
(Al EDAM) (1993) 7(2), 135-143

EXPLORING CASE-BASED BUILDING DESIGN—CADRE

KEFENG HUA AND BOI FALTINGS

Artificial Intelligence Laboratory, Swiss Federal Institute of Technology, INR-Ecublens, CH-1015 Lausanne,
Switzerland

Case-based design promises important advantages over rule-based design systems. However, the actual implementation of the
paradigm poses many problems which put the advantages into question. In our work on CADRE, a case-based building design
system, we have encountered seven fundamental problems which we think are common to most case-based design systems. We
describe the problems and the ways we either solved or worked around them in the CADRE system. This leads us to conclusions
about the general applicability of case-based reasoning to building design.

1. Introduction

Observations of human designers frequently point out
their reuse of previous design cases as a source of
design knowledge. In Artificial Intelligence, the
technique of case-based reasoning (CBR) models this
problem solving strategy, and case-based design
(CBD) is therefore a promising technique for
intelligent design systems. Cases are distinguished
from other forms of knowledge or experience by the
fact that they model specific, ungeneralized instances
of artifacts or events.

Knowledge in a design system can be divided into
design knowledge, used to synthesize, and domain
knowledge, to analyze designs. We define a
case-based design system as one in which cases are
used as a source of design knowledge. Applying cases
to analysis is addressed by much existing work in
case-based reasoning and not the focus of this
research.

Some experimental CBD systems include ARCHIE
(Goel and Kolodner, 1991), CADSYN (Maher and
Zhang, 1991) and CADET (Sycara and Navinchandra,
1991), all of which use cases to generate new designs.
Some CBD systems are hybrid systems: for example,
the models of Wang and Howard (1991), Rosenman et
al. (1991) and Golding and Rosenbloom (1991)
incorporate generalized design knowledge in a CBD
system.

Case-based reasoning originated from ideas on
human memory structure (Schank, 1982) and was thus
motivated by considerations of cognitive psychology.
However, applying case-based reasoning to design
promises specific practical advantages:

135
0890-0604/93/020135 + 09S08.00/0

• A case-based design system does not require a
complete domain model, but can produce complete
and complex designs even with a small knowledge
base.

• Design starts from complete cases, implicitly
achieving tradeoffs between several functions. This
avoids the problem of multi-criteria optimization.

• Starting with complete cases reduces the complexity
and thus increases the efficiency of problem solving.

• Using cases as the source of knowledge allows
learning by simply storing new cases.
While routine design can be carried out by simple

reuse of cases, novel designs can only be achieved
through adaptation or combination of cases. The
advantages of case-based design are consequences of
the hypothesis that adaptation or combination of cases
is easier than generation of a design from scratch.
There are several reasons to believe in this hypothesis.
One is that adaptation only has to focus on the
differences between the old and new use of the case:
we do not always have to redesign the details of the
windows when a building is built in a different
environment, for example. Another is that adaptation
can better accommodate the fact that design
specifications are often given by constraints (Sycara et
al., 1992).

In order to explore if the hypothesis is really true,
we have implemented a CAse-based building design
system through Dimensionality REduction (CADRE)
(Faltings, 1991; Hua et al., 1992). CADRE focuses on
the adaptation of building designs into new environ-
ments. One example treated by CADRE is shown in
Figure 1. It is a U-shaped building (the Felder House
in Lugano, Switzerland) adapted to a slightly different

© 1993 Academic Press Limited

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


136 K. Hua and B. Faltings

Case Adaptation of the case

FIGURE 1. Example of case adaptation

site. CADRE modified both the dimensions and the
topology of the case to obtain a solution that
preserves the functionalities and trade-offs in the case.
While implementing CADRE, we encountered seven
general problems associated with case-based design.
In this paper, we discuss the problems and the ways in
which we either solve or work around them in
CADRE. This leads us to a general discussion on how
the potential advantages of case-based design can best
be achieved in an actual design system.

2. Cases for design

From the beginning of AI, cases have been treated as
one of the most important sources of knowledge. For
example, the checker player of Samuel (1959) used a
library of some 53 000 cases of positions as a basis for
its play. Learning from examples is a basic technique
of knowledge acquisition, and has also been applied to
design cases. The main difference between learning
from examples and case-based reasoning is that
instead of being compiled into generalized descrip-
tions during knowledge acquisition, cases are general-
ized with respect to a specific problem and during the
problem solving process itself.

