On the different convex hulls of sets involving singular values

B. Dacorogna
Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Suisse
e-mail: Bernard.Dacorogna@epfl.ch
C. Tanteri
Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Suisse
e-mail: Chiara.Tanteri@epfl.ch

(MS received 2 June 1997. Revised MS received 5 December 1997)

We give a representation formula for the convex, polyconvex and rank one convex hulls of a set of $n \times n$ matrices with prescribed singular values.

1. Introduction

Let $\xi \in \mathbb{R}^{n \times n}$ and denote by $0 \leqq \lambda_{1}(\xi) \leqq \lambda_{2}(\xi) \leqq \ldots \leqq \lambda_{n}(\xi)$ the singular values of the matrix ξ (i.e. the eigenvalues of $\left(\xi^{t} \xi\right)^{\frac{1}{2}}$; this implies in particular that $|\xi|^{2}=\Sigma_{i=1}^{n}\left[\lambda_{i}(\xi)\right]^{2}$ and $|\operatorname{det} \xi|=\prod_{i=1}^{n}\left[\lambda_{i}(\xi)\right]$. Let $0<a_{1} \leqq a_{2} \leqq \ldots \leqq a_{n}$ and

$$
\begin{equation*}
E=\left\{\xi \in \mathbf{R}^{n \times n}: \lambda_{i}(\xi)=a_{i}, i=1, \ldots, n\right\} . \tag{1.1}
\end{equation*}
$$

The main results of this article (cf. Theorem 3.1) are that

$$
\begin{gather*}
c o E=\left\{\xi \in \mathbf{R}^{n \times n}: \sum_{i=v}^{n} \lambda_{i}(\xi) \leqq \sum_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}, \tag{1.2}\\
P \operatorname{co} E=R \operatorname{co} E=\left\{\xi \in \mathbf{R}^{n \times n}: \prod_{i=v}^{n} \lambda_{i}(\xi) \leqq \prod_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}, \tag{1.3}
\end{gather*}
$$

where $c o E$ denotes the convex hull of E, and $P \operatorname{coE}$ (respectively $R c o E$) the polyconvex (respectively the rank one convex) hull of E. The first notion corresponds to the classical one (cf. [9]) while the two others will be defined in Section 2.

It is interesting to note that, if $a_{1}=a_{2}=\ldots=a_{n}$, then it turns out that

$$
\operatorname{co} E=P \operatorname{co} E=R \operatorname{co} E=\left\{\xi \in \mathbf{R}^{n \times n}: \lambda_{n}(\xi) \leqq a_{n}\right\}
$$

as already observed in $[4,6]$. The case where the a_{i} are not all equal is more involved and has already been considered in $[5,7]$ when $n=2$.

An important application of the above representations is for attainment results in problems of the calculus of variations. A direct consequence of the results of [7] (in particular Theorems 6.1 and 6.4) leads to the following existence theorem: let $\Omega \subset \mathbf{R}^{n}$
be an open set, $a_{i}: \bar{\Omega} \times \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, n$ be continuous functions satisfying

$$
0<c \leqq a_{1}(x, s) \leqq \ldots \leqq a_{n}(x, s)
$$

for every (x, s) $\in \bar{\Omega} \times \mathbf{R}^{n}$ and let $\varphi \in C^{1}\left(\bar{\Omega} ; \mathbf{R}^{n}\right.$) satisfy

$$
\prod_{i=v}^{n} \lambda_{i}(D \varphi(x))<\prod_{i=v}^{n} a_{i}(x, \varphi(x)), \quad x \in \Omega, \quad v=1, \ldots, n
$$

(in particular $\varphi \equiv 0$); then there exists $u \in \mathbf{W}^{1, \infty}\left(\Omega ; \mathbf{R}^{n}\right)$ such that

$$
\left\{\begin{array}{l}
\lambda_{i}(D u(x))=a_{i}(x, u(x)), \quad \text { a.e. } x \in \Omega, \quad i=1, \ldots, n \\
u(x)=\varphi(x), \quad x \in \partial \Omega
\end{array}\right.
$$

2. The different convex hulls

Before proceeding with the proofs of our main results, we introduce the following definition and properties (cf. [7] for more details).
Definition 2.1. Let $E \subset \mathbf{R}^{m \times n}$ and

$$
F_{E}=\left\{f: \mathbf{R}^{m \times n} \rightarrow \overline{\mathbf{R}}=\mathbf{R} \cup\{+\infty\},\left.f\right|_{E}=0\right\} .
$$

Define

$$
c o E=\left\{\xi \in \mathbf{R}^{m \times n}: f(\xi) \leqq 0, \forall f \in F_{E}, f \text { convex }\right\},
$$

called the convex hull of E;

$$
P c o E=\left\{\xi \in \mathbf{R}^{m \times n}: f(\xi) \leqq 0, \forall f \in F_{E}, f \text { polyconvex }\right\}
$$

called the polyconvex hull of E;

$$
R \operatorname{coE}=\left\{\xi \in \mathbf{R}^{m \times n}: f(\xi) \leqq 0, \forall f \in F_{E}, f \text { rank one convex }\right\}
$$

called the rank one convex hull of E.
Remark 2.2. The first one corresponds to the classical definition of convex hull (cf. [9]).

From the above definition, we can easily deduce the following propositions:
Proposition 2.3. Let $E \subset \mathbf{R}^{m \times n}$; then

$$
E \subset R \operatorname{co} E \subset P \operatorname{co} E \subset c o E
$$

Proposition 2.4. Let $E \subset \mathbf{R}^{m \times n}$ and define by induction

$$
\begin{gathered}
R_{0} c o E=E, \\
R_{i+1} \operatorname{co} E=\left\{\xi \in \mathbf{R}^{m \times n}: \xi=t A+(1-t) B, t \in(0,1), A, B \in R_{i} \operatorname{coE}, \operatorname{rank}\{A-B\}=1\right\} .
\end{gathered}
$$

Then $R c o E=\cup_{i \in \mathrm{~N}} R_{i} c o E$.
Remark 2.5. We can observe that the above proposition is a weaker version of the result obtained in the characterisation of convex and polyconvex hulls. For example, using Carathéodory's Theorem, we have (cf. [9]):

$$
c o E=\left\{\xi \in \mathbf{R}^{m \times n}: \xi=\sum_{i=1}^{m n+1} t_{i} \xi_{i}, \xi_{i} \in E, t_{i} \geqq 0, \text { with } \sum_{i=1}^{m n+1} t_{i}=1\right\}
$$

Proposition 2.6. Let $0 \leqq \lambda_{1}(\xi) \leqq \lambda_{2}(\xi) \leqq \ldots \leqq \lambda_{n}(\xi)$ be the singular values of the matrix $\xi \in \mathbf{R}^{n \times n}$. Then
(i) $\xi \rightarrow \sum_{i=v}^{n} \lambda_{i}(\xi)$ is a convex function, for every $v=1, \ldots, n$;
(ii) $\xi \rightarrow \prod_{i=v}^{n} \lambda_{i}(\xi)$ is a polyconvex function, for every $v=1, \ldots, n$.

For a proof of the first result, we refer to $[2,3,8]$; for the last one, see [2] and [1], when $n=2$ and $n=3$ (the general case follows similarly).

