

random time change representation of Markov processes to reduce vari-

ance significantly. Another approach is the coupled finite difference

(CFD) method (Anderson, 2012), which simultaneously simulates

coupled processes for each parameter set to yield a FD estimate with

highly desirable variance properties in many situations, especially when

considering larger time intervals.

Other approaches directly consider infinitesimal perturbations to the

parameters to obtain the estimate. One such method, the Girsanov like-

lihood ratio (GLR), was first introduced in the context of stochastic

chemical kinetics in (Plyasunov and Arkin, 2007). This method derives

numerically tractable weighting coefficients using the Girsanov measure

transformation that can be computed during simulation to give an

unbiased sensitivity estimate. GLR, although unbiased, often has high

variance and can be inefficient in some situations. The Regularized

Pathwise Derivative (RPD) method is an alternative approach that con-

siders a close regularization of the original problem and computes the

derivatives for each sample path to estimate the sensitivities (Sheppard

et al., 2012). RPD estimates are often significantly more efficient than the

other methods, with variance reduction of over 10 orders of magnitude

demonstrated for certain problems.

A brief numerical comparison of these methods using example stochas-

tic biochemical networks is provided in the Supplementary Material.

2.2 Implementation

SPSens implements the sensitivity algorithms summarized in Figure 1 in

C and requires no external libraries outside the standard distributions. To

run the program, the biochemical network of interest is first defined in a

C source file by specifying the species, reactions and parameters, and

additionally the partial derivatives of the propensity functions with re-

spect to system parameters if GLR or RPD are desired. Several examples

are provided with the SPSens distribution and can be easily modified for

user-defined networks.

Once the problem is defined, the code is compiled to build an execut-

able program that can be run from the command line or using a scripting

language. The sensitivity analysis algorithm can be specified within the

problem file or at run-time by setting the appropriate command line flag.

The sampling times, parameters and initial conditions can also be speci-

fied via command-line, permitting sensitivity analysis to be performed for

a variety of conditions without the need to recompile any code.

The methods using common random numbers (CRP, CRN) require

special handling of the pseudo random numbers driving the SSA.

Random number generation is therefore handled using the RngStream

package (L’Ecuyer et al., 2002). The package supports parallel random

number generation streams of long period, which are quite useful for

ensuring proper synchronization of random numbers and independence

of parallel streams.

2.3 Other features

In addition to sensitivity analysis programs, SPSens includes exact SSA

that can be used to generate individual sample paths or ensembles of

trajectories using the identical model definition. The command line sen-

sitivity analysis and simulation programs are also implemented using the

Message Passing Interface (MPI), permitting the programs to be run in

parallel on a grid or on multi-core personal computers.

SPSens includes the option to perform sensitivity analysis or simula-

tion using antithetic sampling (AS). AS is a widely used variance reduction

technique that in many cases induces negative correlation in samples to

produce estimates with tighter confidence intervals. AS is easily incorpo-

rated with all algorithms in SPSens by setting a single flag from the

command line. It should be noted, however, that variance reduction

with AS is typically modest and that variance reduction is not guaranteed

in general, so AS should be used keeping this in mind.

Finally, source code allowing SPSens C-code to be compiled and run

from MATLAB using the MEX interface are included with SPSens. An

example m-file script is included to demonstrate how to build and call the

programs from within MATLAB.

Much more detailed information can be found in the User Guide

provided with the SPSens distribution.

3 CONCLUSION

SPSens is a freely available and easy to use software package that
implements efficient methods for parameter sensitivity analysis

of discrete stochastic biochemical reaction networks. SPSens
allows users to quickly and easily switch between algorithms to

find the most efficient method for their particular problem.
In general it is impossible to say which algorithm is best for a

given problem, as the performance of each method depends on a
number of factors. However there are some general guidelines

that can be followed in practice. GLR is the only unbiased
method, but it is often very inefficient and requires significant

computational effort to produce accurate results. The FD meth-
ods with IRN and CRN are significantly less efficient than the

CFD and CRP methods in most situations and are provided
mainly for demonstration purposes. The RPD method is ex-

tremely efficient for a wide variety of problems when applicable,

but requires judicious choice of the regularization parameter for
efficient performance. Which of the three highly efficient meth-

ods (RPD, CFD and CRP) is most efficient will depend on the
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Fig. 1. Monte Carlo stochastic parameter sensitivity algorithms included

in SPSens
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problem, however. Example results computed with SPSens and a
more detailed discussion of these matters is provided in the
Supplementary Material.
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