We distinguish deep and shallow design cases. A
deep case is a design solution annotated with its
design history. A shallow case is only the design
solution itself. Because the design history is an
important source of knowledge, deep cases can give
better results than shallow ones. Modelling the design
history requires a general design knowledge base
which is sufficiently complete to generate the design
and competing alternatives. The large amount of
general knowledge required for representing deep
cases is in opposition to one of the fundamental
advantages of case-based reasoning, that of not
requiring a complete knowledge base. In CADRE, we
therefore focussed on shallow cases.

A shallow case can furnish the following knowledge
to the design process:

• the actual structure needed to satisfy a set of
requirements;

• the tradeoffs made between functional
requirements;

• tacit considerations, such as the style of a building.
In CADRE, we represent the structure as a CAD
model. The functional features achieved by the
structure are modelled in a symbolic vocabulary where
each functional feature is mapped to a constraint on
the CAD model. Case-based design is particularly
advantageous because it can furnish knowledge about
trade-offs, which is otherwise hard to formalize. The
mapping of functional features to constraints used in
CADRE makes trade-offs explicit in the ways that
these constraints are satisfied or broken. Tacit
considerations are by definition not captured explicitly
and cannot be reasoned about.

The purpose of a case-based design system is to
apply this knowledge to new situations. In the
following, we describe the general problems that we
have encountered in meeting this challenge in the
CADRE system.

3. Problems for implementing case-based design

Case-based design is generally assumed to consist of
three main processes: retrieval; adaptation; and
combination. In CADRE, we have so far imple-
mented retrieval and adaptation processes. In this
section, we review the problems that we have
discovered in the course of this implementation, and
the way we solved them in CADRE. We leave the
discussion of the combination process, which we have
not implemented yet, to the next section.

3.1 CASE RETRIEVAL

3.1.1 Superficial similarity problem
Case retrieval has been addressed as a central issue

from the beginning of case-based reasoning (Schank,

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


CADRE 137

en

Cl

C13

FIGURE 2. An example of superficial similarities

1982; Kolodner, 1984). In case-based design, it is
often not the cases that are most similar to the new
design context which generate the best designs. As
pointed out by Kolodner (Kolodner, 1989), the best
case to use is the one which contributes the most to
the final design. However, how much a case can
contribute only becomes clear once the design is
finished. Predicting the contribution on the basis of
superficial features is difficult. For example, in Figure
2, among C,,, C12 and C13, topology C,, is
structurally the one the most similar to C\. However,
in the new design context, symmetry can be a more
important consideration. In this case C{2 can
contribute the most, in spite of the fact that the
structural similarity metric would rank it as less
promising. The choice of metric depends on the
details of the design problem; any fixed metric can
only determine superficial similarities. One potential
solution is given by learning: adjust the similarity
metric through analyzing failures of previous
retrievals.

Similar observations have been made by researchers
in other applications of case-based reasoning.

Relevant discussions in the literature include in
particular the distinction between 'surface' and 'deep'
features and their relative merits in indexing cases
(Hammond, 1989b; Birnbaum and Collins, 1989;
Owens, 1989). Since indexing cases is not a problem
which is specific to design, we have not attempted to
develop a novel approach. In CADRE, we therefore
let the user choose the case supported by a browsing
mechanism based on a fixed index of functional
features. In fact, this may also be the solution most
prefered by the user, who would like to maintain
control over this aspect of the design process.

3.2 CASE ADAPTATION

3.2.1 Adaptation knowledge problem
New design problems are rarely identical to those for
which the case was designed, so adaptation is usually
necessary to reuse a case in a new problem. However,
shallow cases do not define by themselves how they
can be adapted. Figure 3 illustrates the two ways in
which adaptation knowledge can be formulated:
• by categorizing the case as instances of prototypical

designs which can simply be reinstantiated. This
brings up the question of why cases are necessary at
all, as prototypes could fulfill the same function;