3. The main results

In this section we will proceed with the proof of the main result of this article:
Theorem 3.1. Let $\xi \in \mathbf{R}^{n \times n}$ and denote by $0 \leqq \lambda_{1}(\xi) \leqq \lambda_{2}(\xi) \leqq \ldots \leqq \lambda_{n}(\xi)$ the singular values of the matrix ξ. Let $0<a_{1} \leqq a_{2} \leqq \ldots \leqq a_{n}$,

$$
E=\left\{\xi \in \mathbf{R}^{n \times n}: \lambda_{i}(\xi)=a_{i}, i=1, \ldots, n\right\} .
$$

Then:
(i) $c o E=\left\{\xi \in \mathbf{R}^{n \times n}: \sum_{i=v}^{n} \lambda_{i}(\xi) \leqq \Sigma_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$;
(ii) $P \operatorname{co} E=R \operatorname{co} E=\left\{\xi \in \mathbf{R}^{n \times n}: \prod_{i=v}^{n} \lambda_{i}(\xi) \leqq \prod_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$;
(iii) int RcoE $=\left\{\xi \in \mathbf{R}^{n \times n}: \Pi_{i=v}^{n} \lambda_{i}(\xi)<\prod_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$.

Remark 3.2. When $n=2$ and $E=\left\{\xi \in \mathbf{R}^{2 \times 2}: \lambda_{1}(\xi)=a_{1}, \lambda_{2}(\xi)=a_{2}\right\}$, the theorem reads as

$$
c o E=\left\{\xi \in \mathbf{R}^{2 \times 2}: \lambda_{2}(\xi) \leqq a_{2}, \lambda_{1}(\xi)+\lambda_{2}(\xi) \leqq a_{1}+a_{2}\right\}
$$

and

$$
P \operatorname{co} E=R \operatorname{co} E=\left\{\xi \in \mathbf{R}^{2 \times 2}: \lambda_{2}(\xi) \leqq a_{2}, \lambda_{1}(\xi) \cdot \lambda_{2}(\xi) \leqq a_{1} \cdot a_{2}\right\} .
$$

Proof of Theorem 3.1(i). Let $K=\left\{\xi \in \mathbf{R}^{n \times n}: \Sigma_{i=v}^{n} \lambda_{i}(\xi) \leqq \Sigma_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$.
We show that $c o E=K$. We divide the proof into two steps.
Step 1. co $E \subset K$. The inclusion $c o E \subset K$ is easy. In fact, $E \subset K$ and from Proposition 2.6, the functions $\xi \rightarrow \Sigma_{i=v}^{n} \lambda_{i}(\xi)$ are convex. Therefore K is convex and hence $c o E \subset K$.

Step 2. $K \subset$ coE. Let $\xi \in K$; we will prove that ξ can be expressed as a convex combination of elements of E, i.e. $\zeta \in c o E$.

Since the functions $\xi \rightarrow \lambda_{i}(\xi)$ are invariant by orthogonal transformations, we can assume, without loss of generality, that

$$
\xi=\left(\begin{array}{lll}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right)
$$

with $0 \leqq x_{1} \leqq x_{2} \leqq \ldots \leqq x_{n}$ and $\sum_{i=v}^{n} x_{i} \leqq \sum_{i=v}^{n} a_{i}, v=1, \ldots, n$.
We proceed by induction. We start with the proof in dimension $n=2$.
(i) $n=2$. We subdivide this case into two parts:
(a) $x_{1} \leqq a_{1}$ and, since $\xi \in K$, then $x_{2} \leqq a_{2}$ and $x_{1}+x_{2} \leqq a_{1}+a_{2}$.

Since $-a_{1} \leqq x_{1} \leqq a_{1}$, then $x_{1}=t a_{1}+(1-t)\left(-a_{1}\right)$ with $t=\left(x_{1}+a_{1}\right) / 2 a_{1}$. We can write:

$$
\xi=\left(\begin{array}{cc}
x_{1} & 0 \tag{3.1}\\
0 & x_{2}
\end{array}\right)=t\left(\begin{array}{cc}
a_{1} & 0 \\
0 & x_{2}
\end{array}\right)+(1-t)\left(\begin{array}{cc}
-a_{1} & 0 \\
0 & x_{2}
\end{array}\right)
$$

We proceed similarly for x_{2}, i.e. $x_{2}=s a_{2}+(1-s)\left(-a_{2}\right)$, where $s=\left(x_{2}+a_{2}\right) / 2 a_{2}$. Thus we obtain

$$
\left(\begin{array}{cc}
\pm a_{1} & 0 \tag{3.2}\\
0 & x_{2}
\end{array}\right)=s\left(\begin{array}{cc}
\pm a_{1} & 0 \\
0 & +a_{2}
\end{array}\right)+(1-s)\left(\begin{array}{cc}
\pm a_{1} & 0 \\
0 & -a_{2}
\end{array}\right)
$$

Combining (3.1) and (3.2), we get that

$$
\xi=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right)=\sum_{i=1}^{I} t_{i} \xi_{i}
$$

with $\lambda_{1}\left(\xi_{i}\right)=a_{1}, \lambda_{2}\left(\xi_{i}\right)=a_{2}$ (i.e. $\xi_{i} \in E$). Therefore

$$
\xi \in \operatorname{co} E .
$$

(b) $x_{1} \geqq a_{1}$, i.e. since $\xi \in K, a_{1} \leqq x_{1} \leqq x_{2} \leqq a_{2}$ and $x_{1}+x_{2} \leqq a_{1}+a_{2}$. This implies that

$$
a_{1} \leqq x_{1} \leqq a_{1}+a_{2}-x_{2} .
$$

In this case we just interpolate x_{1} between a_{1} and $a_{1}+a_{2}-x_{2}$, i.e.

$$
x_{1}=t a_{1}+(1-t)\left(a_{1}+a_{2}-x_{2}\right)
$$

which implies that

$$
\xi=\left(\begin{array}{cc}
x_{1} & 0 \tag{3.3}\\
0 & x_{2}
\end{array}\right)=t\left(\begin{array}{cc}
a_{1} & 0 \\
0 & x_{2}
\end{array}\right)+(1-t)\left(\begin{array}{cc}
a_{1}+a_{2}-x_{2} & 0 \\
0 & x_{2}
\end{array}\right) .
$$

The first matrix is treated in case (a). For the second matrix, we interpolate x_{2} between a_{1} and a_{2}, i.e. $x_{2}=s a_{2}+(1-s) a_{1}$, to obtain

$$
\left(\begin{array}{cc}
a_{1}+a_{2}-x_{2} & 0 \tag{3.4}\\
0 & x_{2}
\end{array}\right)=s\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)+(1-s)\left(\begin{array}{cc}
a_{2} & 0 \\
0 & a_{1}
\end{array}\right) .
$$

Combining (3.3) and (3.4), we have proved that

$$
\xi=\sum_{i=1}^{I} t_{i} \xi_{i}
$$

with $\lambda_{1}\left(\xi_{i}\right)=a_{1}, \lambda_{2}\left(\xi_{i}\right)=a_{2}$ (i.e. $\xi_{i} \in E$). Therefore $\xi \in c o E$. In conclusion, we have obtained, for $n=2$, that

$$
K \subset \operatorname{coE}
$$

(ii) $n>2$. We suppose that the result has been established up to $n-1$, i.e. every ξ such that $\sum_{i=v}^{n-1} \lambda_{i}(\xi) \leqq \sum_{i=v}^{n-1} a_{i}, v=1,2, \ldots, n-1$ (i.e. $\xi \in K$) can be expressed as a convex combination of elements of $\left\{\xi \in \mathbf{R}^{(n-1) \times(n-1)}: \lambda_{i}(\xi)=a_{i}, i=1, \ldots, n-1\right\}$, i.e.

$$
\xi=\sum_{\mu=1}^{I} t_{\mu} \xi_{\mu}
$$

with ξ_{μ} such that $\lambda_{i}\left(\xi_{\mu}\right)=a_{i}, i=1,2, \ldots,(n-1)$. We divide the proof into five parts:
Part 1. $0 \leqq x_{1} \leqq x_{2} \leqq x_{1}+x_{2} \leqq a_{2}$. Note that these conditions imply that $x_{1}+x_{2} \leqq a_{1}+a_{2}$ and $x_{2} \leqq a_{2}$. We can therefore apply the case $n=2$ to $\left\{x_{1}, x_{2}\right\}$ and to $\left\{a_{1}, a_{2}\right\}$. We then use the hypothesis of induction on $\left\{x_{3}, \ldots, x_{n}\right\}$ and on $\left\{a_{3}, \ldots, a_{n}\right\}$. Combining these two decompositions, we get the result, i.e. $\xi \in \operatorname{coE}$.