• by providing specific adaptation knowledge which
modifies aspects of cases instead of regenerating or
reinstantiating them. Such adaptation knowledge
could be stored with the cases in the case library, be
kept separately as generalized domain knowledge,
or supplied by the user at runtime.
For case-based design systems, the solution of using

specific adaptation knowledge offers several ad-

new design

problem-specific
changes based on
adaptation knowledge

FIGURE 3. Two ways to provide adaptations: generalization to prototypes, or incremental changes by specific rules

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


138 K. Hua and B. Fallings

vantages: it is easier to formulate than generation
knowledge (Sycara et al., 1992), and it need not be
complete to obtain a useful design system. In
CADRE, we store specific adaptation knowledge with
each case, consisting of two parts:
• dimensional knowledge, expressed as constraints on

the dimensions of the structure's CAD model.
Constraints can be definitions, such as:

area = width • length

or restrictions, such as:

Structure Spaces Circulation

5.6 widthcolumnl

>0.25
depth2

columnl

load • length2
beaml lengthbeanil

Constraints are used by general weak methods to
adapt the dimensions of the case.

• topological knowledge, expressed by a set of
topological change rules specific to the case. A
topological change rule might propose to reduce the
number of rooms when their dimensions fall below
a prescribed minimum. The topological change
rules generate a space of adaptations from which
the user chooses the most appropriate one.

It would be desirable to formulate at least part of the
adaptation knowledge as a general knowledge base,
but so far we have not addressed this problem.
Several researchers have proposed solutions to the
problem of adaptation and providing the required
knowledge in domains such as planning [CHEF
(Hammond, 1989a)] or explanation [SWALE (Kass
et al, 1986)]. However, the adaptation methods which
have been proposed apply only to context-free
symbolic structures and are not powerful enough to
provide meaningful adaptations of building designs.

3.2.2 Inadmissible generalization problem
A design satisfies functions in many different

abstractions. For example, a building provides a set of
spaces to use, a structure which makes it stand up,
and a circulation pattern which allows people to get
around in it (Figure 4). Adaptations are usually
formulated with respect to one abstraction, and may
clobber functions in another: for example, modifying
the spaces may make the structure unstable or create
a bad circulation pattern. Such modifications amount
to an inadmissible generalization of those aspects of
the case which are not part of the abstraction being
considered. This problem of integrating different
abstractions occurs particularly in design.

Inadmissible generalization can be avoided by
mapping the various abstractions into a single model
in which adaptations are formulated. In CADRE, we
ground all abstractions in a single geometric model of

UM1UMMM T"£

FIGURE 4. Design requires the integration of many
different abstractions

the design. All constraints defined by the abstractions
are mapped into the geometric model, and modifica-
tions can be formulated in this model to be consistent
with all abstractions.

3.2.3 Complexity of consistent modification problem
Modifications of a case are usually generated based

on considerations of one abstraction at a time. For
example, structure elements may be rearranged to
satisfy stability requirements, or spaces may be
modified according to functional considerations. Even
when the different abstractions are mapped to a
common model, ensuring consistency during adapta-
tion may be a difficult problem.

Figure 5 illustrates a case of two interacting
abstractions, represented by the parameter/constraint
combinations Pl/Cl and P2/C2. The most natural
way to formulate adaptation knowledge is a

P2

- ci

o PI

FIGURE 5. Pl/Cl and P2/C2 represent parameters and
constraints in two different but interacting abstractions: PI
has to fall onto constraint curve Cl and P2 onto C2. When
each abstraction is treated in isolation, the process may
diverge as indicated by the arrows

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


CADRE 139

P2

O PI

FIGURE 6. The two constraint surfaces leave only one
effective degree of freedom among the three parameters. By
dimensionality reduction, an explicit representation in terms
of a single parameter, P*, along the intersection of the
constraint surfaces is obtained

blackboard system with rules that treat each
abstraction in isolation. In the example of Figure 5,
this would mean that violations of Cl are corrected by
adjusting parameter PI, and violations of C2 by
adjusting P2. As indicated by the arrows in Figure 5,
this process can actually diverge away from the actual
solution. Ensuring the convergence of such a
modification process is a recognized problem in
systems such as IBDE (Schmitt, 1990; Fenves, 1990)
which attempt to integrate different abstractions using
a blackboard approach.

The solution we developed for CADRE is that of
dimensionality reduction: rather than propagate
changes locally, we solve the constraint equations to
directly compute the subspace of feasible solutions,
and then search for an adaptation in this subspace.
Thus, for the example in Figure 5, we directly
compute the intersection point of the two constraints
and return this as a result. In general, a space of n
parameters with m independent equality constraints
reduces to (n - m) non-conflicting parameters. Thus,
Figure 6 shows an example where three parameters
and two constraints reduce to a single parameter P*.
Any modification obtained by varying P* is guaranteed
to be consistent with all abstractions. When
constraints are non-linear, there may be several
disjoint subspaces, and only the one corresponding to
the values present in the case is retained. Dimen-
sionality reduction was originally developed for image
understanding (Saund, 1989).

One problem with applying dimensionality reduc-
tion in design is that it only applies to constraints
expressed as equalities, while many of the constraints
on a building are in fact inequalities. Among
inequality constraints, we can distinguish critical
inequalities which are just satisfied or even slightly

violated by the design, and non-critical ones which are
satisfied by a large margin. The subset of critical
constraints is a characteristic feature of the design and
does not change during adaptation unless the case is
radically modified. All critical inequality constraints
can thus be treated as equalities and incorporated in
the dimensionality reduction. Non-critical inequalities
are likely to remain non-critical during adaptation; if
verification detects that some are not satisfied after
adaptation, they are also declared critical and the
dimensionality reduction is recomputed.

In practice, the results of dimensionality reduction
are impressive, reducing the thousands of variable
parameters in a building to a small set (for example,
only two parameters in the problem of Figure 1).
Adaptations in the subspace thus defined can be found
by optimization methods or simply user interaction.
The non-critical inequalities are reformulated in terms
of the reduced set of parameters and constrain the
adaptation within the subspace.

In CADRE, we implemented dimensionality
reduction for linear and non-linear constraints using
the implementation of Buchberger's simplification
algorithm (Buchberger, 1985) in the REDUCE
system. When the size of the problem is large, the
calculation of dimensionality can last hours. However,
this time could be reduced significantly by specialized
constraint solving methods which only treat those
forms of non-linearity which actually appear in
constraints on building designs.

When adapting a case requires a significant amount
of topological changes, it would be desirable to have
an analog of dimensionality reduction for discrete
structures, such as graphs. Despite a significant effort,
we have not been able to define such an analog in a
useful way. Topological changes thus might still suffer
from cycling or diverging behavior.

3.2.5 Complexity of matching problem
Reusing a case in a new context means that it has to

be matched to the new environment. For example, a
building in a square site can be inserted in at least four
different ways, in which some are better than others
since they connect well with surrounding streets,
buildings or the general orientation. The matching
problem can be defined as the problem of finding
homomorphic components between graphs showing
the components and connections of the original and
the new context, such as shown in Figure 7. Since the
subgraph homomorphism problem is known to be
NP-complete, this problem can cause unmanageable
computational complexity.

In CADRE, the possible matches are restricted by
representing the features in a hierarchy of detail, and

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


140 K. Hua and B. Fallings

Case New context

Topology of old context Topology of new context

FIGURE 7. Finding all the different ways of matching the
features of the case to those of the new problem can be very
complex

matches found at less detailed levels constrain the
possibilities at more detailed levels. At each level of
abstraction, the user disambiguates by asserting
additional constraints on the possible matches.

4. Case combination

An important means to obtain novel designs is by a
combination of several cases (Faltings, 1991;
Hinrichs, 1991). We can distinguish two forms of
combination: crossing and composition. In crossing,
we combine properties of cases. In composition, we
assemble pieces of structure taken from the cases.
When considering the problem of case combination
within CADRE, we discovered the following two
problems, for which we have not worked out any
solutions so far.

4.1 PROPERTY ASSIMILATION PROBLEM

The main problem associated with case crossing is
that properties of a contributing case must be
assimilated into an accepting case. For example,
crossing a banana as a contributing case with a
rectangular building as an accepting case (Figure 8)
will normally mean that only the curved shape of the
banana should be assimilated into the building, but

[• n -h
FIGURE 8. Crossing a building with a banana

not its size or colour. This assimilation may affect
every element in the originally rectangular building.
The property assimilation problem is the problem of
defining the property which is to be carried over, and
the precise way in which assimilating it will affect the
elements of accepting case. We have not found a
solution to this problem yet, but it seems that the
ideas for integration of multiple abstractions of design
in CADRE may be useful for property assimilation as
well. Functional features could then be assimilated
into other cases by imposing the corresponding
constraints into their models.