Part 2. $0 \leqq x_{1} \leqq x_{2} \leqq a_{2} \leqq x_{1}+x_{2}$. We can write

$$
\begin{align*}
\xi=\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & \lambda & & \\
\lambda & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & -\lambda & & \\
-\lambda & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) \\
& =\frac{1}{2} A_{+}+\frac{1}{2} A_{-}, \tag{3.5}
\end{align*}
$$

where we have chosen

$$
\lambda^{2}=\left(x_{2}-a_{2}\right)\left(x_{1}-a_{2}\right) .
$$

Note that by hypothesis $\left(x_{1} \leqq x_{2} \leqq a_{2}\right)$ the right-hand side is positive. The choice of λ allows us to find $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{ccccc}
a_{2} & & & & \\
& x_{1}+x_{2}-a_{2} & & & \\
& & x_{3} & & \\
& & & \ddots & \\
& & & & x_{n}
\end{array}\right)
$$

We next apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}+x_{2}-a_{2}, y_{2}=x_{3}, \ldots, y_{n-1}=x_{n}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, b_{2}=a_{3}, \ldots, b_{n-1}=a_{n}\right\}
$$

To do this, we first observe that

$$
0 \leqq y_{1}=x_{1}+x_{2}-a_{2} \leqq x_{1} \leqq x_{3}=y_{2} \leqq y_{3} \leqq \ldots \leqq y_{n-1}
$$

and
(1) if $v \geqq 2$, then $\sum_{i=v}^{n-1} y_{i}=\sum_{i=v+1}^{n} x_{i} \leqq \sum_{i=v+1}^{n} a_{i}=\sum_{i=v}^{n-1} b_{i}$;
(2) if $v=1$, then $\sum_{i=1}^{n-1} y_{i}=-a_{2}+\sum_{i=1}^{n} x_{i} \leqq-a_{2}+\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n-1} b_{i}$.

We can therefore deduce (by hypothesis of induction) that

$$
\left(\begin{array}{ccccc}
a_{2} & & & & \\
& x_{1}+x_{2}-a_{2} & & & \\
& & x_{3} & & \\
& & & \ddots & \\
& & & & x_{n}
\end{array}\right) \in \operatorname{coE} .
$$

Since $c o E$ is invariant up to orthogonal transformations, we obtain that

$$
A_{ \pm}=\left(\begin{array}{cccc}
x_{1} & \pm \lambda & & \tag{3.6}\\
\pm \lambda & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) \in c o E
$$

which leads, combining (3.5) and (3.6), to

$$
\xi \in \operatorname{co} E,
$$

which is the claimed result.
Part 3. $x_{n-1} \geqq a_{n-1}$. We write

$$
\begin{align*}
\xi=\left(\begin{array}{cccc}
x_{1} & & & \\
& \ddots & & \\
& & x_{n-1} & \\
& & & x_{n}
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & & & \\
& \ddots & & \\
& & x_{n-1} & \lambda \\
& & \lambda & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n-1} \\
& -\lambda \\
& & -\lambda \\
x_{n}
\end{array}\right) \\
& =\frac{1}{2} A_{+}+\frac{1}{2} A_{-}, \tag{3.7}
\end{align*}
$$

where we have chosen

$$
\lambda^{2}=\left(x_{n}-a_{n-1}\right)\left(x_{n-1}-a_{n-1}\right)
$$

Note that by hypothesis ($x_{n} \geqq x_{n-1} \geqq a_{n-1}$) the right-hand side is positive. As above, the choice of λ leads to the existence of $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{ccccc}
x_{1} & & & & \\
& \ddots & & & \\
& & x_{n-2} & & \\
& & & x_{n}+x_{n-1}-a_{n-1} & \\
& & & & a_{n-1}
\end{array}\right)
$$

We next apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}, \ldots, y_{n-2}=x_{n-2}, y_{n-1}=x_{n}+x_{n-1}-a_{n-1}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, \ldots, b_{n-2}=a_{n-2}, b_{n-1}=a_{n}\right\}
$$

To do this, we can observe that

$$
0 \leqq y_{1} \leqq \ldots \leqq y_{n-2}=x_{n-2} \leqq x_{n} \leqq x_{n}+x_{n-1}-a_{n-1}=y_{n-1}
$$

By hypothesis and since $\xi \in K$, we have:
(1) if $v=n-1, y_{n-1}=x_{n}+x_{n-1}-a_{n-1} \leqq a_{n}$;
(2) if $1 \leqq v \leqq n-2$,

$$
\begin{aligned}
\sum_{i=v}^{n-1} y_{i} & =x_{n}+x_{n-1}-a_{n-1}+\sum_{i=v}^{n-2} x_{i}=-a_{n-1}+\sum_{i=v}^{n} x_{i} \\
& \leqq-a_{n-1}+\sum_{i=v}^{n} a_{i}=a_{n}+\sum_{i=v}^{n-2} a_{i}=\sum_{i=v}^{n-1} b_{i}
\end{aligned}
$$

We can therefore deduce by hypothesis of induction and by invariance of $\operatorname{co} E$ under orthogonal transformations that

$$
A_{ \pm} \in \operatorname{co} E
$$

which combined with (3.7) lead to

$$
\xi \in c o E .
$$

Part 4. $a_{2} \leqq x_{2} \leqq \ldots \leqq x_{n-1} \leqq a_{n-1}$. Note that this case occurs only if $n \geqq 4$. We first observe that we can therefore find $k \in\{2, \ldots, n-2\}$ such that

$$
\begin{equation*}
a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1} \tag{3.8}
\end{equation*}
$$

Hence we can write

$$
\begin{align*}
& \xi=\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right)=\frac{1}{2} A_{+}+\frac{1}{2} A_{-} \\
& =\frac{1}{2}\left(\begin{array}{cccccc}
x_{1} & & & & & \\
& \ddots & & & & \\
& & x_{k} & \lambda & & \\
& & \lambda & x_{k+1} & & \\
& & & & \ddots & \\
& & & & & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccccc}
x_{1} & & & & & \\
& \ddots & & & & \\
& & x_{k} & -\lambda & & \\
& & -\lambda & x_{k+1} & & \\
& & & & \ddots & \\
& & & & & x_{n}
\end{array}\right) \text {, } \tag{3.9}
\end{align*}
$$

where we have chosen

$$
\begin{equation*}
\lambda^{2}=\left(x_{k}-b\right)\left(x_{k+1}-b\right) \tag{3.10}
\end{equation*}
$$

with $b=a_{k}$ (Part 4.1) or $b=a_{k+1}$ (Part 4.2). Note that, from the above assumption (3.8), the right-hand side is positive in both cases.