4.2 INCOMPATIBLE ABSTRACTION PROBLEM

Composition means combining pieces of structure
taken from different cases. This requires first of all a
decomposition of the cases into pieces which can be
recombined independently of one another. The
incompatible abstraction problem is the problem of
finding decompositions of a case that make sense in all
abstractions simultaneously. For example, connecting
two dead-end hallways by eliminating a wall between
them may be simple to represent in the geometrical
abstraction, but in the abstraction of circulation
patterns it implies profound changes which are by no
means easy to model.

A first precondition for solving this problem is that
all abstractions are mapped to a uniform and
compatible representation on which decompositions
can be defined. CADRE already uses such a uniform
representation, but we have not yet developed the
necessary decomposition methods for cases necessary
for solving this problem.

5. Overview of the CADRE system

Computationally, the processes in CADRE can be
divided into two layers: a symbolic layer and a
numerical layer. They correspond to the topological
and dimensional models of the case. CADRE focuses
on case adaptation, and lets the user select the case to
be used. Adaptation is conducted in the following
steps:
(1) Evaluation of the existing case in the original and

new environments in order to find discrepancies.
Insertion of the case into the new design context
so that a maximum coincidence is achieved,
subject to constraints posted by the user. In the
example shown earlier in Figure 1, insertion is
governed by the orientation with respect to sun
exposure.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


CADRE 141

(2) If there are dimensional discrepancies, identify
the violated constraints and the parameters which
are involved in them. Complete the set of
applicable parameters and constraints with all
those which are related to the original ones
through cycles in the constraint network. This
defines the complete base set of parameters and
constraints related to the discrepancies. In the
example of Figure 1, one wing of the case does
not completely fit into the new site, and the base
set contains all parameters and constraints of this
wing.

(3) Apply dimensionality reduction to the base set of
parameters and constraints to define an adapta-
tion parameterization which is guaranteed to
avoid conflicts. In the example, this results in two
parameters, the width and length of the wing.

(4) Modify the dimensions using the parameters
resulting from dimensionality reduction. The user
controls the process by asserting additional
constraints or manually identifying suitable values
whenever this is required to avoid ambiguities.

(5) Check the validity of the adaptation by verifying
inequality constraints in the base set that were not
critical and thus not treated by the dimensionality
reduction. In the example of Figure 1, purely
dimensional changes would make the sizes of
rooms fall below building code limits, and in fact
this constraint turns out to contradict the floor
space requirements.

(6) If there is no solution at the dimensional level,
trigger topological transformation rules to relax
the constraint set. If there is a feasible
transformation, apply it and go back to step 2,
otherwise the case is not suitable. In the example,
topological transformations rearrange spaces
within the offending wing so that a solution
becomes feasible (right of Figure 1).

Tests on several real examples and discussions with
practicing engineers and architects lead us to believe
that this procedure supports their activities.

To summarize, CADRE adopts the following
solutions to the problems we have outlined earlier:
• superficial similarity: user interaction;
• adaptation knowledge: storing constraints and

topological change rules with the case. We are
experimenting the mechanisms to add these
automatically from a knowledge base;

• inadmissible generalization: all abstractions are
mapped to a single model;

• complexity of consistent modification: dimen-
sionality reduction;

• complexity of matching: user interaction.
Since CADRE does not yet cover case combination,

the incompatible representation and property as-
similation problems are not addressed. Using these
solutions, CADRE has completely achieved only one
of the four potential advantages we hoped for:
preserving implicit tradeoffs. Even though the
adaptation knowledge stored with a case is much
simpler than what would be required to generate
solutions of the complexity handled by CADRE,
adaptation cannot function without at least some
domain knowledge. Furthermore, having to add
constraints and topological modification rules to cases
may make learning difficult; this is an issue we have
yet to investigate. Finally, CADRE requires a
significant amount of computation, although the fact
that no existing automated design system can
automatically generate solutions of similar complexity
makes comparisons difficult. We can therefore only
report partial success as far as the other three
advantages are concerned.