Part 4.1. $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1} \\ x_{k}+x_{k+1}+\sum_{i=v+1}^{n} x_{i} \leqq a_{k}+\sum_{i=v}^{n} a_{i}, \quad v=k+2, \ldots, n\end{array}\right.$
(with the convention $\sum_{i=n+1}^{n} x_{i}=0$).
Part 4.2. $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1} \\ \sum_{i=\mu}^{k-1} x_{i}+\sum_{i=k+2}^{n} x_{i} \leqq \sum_{i=\mu+1}^{k} a_{i}+\sum_{i=k+2}^{n} a_{i}, \quad \mu=1, \ldots, k-1 .\end{array}\right.$
Before proceeding with the study of the above cases, we show that Part 4.1 and Part 4.2 cover all possibilities. In fact, if $0 \leqq x_{1} \leqq \ldots \leqq x_{n}$ and if $\Sigma_{i=v}^{n} x_{i} \leqq \sum_{i=v}^{n} a_{i}$, $v=1, \ldots, n$, then at least one of the following sets of inequalities holds:

$$
\begin{gathered}
x_{k}+x_{k+1}+\sum_{i=v+1}^{n} x_{i} \leqq a_{k}+\sum_{i=v}^{n} a_{i}, \quad v=k+2, \ldots, n \\
\sum_{i=\mu}^{k-1} x_{i}+\sum_{i=k+2}^{n} x_{i} \leqq \sum_{i=\mu+1}^{k} a_{i}+\sum_{i=k+2}^{n} a_{i}, \quad \mu=1, \ldots, k-1 .
\end{gathered}
$$

We proceed by contradiction and we assume that there exists $v \in\{k+2, \ldots, n\}$ and
$\mu \in\{1, \ldots, k-1\}$ such that

$$
\begin{gathered}
x_{k}+x_{k+1}+\sum_{i=v+1}^{n} x_{i}>a_{k}+\sum_{i=v}^{n} a_{i}, \\
\sum_{i=\mu}^{k-1} x_{i}+\sum_{i=k+2}^{n} x_{i}>\sum_{i=\mu+1}^{k} a_{i}+\sum_{i=k+2}^{n} a_{i} .
\end{gathered}
$$

Summing up these two inequalities and using the assumptions, we get

$$
\sum_{i=\mu}^{n} a_{i}+\sum_{i=v+1}^{n} a_{i} \geqq \sum_{i=\mu}^{n} x_{i}+\sum_{i=v+1}^{n} x_{i}>a_{k}-a_{k+1}+\sum_{i=\mu+1}^{n} a_{i}+\sum_{i=v}^{n} a_{i}
$$

i.e.

$$
a_{\mu}+a_{k+1}>a_{k}+a_{v} .
$$

However, $\mu \in\{1, \ldots, k-1\}$, hence $a_{\mu} \leqq a_{k}$ and $v \in\{k+2, \ldots, n\}$, therefore $a_{v} \geqq a_{k+1}$. We therefore get

$$
a_{k}+a_{k+1} \geqq a_{\mu}+a_{k+1}>a_{k}+a_{v} \geqq a_{k}+a_{k+1},
$$

which is the claimed contradiction. In conclusion, Part 4.1 and Part 4.2 cover all possibilities. We now separately study these two cases:

$$
\text { Part 4.1. }\left\{\begin{array}{l}
a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1} \\
x_{k}+x_{k+1}+\sum_{i=v+1}^{n} x_{i} \leqq a_{k}+\sum_{i=v}^{n} a_{i}, \quad v=k+2, \ldots, n
\end{array}\right.
$$

(with the convention $\sum_{i=n+1}^{n} x_{i}=0$). We choose here $b=a_{k}$ in (3.9) and (3.10). We can, as above, find $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left[\begin{array}{lllllll}
x_{1} & & & & & & \\
& \ddots & & & & & \\
& & x_{k-1} & & & & \\
& & & x_{k}+x_{k+1}-a_{k} & & & \\
& & & & a_{k} & & \\
& & & & & x_{k+2} & \\
& & & & & & \ddots
\end{array}\right]
$$

We apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}, \ldots, y_{k-1}=x_{k-1}, y_{k}=x_{k}+x_{k+1}-a_{k}, y_{k+1}=x_{k+2}, \ldots, y_{n-1}=x_{n}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, \ldots, b_{k-1}=a_{k-1}, b_{k}=a_{k+1}, \ldots, b_{n-1}=a_{n}\right\} .
$$

Observe that, since $a_{k} \leqq x_{k}$, then $0 \leqq y_{1} \leqq \ldots \leqq y_{k-1}=x_{k-1} \leqq x_{k}+x_{k+1}-a_{k}=y_{k}$. On the contrary, a priori, we cannot compare y_{k} to $y_{k+1} \leqq \ldots \leqq y_{n-1}$. We next verify the hypothesis of induction.
(1) Let $v=n-1$. We must show that $y_{n-1}=x_{n} \leqq b_{n-1}=a_{n}$ and $y_{k} \leqq b_{n-1}=a_{n}$. The first inequality is valid by assumption, while the second is also true since it is equivalent to $x_{k}+x_{k+1} \leqq a_{k}+a_{n}$ which is the assumption of Part 4.1 with $v=n$.
(2) Let $n-2 \geqq v \geqq k+1$. We have again by hypothesis of Part 4.1 and since $\xi \in K$

$$
\left\{\begin{array}{l}
\sum_{i=v}^{n-1} y_{i}=\sum_{i=v+1}^{n} x_{i} \leqq \sum_{i=v+1}^{n} a_{i}=\sum_{i=v}^{n-1} b_{i} \\
y_{k}+\sum_{i=v+1}^{n-1} y_{i}=x_{k}+x_{k+1}-a_{k}+\sum_{i=v+2}^{n} x_{i} \leqq \sum_{i=v+1}^{n} a_{i}=\sum_{i=v}^{n-1} b_{i}
\end{array}\right.
$$

(3) If $k \geqq v \geqq 1$,

$$
\sum_{i=v}^{n-1} y_{i}=\sum_{i=v}^{k-1} y_{i}+\sum_{i=k}^{n-1} y_{i}=\sum_{i=v}^{k-1} x_{i}+\sum_{i=k}^{n} x_{i}-a_{k} \leqq \sum_{i=v}^{n} a_{i}-a_{k}=\sum_{i=v}^{n-1} b_{i}
$$

Therefore we can apply the hypothesis of induction and the invariance of coE under orthogonal transformations to get

$$
\begin{equation*}
A_{ \pm} \in c o E . \tag{3.11}
\end{equation*}
$$

Combining (3.9) and (3.11), we indeed get that

$$
\xi \in c o E .
$$

Part 4.2. $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1}, \\ \sum_{i=\mu}^{k-1} x_{i}+\sum_{i=k+2}^{n} x_{i} \leqq \sum_{i=\mu+1}^{k} a_{i}+\sum_{i=k+2}^{n} a_{i}, \quad \mu=1, \ldots, k-1 .\end{array}\right.$
We choose here $b=a_{k+1}$ in (3.9) and (3.10). We can, as above, find $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left[\begin{array}{lllllll}
x_{1} & & & & & & \\
& \ddots & & & & & \\
& & x_{k-1} & & & & \\
& & & x_{k}+x_{k+1}-a_{k+1} & & & \\
& & & & a_{k+1} & & \\
& & & & & x_{k+2} & \\
\\
& & & & & & \ddots
\end{array}\right]
$$

We apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}, \ldots, y_{k-1}=x_{k-1}, y_{k}=x_{k}+x_{k+1}-a_{k+1}, y_{k+1}=x_{k+2}, \ldots, y_{n-1}=x_{n}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, \ldots, b_{k-1}=a_{k-1}, b_{k}=a_{k}, b_{k+1}=a_{k+2}, \ldots, b_{n-1}=a_{n}\right\}
$$

Observe that, since $x_{k+1} \leqq a_{k+1}$, we have $y_{k}=x_{k}+x_{k+1}-a_{k+1} \leqq x_{k} \leqq x_{k+2}=$ $y_{k+1} \leqq \ldots \leqq y_{n-1}$. On the contrary, a priori, we cannot compare y_{k} to $0 \leqq y_{1} \leqq \ldots \leqq y_{k-1}$. We next verify the hypothesis of induction. Since $\xi \in K$ and by assumption of Part 4.2, we get:
(1) if $v \geqq k+1, \sum_{i=v}^{n-1} y_{i}=\sum_{i=v+1}^{n} x_{i} \leqq \sum_{i=v+1}^{n} a_{i}=\sum_{i=v}^{n-1} b_{i}$;
(2) if $v=k$,

$$
\left\{\begin{array}{l}
\sum_{i=k}^{n-1} y_{i}=-a_{k+1}+\sum_{i=k}^{n} x_{i} \leqq-a_{k+1}+\sum_{i=k}^{n} a_{i}=\sum_{i=k}^{n-1} b_{i}, \\
y_{k-1}+\sum_{i=k+1}^{n-1} y_{i}=x_{k-1}+\sum_{i=k+2}^{n} x_{i} \leqq a_{k}+\sum_{i=k+2}^{n} a_{i}=\sum_{i=k}^{n-1} b_{i}
\end{array}\right.
$$

(3) if $k-1 \geqq v \geqq 1$,

$$
\left\{\begin{array}{l}
\sum_{i=v}^{n-1} y_{i}=-a_{k+1}+\sum_{i=v}^{n} x_{i} \leqq-a_{k+1}+\sum_{i=v}^{n} a_{i}=\sum_{i=v}^{n-1} b_{i}, \\
\sum_{i=v-1}^{k=1} y_{i}+\sum_{i=k+1}^{n-1} y_{i}=\sum_{i=v-1}^{k-1} x_{i}+\sum_{i=k+2}^{n} x_{i} \leqq \sum_{i=v}^{k} a_{i}+\sum_{i=k+2}^{n} a_{i} \\
\\
=\sum_{i=v}^{n-1} b_{i} .
\end{array}\right.
$$

We can therefore apply the hypothesis of induction to obtain

$$
\left[\begin{array}{cccccccc}
x_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & x_{k-1} & & & & & \\
\\
& & & x_{k}+x_{k+1}-a_{k+1} & & & & \\
& & & & a_{k+1} & & & \\
& & & & & x_{k+2} & & \\
& & & & & & \ddots & \\
& & & & & & & x_{n}
\end{array}\right] \in \operatorname{coE} .
$$

The invariance under orthogonal transformations leads immediately to

$$
\begin{equation*}
A_{ \pm} \in \operatorname{coE} . \tag{3.12}
\end{equation*}
$$

Combining (3.9) and (3.12), we have indeed obtained

$$
\xi \in c o E .
$$

This achieves the proof of Step 2, i.e. $K \subset c o E$, and thus part (i) of the theorem.
Proof of Theorem 3.1(ii). Let $X=\left\{\xi \in \mathbf{R}^{n \times n}: \prod_{i=v}^{n} \lambda_{i}(\xi) \leqq \prod_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$. We prove that $X=$ RcoE. We divide the proof into two steps.

Step 1. Rco $E \subset X$. Observe that $E \subset X$ and, from Proposition 2.6, the functions $\xi \rightarrow \Pi_{i=v}^{n} \lambda_{i}(\xi), v=1, \ldots, n$ are polyconvex (and hence rank one convex). Therefore we deduce that X is polyconvex and hence

$$
R c o E \subset P c o E \subset X .
$$

Step 2. $X \subset R \operatorname{coE}$. Let $\xi \in X$; we will prove that $\xi \in R \operatorname{coE}$. Since the functions $\xi \rightarrow \lambda_{i}(\xi)$ are invariant by orthogonal transformations, we can assume, without loss
of generality, that

$$
\xi=\left(\begin{array}{ccc}
x_{1} & & \\
& \ddots & \\
& & x_{n}
\end{array}\right)
$$

with $0 \leqq x_{1} \leqq x_{2} \leqq \ldots \leqq x_{n}$ and $\Pi_{i=v}^{n} x_{i} \leqq \prod_{i=v}^{n} a_{i}, v=1, \ldots, n$.
We show the result by induction. We start with the proof in dimension $n=2$. Note that the proof of this case is simpler than the one in [6].
(i) $n=2$. We write

$$
\xi=\left(\begin{array}{cc}
x_{1} & 0 \tag{3.13}\\
0 & x_{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
x_{1} & \lambda \\
0 & x_{2}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
x_{1} & -\lambda \\
0 & x_{2}
\end{array}\right)=\frac{1}{2} A_{+}+\frac{1}{2} A_{-}
$$

(observe that $\left.\operatorname{rank}\left\{A_{+}-A_{-}\right\} \leqq 1\right\}$ and we choose

$$
\lambda^{2}=\frac{\left(a_{2}^{2}-x_{2}^{2}\right)\left(a_{2}^{2}-x_{1}^{2}\right)}{a_{2}^{2}}
$$

Note that the right-hand side is positive by assumption $\left(0 \leqq x_{1} \leqq x_{2} \leqq a_{2}\right)$. This leads to

$$
\lambda_{1}\left(A_{ \pm}\right)=\frac{x_{1} x_{2}}{a_{2}}, \quad \lambda_{2}\left(A_{ \pm}\right)=a_{2}
$$

Therefore $\exists O_{ \pm}, O_{ \pm}^{\prime} \in O(2)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{cc}
\frac{x_{1} x_{2}}{a_{2}} & 0 \\
0 & a_{2}
\end{array}\right)
$$

However, we have

$$
\left(\begin{array}{cc}
\frac{x_{1} x_{2}}{a_{2}} & 0 \\
0 & a_{2}
\end{array}\right)=\left(\frac{1}{2}+\frac{x_{1} x_{2}}{2 a_{1} a_{2}}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)+\left(\frac{1}{2}-\frac{x_{1} x_{2}}{2 a_{1} a_{2}}\right)\left(\begin{array}{cc}
-a_{1} & 0 \\
0 & a_{2}
\end{array}\right)
$$

and hence

$$
\left(\begin{array}{cc}
\frac{x_{1} x_{2}}{a_{2}} & 0 \\
0 & a_{2}
\end{array}\right) \in R_{1} \operatorname{coE} \subset R \operatorname{co} E .
$$

Since RcoE is invariant up to orthogonal transformations, we deduce that

$$
A_{ \pm}=\left(\begin{array}{cc}
x_{1} & \pm \lambda \tag{3.14}\\
0 & x_{2}
\end{array}\right) \in R \operatorname{coE} .
$$

Finally, combining (3.13) and (3.14), we obtain that

$$
\xi=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right) \in R \operatorname{co} E
$$

which is the claimed result.
(ii) $n>2$. We divide this case into four parts.