On the other hand, in the course of implementing
and using CADRE we have discovered another
important advantage of case-based design over
classical rule-based systems: that of integrating
different abstractions, such as civil engineering and
architectural considerations. This advantage is due to
the fact that integration can be guaranteed during
much of the adaptation, and only few topological
changes which might lose the integration are typically
required. In fact, case-based design seems to be the
only practical solution in domains such as building
design where such different abstractions are
important.

6. Conclusion: how far can the potential advantages
of case-based design be achieved?

Case-based reasoning has been credited for its
advantages in solving design problems. However, we
have shown that case-based design poses fundamental
problems, some of which may make it impossible to
benefit from the promises of the paradigm. For
example, there does not seem to be a way to
guarantee the correctness of adaptations without using
a complete domain model. Avoiding inadmissible
generalization requires explicit integration of trade-
offs in several abstractions, so that it is questionable
whether they can be implicit. An attempt to classify
the problems by the advantages that they may
invalidate is shown in Table 1. The top line of the
table shows the expected advantages of case-based
design as described in the introduction. In the
corresponding columns are the problems which are in

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


142 K. Hua and B. Faltings

TABLE 1. Classification of the fundamental problems that counter the advantages of case-based
design. Entries in parenthesis refer to systems that would also use case combination

Types of
advantages

Opposing
problems

Work with
incomplete

model

1. Superficial
similarity

2. Adaption
knowledge

3. (Property
assimilation)

Implicity
achieve
tradeoffs

1. Inadmissible
generalization

2. (Incompatible
abstration)

Efficiency

1. Complexity
of matching

2. Consistent
modification

3. (Property
assimilation)

Learning by
storing cases

1. Superficial
similarity

2. Adaptation
knowledge

3. (Incompatible
abstraction)

4. (Property
assimilation

conflict with the advantage. The degree to which the
advantages of case-based design can be exploited
depends on the solution to these problems.

Among the entries in Table 1, we consider the
opposition between the incomplete domain model and
the adaptation knowledge problem as the most serious
one, as it appears to be unsolvable by its definition.
However, adaptation knowledge for cases can be
simpler than generation knowledge for designs of
comparable complexity, as shown in the CADRE
example. Depending on the domain, the other entries
can be solved more or less by technical solutions, of
which CADRE shows examples. In general, problems
fall into three classes:
• those that cause computational intractability, and

are solvable by smart computational mechanisms
and by adding additional principles to narrow the
focus. Examples are the complexity of matching and
complexity of consistent modification problems;

• those that require additional domain knowledge,
and are solvable by querying the user. Examples are
the superficial similarity problem and the adaptation
knowledge problem;

• those that are associated with different models and
abstractions, and can be solved by mapping to a
uniform representation. Examples are the inadmis-
sible generalization problem, the property assimila-
tion problem and the incompatible representation
problem.

The applicability of case-based reasoning in a design
system depends on the performance expected of it,
and the degree to which the domain permits solving
the problems we described. The experience with
CADRE has convinced us that the fundamental
hypothesis of case-based design, that adaptation is
easier than generation, is satisfied in building design.
In the right domains, the case-based reasoning is a
promising tool for future intelligent design assistants.

Acknowledgements

The work described in this paper is funded by the
Swiss National Science Foundation and was per-
formed in collaboration with LIA, ICOM - EPF
Lausanne and CAAD - ETH Zurich, Swiss Federal
Institute of Technology. We thank Gerhard Schmitt,
Ian Smith, Shen-Guan Shih and Simon Bailey for
their collaboration and comments on this work and
paper.

References

Birnbaum, L. and Collins, G. 1989. Remindings and engineering
design themes: a case study in indexing vocabulary. Proceedings
of Workshop on Case-based Reasoning, 47-51.

Buchberger, B. 1985. Groebner bases: an algorithmic method in
polynomial ideal theory. In Progress, Directions and Open
Problems in Multidimensional Systems Theory, ed. Bose, N. K.
Dordrecht: Reidel, pp 184-232.

Faltings, B. 1991. Case-based representation of architectural design
knowledge. In Computational Intelligence, 3, ed. Cercone, Nick,
Amsterdam: North-Holland, pp 273-281.