Part 1. $x_{2} \leqq a_{2}$. We write

$$
\begin{align*}
\xi=\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & \lambda & & \\
0 & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & -\lambda & & \\
0 & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) \\
& =\frac{1}{2} A_{+}+\frac{1}{2} A_{-} \tag{3.15}
\end{align*}
$$

(observe that $\operatorname{rank}\left\{A_{+}-A_{-}\right\} \leqq 1$) and we define λ by:

$$
\lambda^{2}=\frac{\left(a_{2}^{2}-x_{2}^{2}\right)\left(a_{2}^{2}-x_{1}^{2}\right)}{a_{2}^{2}} .
$$

Note that the right-hand side is positive by assumption $\left(0 \leqq x_{1} \leqq x_{2} \leqq a_{2}\right)$. The choice of λ (as in the case $n=2$) leads to the existence of $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{lllll}
a_{2} & & & & \\
& \frac{x_{1} x_{2}}{a_{2}} & & & \\
& & x_{3} & & \\
& & & \ddots & \\
& & & & x_{n}
\end{array}\right)
$$

We apply the hypothesis of induction to

$$
\left\{y_{1}=\frac{x_{1} x_{2}}{a_{2}}, y_{2}=x_{3}, \ldots, y_{n-1}=x_{n}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, b_{2}=a_{3}, \ldots, b_{n-1}=a_{n}\right\} .
$$

Note that, since $x_{2} \leqq a_{2}$, then $0 \leqq y_{1} \leqq \ldots \leqq y_{n-1}$.
We have to show that $\prod_{i=v}^{n-1} y_{i} \leqq \prod_{i=v}^{n-1} b_{i}, v=1, \ldots, n-1$.
(1) By assumption, if $v \geqq 2$, we have $\prod_{i=v}^{n-1} y_{i}=\prod_{i=v+1}^{n} x_{i} \leqq \prod_{i=v+1}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i}$.
(2) If $v=1$, we have

$$
\prod_{i=1}^{n-1} y_{i}=\frac{x_{1} x_{2}}{a_{2}} \prod_{i=3}^{n} x_{i}=\frac{1}{a_{2}} \prod_{i=1}^{n} x_{i} \leqq \frac{1}{a_{2}} \prod_{i=1}^{n} a_{i}=a_{1} \prod_{i=3}^{n} a_{i}=\prod_{i=1}^{n-1} b_{i}
$$

Therefore we can deduce that (by hypothesis of induction)

$$
\left(\begin{array}{ccccc}
a_{2} & & & & \\
& \frac{x_{1} x_{2}}{a_{2}} & & & \\
& & x_{3} & & \\
& & & \ddots & \\
& & & & x_{n}
\end{array}\right) \in R \operatorname{coE}
$$

Since $R c o E$ is invariant up to orthogonal transformations, we obtain

$$
A_{ \pm}=\left(\begin{array}{cccc}
x_{1} & \pm \lambda & & \tag{3.16}\\
0 & x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right) \in R \operatorname{coE}
$$

and therefore, combining (3.15) and (3.16), we get

$$
\xi \in R \operatorname{coE},
$$

which is the claimed result.
Part 2. $x_{n-1} \geqq a_{n-1}$. We write (as in Part 1, but interchanging the role of $\left(x_{n}, x_{n-1}\right)$ and (x_{1}, x_{2}))

$$
\begin{align*}
\xi=\left(\begin{array}{llll}
x_{1} & & & \\
& \ddots & & \\
& & x_{n-1} & \\
& & & x_{n}
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{llll}
x_{1} & & & \\
& \ddots & & \\
& & x_{n-1} & \lambda \\
& & 0 & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccc}
x_{1} & & \\
& \ddots & & \\
& & x_{n-1} & -\lambda \\
& & 0 & x_{n}
\end{array}\right) \\
& =\frac{1}{2} A_{+}+\frac{1}{2} A_{-} \tag{3.17}
\end{align*}
$$

(observe that $\operatorname{rank}\left\{A_{+}-A_{-}\right\} \leqq 1$) and we choose λ to be:

$$
\lambda^{2}=\frac{\left(x_{n}^{2}-a_{n-1}^{2}\right)\left(x_{n-1}^{2}-a_{n-1}^{2}\right)}{a_{n-1}^{2}}
$$

Note that the right-hand side is positive by assumption $\left(a_{n-1} \leqq x_{n-1} \leqq x_{n}\right)$. As above, the choice of λ leads to the existence of $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{cccccc}
x_{1} & & & & & \\
& x_{2} & & & & \\
& & \ddots & & & \\
& & & x_{n-2} & & \\
& & & & \frac{x_{n-1} x_{n}}{a_{n-1}} & \\
& & & & & a_{n-1}
\end{array}\right)
$$

We apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}, \ldots, y_{n-2}=x_{n-2}, y_{n-1}=\frac{x_{n-1} x_{n}}{a_{n-1}}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, \ldots, b_{n-2}=a_{n-2}, b_{n-1}=a_{n}\right\} .
$$

Note that, since $a_{n-1} \leqq x_{n-1}$, then $0 \leqq y_{1} \leqq \ldots \leqq y_{n-1}$.
We verify the hypothesis of induction.
(1) First, observe that $y_{n-1} \leqq b_{n-1}$ because $x_{n-1} x_{n} \leqq a_{n-1} a_{n}$.
(2) If $1 \leqq v \leqq n-1$, then

$$
\begin{aligned}
\prod_{i=v}^{n-1} y_{i} & =\prod_{i=v}^{n-2} y_{i} \cdot y_{n-1}=\prod_{i=v}^{n-2} x_{i} \frac{x_{n-1} x_{n}}{a_{n-1}}=\frac{1}{a_{n-1}} \prod_{i=v}^{n} x_{i} \\
& \leqq \frac{1}{a_{n-1}} \prod_{i=v}^{n} a_{i}=\prod_{i=v}^{n-2} a_{i} \cdot a_{n}=\prod_{i=v}^{n-1} b_{i} .
\end{aligned}
$$

Therefore (by hypothesis of induction)

$$
\left(\begin{array}{ccccc}
x_{1} & & & & \\
& x_{2} & & & \\
& & \ddots & & \\
& & & x_{n-2} & \\
& & & & \frac{x_{n-1} x_{n}}{a_{n-1}} \\
& & & & \\
& & & & \\
a_{n-1}
\end{array}\right) \in R \operatorname{coE}
$$

and, since $R c o E$ is invariant up orthogonal transformations, we obtain that $A_{ \pm} \in R c o E$, which combined with (3.17) leads to the claimed result,

$$
\xi \in R c o E .
$$

Part 3. $a_{2} \leqq x_{2} \leqq \ldots \leqq x_{n-1} \leqq a_{n-1}$. Note that this case occurs only if $n \geqq 4$. We first observe that we can therefore find $k \in\{2, \ldots, n-2\}$ such that

$$
\begin{equation*}
a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1} \tag{3.18}
\end{equation*}
$$

Hence we can write

$$
\xi=\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right)=\frac{1}{2} A_{+}+\frac{1}{2} A_{-}
$$

$$
=\frac{1}{2}\left(\begin{array}{cccccc}
x_{1} & & & & & \tag{3.19}\\
& \ddots & & & & \\
& & x_{k} & \lambda & & \\
& & 0 & x_{k+1} & & \\
& & & & \ddots & \\
& & & & & x_{n}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cccccc}
x_{1} & & & & & \\
& \ddots & & & & \\
& & x_{k} & -\lambda & & \\
& & 0 & x_{k+1} & & \\
& & & & \ddots & \\
& & & & & x_{n}
\end{array}\right)
$$

(observe that $\operatorname{rank}\left\{A_{+}-A_{-}\right\} \leqq 1$) where λ is given by

$$
\begin{equation*}
\lambda^{2}=\frac{\left(b^{2}-x_{k}^{2}\right)\left(b^{2}-x_{k+1}^{2}\right)}{b^{2}} \tag{3.20}
\end{equation*}
$$

where $b=a_{k}$ (Part 3.1) or $b=a_{k+1}$ (Part 3.2). Note that, from the above assumptions (3.18), the right-hand side is positive in both cases.

Part 3.1. $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1}, \\ x_{k} x_{k+1} \prod_{i=v+1}^{n} x_{i} \leqq a_{k} \prod_{i=v}^{n} a_{i}, \quad v=k+2, \ldots, n\end{array}\right.$
(with the convention $\prod_{i=n+1}^{n} x_{i}=1$).
Part 3.2. $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1}, \\ \prod_{i=\mu}^{k-1} x_{i} \cdot \prod_{i=k+2}^{n} x_{i} \leqq \prod_{i=\mu+1}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}, \quad \mu=1, \ldots, k-1 .\end{array}\right.$
Before proceeding with the study of the above cases, we show that Part 3.1 and Part 3.2 cover all possibilities. In fact, if $0 \leqq x_{1} \leqq \ldots \leqq x_{n}$ and if $\prod_{i=v}^{n} x_{i} \leqq \prod_{i=v}^{n} a_{i}$, $v=1, \ldots, n$, then at least one of the following sets of inequalities holds:

$$
\begin{aligned}
& x_{k} x_{k+1} \quad \prod_{i=v+1}^{n} x_{i} \leqq a_{k} \prod_{i=v}^{n} a_{i}, \quad v=k+2, \ldots, n ; \\
& \prod_{i=\mu}^{k-1} x_{i} \cdot \prod_{i=k+2}^{n} x_{i} \leqq \prod_{i=\mu+1}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}, \quad \mu=1, \ldots, k-1 .
\end{aligned}
$$

We proceed by contradiction and we assume that there exist $v \in\{k+2, \ldots, n\}$ and $\mu \in\{1, \ldots, k-1\}$ such that

$$
\begin{aligned}
& x_{k} x_{k+1} \prod_{i=v+1}^{n} x_{i}>a_{k} \prod_{i=v}^{n} a_{i}, \\
& \prod_{i=\mu}^{k-1} x_{i} \cdot \prod_{i=k+2}^{n} x_{i}>\prod_{i=\mu+1}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i} .
\end{aligned}
$$

Multiplying together the two inequalities and using the assumptions, we deduce that

$$
\prod_{i=\mu}^{n} a_{i} \cdot \prod_{i=v+1}^{n} a_{i} \geqq \prod_{i=\mu}^{n} x_{i} \cdot \prod_{i=v+1}^{n} x_{i}>a_{k} \prod_{i=v}^{n} a_{i} \cdot \prod_{i=\mu+1}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}
$$

i.e.

$$
a_{\mu} \prod_{i=k+1}^{n} a_{i} \cdot \prod_{i=v+1}^{n} a_{i}>a_{k} \prod_{i=v}^{n} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}
$$

therefore

$$
a_{\mu} a_{k+1}>a_{k} a_{v} .
$$

However, $\mu \in\{1, \ldots, k-1\}$, hence $a_{\mu} \leqq a_{k}$ and $v \in\{k+2, \ldots, n\}$, therefore $a_{v} \geqq a_{k+1}$. We therefore get

$$
a_{k} a_{k+1} \geqq a_{\mu} a_{k+1}>a_{k} a_{v} \geqq a_{k} a_{k+1}
$$

which is the claimed contradiction. In conclusion, Part 3.1 and Part 3.2 cover all
possibilities. We now study these two cases separately.
Part 3.1 $\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1}, \\ x_{k} x_{k+1} \prod_{i=v+1}^{n} x_{i} \leqq a_{k} \prod_{i=v}^{n} a_{i} \quad v=k+2, \ldots, n\end{array}\right.$
(with the convention $\prod_{i=n+1}^{n} x_{i}=1$). We choose here $b=a_{k}$ in (3.19) and (3.20); therefore we can find $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

where we recall that

$$
A_{ \pm}=\left(\begin{array}{cccccc}
x_{1} & & & & & \\
& \ddots & & & & \\
& & x_{k} & \pm \lambda & & \\
& & 0 & x_{k+1} & & \\
& & & & \ddots & \\
& & & & & x_{n}
\end{array}\right)
$$

We apply the hypothesis of induction to

$$
\left\{y_{1}=x_{1}, \ldots, y_{k-1}=x_{k-1}, y_{k}=\frac{x_{k} x_{k+1}}{a_{k}}, y_{k+1}=x_{k+2}, \ldots, y_{n-1}=x_{n}\right\}
$$

and to

$$
\left\{b_{1}=a_{1}, \ldots, b_{k-1}=a_{k-1}, b_{k}=a_{k+1}, \ldots, b_{n-1}=a_{n}\right\}
$$

Observe that, since $a_{k} \leqq x_{k}$, then $0 \leqq y_{1} \leqq \ldots \leqq y_{k-1} \leqq y_{k}$. On the contrary, a priori, we cannot compare y_{k} to $y_{k+1} \leqq \ldots \leqq y_{n-1}$. We next verify the hypothesis of induction.
(1) We must show that $x_{n}=y_{n-1} \leqq b_{n-1}=a_{n}$ and $y_{k} \leqq b_{n-1}=a_{n}$.

The first inequality is verified by assumption and the second is also verified by the assumption of Part 3.1 with $v=n$. The assumption $\xi \in X$ and that of Part 3.1 again ensure that
(2) if $n-1 \geqq v \geqq k+1$,

$$
\left\{\begin{array}{l}
\prod_{i=v}^{n-1} y_{i}=\prod_{i=v+1}^{n} x_{i} \leqq \prod_{i=v+1}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i} \\
y_{k} \prod_{i=v+1}^{n-1} y_{i}=\frac{x_{k} x_{k+1}}{a_{k}} \cdot \prod_{i=v+2}^{n} x_{i} \leqq \prod_{i=v+1}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i}
\end{array}\right.
$$

(3) If $k \geqq v \geqq 1$,

$$
\begin{aligned}
\prod_{i=v}^{n-1} y_{i} & =\prod_{i=v}^{k} y_{i} \cdot \prod_{i=k+1}^{n-1} y_{i}=\frac{1}{a_{k}} \prod_{i=v}^{n} x_{i} \leqq \frac{1}{a_{k}} \prod_{i=v}^{n} a_{i} \\
& =\prod_{i=v}^{k-1} a_{i} \cdot \prod_{i=k+1}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i} .
\end{aligned}
$$

Therefore we can apply the assumption of induction and deduce that

$$
\left[\begin{array}{cccccccc}
x_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & x_{k-1} & & & & & \\
& & & \frac{x_{k} x_{k+1}}{a_{k}} & & & & \\
& & & & a_{k} & & & \\
& & & & & x_{k+2} & & \\
& & & & & & \ddots & \\
& & & & & & & x_{n}
\end{array}\right] \in R \operatorname{coE} .
$$

As above, we get that

$$
\begin{equation*}
A_{ \pm} \in R \operatorname{co} E \tag{3.21}
\end{equation*}
$$

and, finally, combining (3.19) and (3.21), we obtain the claimed result:

$$
\xi \in R c o E .
$$

Part $3.2\left\{\begin{array}{l}a_{k} \leqq x_{k} \leqq x_{k+1} \leqq a_{k+1}, \\ \prod_{i=\mu}^{k-1} x_{i} \cdot \prod_{i=k+2}^{n} x_{i} \leqq \prod_{i=\mu+1}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i} \quad \mu=1, \ldots, k-1 .\end{array}\right.$
We choose here $b=a_{k+1}$ in (3.19) and (3.20); therefore we can find $O_{ \pm}, O_{ \pm}^{\prime} \in O(n)$ such that

$$
O_{ \pm} A_{ \pm} O_{ \pm}^{\prime}=\left(\begin{array}{cccccccc}
x_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & x_{k-1} & & & & & \\
& & & \frac{x_{k} x_{k+1}}{a_{k+1}} & & & & \\
& & & & a_{k+1} & & & \\
& & & & & x_{k+2} & & \\
& & & & & & \ddots & \\
& & & & & & & x_{n}
\end{array}\right]
$$

We have to prove the hypothesis of induction for

$$
\left\{y_{1}=x_{1}, \ldots, y_{k-1}=x_{k-1}, y_{k}=\frac{x_{k} x_{k+1}}{a_{k+1}}, y_{k+1}=x_{k+2}, \ldots, y_{n-1}=x_{n}\right\}
$$

and for

$$
\left\{b_{1}=a_{1}, \ldots, b_{k}=a_{k}, b_{k+1}=a_{k+2}, \ldots, b_{n-1}=a_{n}\right\}
$$