Fenves, S. J., Flemming, U., Hendrickson, C , Maher, M. L. and
Schmitt, G. 1990. An integrated software environment for
building design and construction. CAD 22 (1), 27-36.

Goel, A. K. and Kolodner, J. L. 1991. Towards a case-based tool
for aiding conceptual design problem solving. Proceedings of
Workshop on Case-based Reasoning, 109-120.

Golding, A. R. and Rosenbloom, P. S. 1991. Improving rule-based
systems through case-based reasoning. AAAI, 1, 22-27.

Hammond, K. J. 1989a. Case-Based Planning. Boston: Academic
Press.

Hammond, K. J. 1989b. On functionality motivated vocabularies:
an apologia. Proceedings of Workshop on Case-Based Reasoning,
52-56.

Hinrichs, T. R. 1991. Problem Solving in Open Worlds: A Case
Study in Design. Ph.D. thesis, Georgia Institute of Technology.

Hua, K., Smith, I., Faltings, B., Shi, S. and Schmitt, G. 1992.
Adaptation of spatial design cases. Second International
Conference on Artificial Intelligence in Design. CMU, Pittsburgh,
U.S.A., 559-575.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core


CADRE 143

Kass, L., Leake, D. B. and Owens, C. C. 1986. SWALE: A
Program that Explains. Explanations Patterns: Understanding
Mechanically and Creatively. Hillsdalc, NJ: Lawrence Erlbaum
232-254.

Kolodner, J. L. 1984. Retrieval and Organizational Strategies in
Conceptual Memory: A Computer Model, Hillsdale, NJ:
Lawrence Earlbaum.

Kolodner, J. L. 1989. Judging which is the best case for a
case-based inference. Proceedings of Workshop on Case-based
Reasoning, 77-81.

Mahcr, M. L. and Zhang, D. M. 1991. Case-based Reasoning in
Design. In Artificial Intelligence in Design, ed. Gero, J. S.
London: Butterworth-Heinemann, pp 137-150.

Owens, C. 1989. Plan transformations as abstract indices.
Proceedings of Workshop on Case-based Reasoning, 62—65.

Rosenman, M. A., Gero, J. S. and Oxman, R. E. 1991. What's in a
case: the use of case bases, knowledge bases and databases in
design. Proceedings of CAAD Future 1991, Zurich, Switzerland,
263-278.

Samuel, A. L. 1959. Studies in machine learning using the game of

checkers. IBM J. Research and Development 3, 210-229.
Saund, E. 1989. Dimensionality-reduction using connectionist

networks. IEEE Trans. PAMI11, 304-314.
Schank, R. C. 1982. Dynamic Memory: A Theory of Reminding and

Learning in Computers and People. London: Cambridge
University Press.

Schmitt, G. 1990. IBDE, VIKA, ARCHPLAN: architectures for
design knowledge representation, acquisition and application. In
Intelligent CAD II, eds Yoshikawa, H. and Holden, T.
Amsterdam: North Holland, pp 289-308.

Sycara, K. P. and Navinchandra, D. 1991. Influences: a thermatic
abstraction for creative use of multiple cases. Proceedings of
Workshop on Case-based Reasoning, 133-144.

Sycara, K. P., Navinchandra, D. and Narasimhan, S. 1992.
Parametric adaptation in case-based design. Workshop on
Case-Based Design, CMU, Pittsburgh, U.S.A.

Wang, J. and Howard, H. C. 1991. A Design-dependent Approach
to Integrated Structural Design. In Artificial Intelligence in Design
ed. Gero, J. S. London: Heinemann, pp 151-170.

Kefeng Hua received a M.Sc. in computer science at the Beijing Institute of Technology in
1985. Since 1988, he has been doctoral student at the Artificial Intelligence Laboratory,
EPFL. His main research interests are in knowledge-based systems, particularly applied to
design.

Boi Fallings received a diploma from the ETH Zurich and a Ph.D. from the University of
Illinois, both in Electrical Engineering. Professor Faltings founded the Artificial Intellig-
ence Laboratory of EPFL in 1987. His research interests are intelligent design systems,
qualitative and spatial reasoning, and application of Artificial Intelligence to engineering
problems.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0890060400000822
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:09:10, subject to the Cambridge Core terms of use, available at

bpo04

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0890060400000822
https:/www.cambridge.org/core