Observe that, since $x_{k+1} \leqq a_{k+1}$, then $y_{k} \leqq y_{k+1} \leqq \ldots \leqq y_{n-1}$. On the contrary, a priori, we cannot compare y_{k} to $y_{1} \leqq \ldots \leqq y_{k-1}$. We verify the hypothesis of induction. From the assumption $\xi \in X$ and from that of Part 3.2 we can write:
(1) if $v \geqq k+1$, then $\prod_{i=v}^{n-1} y_{i}=\Pi_{i=v+1}^{n} x_{i} \leqq \prod_{i=v+1}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i}$;
(2) if $v=k$, then

$$
\left\{\begin{array}{l}
\prod_{i=k}^{n-1} y_{i}=\frac{1}{a_{k+1}} \prod_{i=k}^{n} x_{i} \leqq \frac{1}{a_{k+1}} \prod_{i=k}^{n} a_{i}=a_{k} \prod_{i=k+2}^{n} a_{i}=b_{k} \prod_{i=k+1}^{n-1} b_{i}=\prod_{i=k}^{n-1} b_{i} \\
y_{k-1} \prod_{i=k+1}^{n-1} y_{i}=x_{k-1} \prod_{i=k+2}^{n} x_{i} \leqq a_{k} \prod_{i=k+2}^{n} a_{i}=\prod_{i=k}^{n-1} b_{i}
\end{array}\right.
$$

(3) if $k-1 \geqq v \geqq 1$, then

$$
\left\{\begin{aligned}
\prod_{i=v}^{n-1} y_{i} & =\prod_{i=v}^{k-1} x_{i} \frac{x_{k} x_{k+1}}{a_{k+1}} \cdot \prod_{i=k+2}^{n} x_{i}=\frac{1}{a_{k+1}} \cdot \prod_{i=v}^{n} x_{i} \\
& \leqq \frac{1}{a_{k+1}} \cdot \prod_{i=v}^{n} a_{i}=\prod_{i=v}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}=\prod_{i=v}^{n-1} b_{i} \\
\prod_{i=v-1}^{k-1} y_{i} \cdot \prod_{i=k+1}^{n-1} y_{i} & =\prod_{i=v-1}^{k-1} x_{i} \cdot \prod_{i=k+2}^{n} x_{i} \\
& \leqq \prod_{i=v}^{k} a_{i} \cdot \prod_{i=k+2}^{n} a_{i}=\prod_{i=v}^{k} b_{i} \cdot \prod_{i=k+1}^{n-1} b_{i}=\prod_{i=v}^{n-1} b_{i}
\end{aligned}\right.
$$

We can apply the hypothesis of induction and deduce that

$$
\left[\begin{array}{cccccccc}
x_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & x_{k-1} & & & & & \\
& & & \frac{x_{k} x_{k+1}}{a_{k+1}} & & & & \\
& & & & a_{k+1} & & & \\
& & & & & x_{k+2} & & \\
& & & & & & \ddots & \\
& & & & & & & x_{n}
\end{array}\right] \in R c o E .
$$

Since $R c o E$ is invariant up the orthogonal transformations, we can obtain that

$$
\begin{equation*}
A_{ \pm} \in R \operatorname{co} E \tag{3.22}
\end{equation*}
$$

Finally, combining (3.19) and (3.22), we can write $\xi \in R \operatorname{coE}$. In conclusion, we have obtained the claimed result: $X \subset R c o E$.

Proof of Theorem 3.1 (iii). Let $Y=\left\{\xi \in \mathbf{R}^{n \times n}: \Pi_{i=v}^{n} \lambda_{i}(\xi)<\Pi_{i=v}^{n} a_{i}, v=1, \ldots, n\right\}$. We show that int $R \operatorname{co} E=Y$. We divide the proof into two steps.

Step $1 . Y \subset$ int $R c o E$, since by continuity Y is open and, by (ii), $Y \subset R c o E$.
Step 2. int $R \operatorname{coE} \subset Y$. So let $\xi \in$ int $R c o E$; we can therefore find ε sufficiently small so that $B_{\varepsilon}(\xi) \subset R \operatorname{co} E$ (where $B_{\varepsilon}(\xi)$ denotes the ball centred at ξ and of radius ε). Let R, R^{\prime} be orthogonal matrices so that

$$
\xi=R\left(\begin{array}{llll}
\lambda_{1}(\xi) & & & \\
& \lambda_{2}(\xi) & & \\
& & \ddots & \\
& & & \lambda_{n}(\xi)
\end{array}\right) R^{\prime}
$$

Define

$$
\eta=R\left(\begin{array}{cccc}
\lambda_{1}(\xi) & & & \\
& \lambda_{2}(\xi) & & \\
& & \ddots & \\
& & & \lambda_{n}(\xi)+\frac{\varepsilon}{2}
\end{array}\right) R^{\prime}
$$

Since $|\eta-\xi|=(\varepsilon / 2)<\varepsilon$, then $\eta \in R$ co E. We then get

$$
\lambda_{n}(\xi)<\lambda_{n}(\eta) \leqq a_{n} .
$$

Assume that $\lambda_{v}(\xi) \neq 0$ for every v; we then get for $v=1, \ldots, n$ and with the convention $\prod_{i=n+1}^{n} \hat{\lambda}_{i}(\xi)=1$,

$$
\prod_{i=v}^{n} \lambda_{i}(\xi)=\prod_{i=v}^{n-1} \lambda_{i}(\xi) \cdot \lambda_{n}(\xi)<\prod_{i=v}^{n-1} \lambda_{i}(\eta) \cdot \lambda_{n}(\eta) \leqq \prod_{i=v}^{n-1} a_{i} \cdot a_{n}
$$

which implies that $\xi \in Y$.
Finally, if $\exists \bar{v} \in\{1, \ldots, n\}$ such that $\lambda_{\bar{v}}(\xi)=0$, and $\lambda_{\bar{v}+1}(\xi)>0$, then the same argument as above is valid for $v=\bar{v}+1, \ldots, n$ and is trivial if $v=1, \ldots, \bar{v}$. We therefore also get that $\xi \in Y$.

Remark 3.3. We should draw the attention to the following facts.
(1) We have privileged proofs that are as similar as possible for coE and RcoE, replacing Σ by Π. We did not succeed in doing this for the case $n=2$.
(2) The above choice forced us, in the convex case, to consider nondiagonal (but symmetric) decompositions of the matrix ξ. If one insists in keeping decompositions with only diagonal matrices, then this is possible and is indeed achieved here for $n=2$.

Acknowledgments

We would like to thank P. Marcellini for important discussions on this paper. Part of this research was financially supported by Fonds National Suisse (21-50472.97).

References

1 G. Aubert and R. Tahraoui. Sur la faible fermeture de certains ensembles de contraintes en élasticité non linéaire plan. C. R. Acad. Sci. Paris 290 (1980), 537-40.
2 J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337-403.
3 B. Dacorogna. Direct Methods in the Calculus of Variations. Applied Mathematical Sciences 78 (New York: Springer, 1989).
4 B. Dacorogna and P. Marcellini. Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris. Sér. I 322 (1996), 237-40.
5 B. Dacorogna and P. Marcellini. Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I 323 (1996), 599-602.
6 B. Dacorogna and P. Marcellini. General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Math. 178 (1997), 1-37.
7 B. Dacorogna and P. Marcellini. Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998), 404-46.
8 H. Le Dret. Sur les fonctions de matrices convexes et isotropes. C. R. Acad. Sci. Paris Sér. I 310 (1990), 617-20.

9 R. T. Rockafellar. Convex analysis (Princeton, NJ: Princeton University Press, 1970).

