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Wind tunnel measurements were performed for the wake produced by a three-bladed
wind turbine immersed in uniform flow. These tests show the presence of a vorticity
structure in the near-wake region mainly oriented along the streamwise direction,
which is denoted as the hub vortex. The hub vortex is characterized by oscillations
with frequencies lower than that connected to the rotational velocity of the rotor,
which previous works have ascribed to wake meandering. This phenomenon consists
of transversal oscillations of the wind turbine wake, which might be excited by the
vortex shedding from the rotor disc acting as a bluff body. In this work, temporal
and spatial linear stability analyses of a wind turbine wake are performed on a
base flow obtained with time-averaged wind tunnel velocity measurements. This study
shows that the low-frequency spectral component detected experimentally matches the
most amplified frequency of the counter-winding single-helix mode downstream of the
wind turbine. Then, simultaneous hot-wire measurements confirm the presence of a
helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly
equal to that predicted from the linear stability analysis.
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1. Introduction

Wind turbine blade rotation produces a wake, which is the result of complex
dynamics and interactions between different vorticity structures. The near wake is
dominated by vortex roll-up, which is highly dependent on blade characteristics; its
characterization is fundamental for optimization of rotor aerodynamics, to analyse
vortex induced vibrations on blade structure and to reduce noise production typically
connected to the shedding of the tip vortices. In the far wake, conversely, concentrated
vorticity structures are no longer observed, and investigations have mainly focused on
wake recovery and small-scale turbulent structures. Characterization of the far wake is
fundamental for wind farm design and for evaluation of fatigue loads on downstream
turbines. The connection between the vorticity structure formation in the near wake
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and the turbulence decay in the far wake is still an open question, as highlighted in
Sgrensen (2011).

The near wake of a wind turbine is characterized by the presence of counter-rotating
helicoidal vorticity pairs shed from the tip and root of each blade. Furthermore, a
system of trailing vortices is produced as a consequence of the varying circulation
distribution along the blade span: see Sherry, Sheridan & LoJacono (2010). Helicoidal
tip vortices shed from a rotor have been characterized via different experimental
approaches, e.g. particle image velocimetry (PIV) measurements in Whale et al
(1996) Massouh & Dobrev (2007) and hot-wire anemometry in Chamorro & Porté-
Agel (2009, 2010) and Zhang, Markfort & Porté-Agel (2012). However, the only
experimental work dealing with a detailed characterization of wind turbine near-wake
vortex system, i.e. helicoidal tip and root vortices and trailing vortices, is that of
Sherry et al. (2010), who performed PIV measurements in a water tunnel. Tip and
root vortices are simultaneously shed from each blade, whereas at a very early stage
trailing vortices are also detected. Tip vortices are rapidly convected downstream
because they are located in a wake region with higher streamwise velocity with respect
to the hub region, which is characterized by a strong velocity deficit. The helicoidal
root vortices practically surround the wind turbine nacelle with a relatively small
radius of curvature. This geometric feature and a reduced streamwise distance between
adjacent vortex helices promote faster diffusion of the root vortices with respect to
the tip vortices. In Sherry et al. (2010) root vortices are completely diffused at a
downstream distance smaller than 0.5 rotor diameters (d). Furthermore, interaction
of root vortices with the nacelle boundary layer and wind turbine stem can further
anticipate their diffusion. Diffusion of both root and tip vortices is found to be
enhanced by increasing wind turbine tip speed ratio, which is due to the decreased
helical pitch of the vortices, thus to the increased mutual induction between adjacent
vortices (Widnall 1972).

Root and tip vortices have also been investigated in the near wake by means of
direct numerical simulations of the Navier—-Stokes equations in Ivanell et al. (2009).
However, the main shortcoming of the numerical simulations of wind turbines consists
in not resolving the boundary layer flow over the blades, and their induced loads are
simulated through the actuator disc or actuator line models; thus, near-wake vorticity
structures cannot be characterized with very high accuracy (Porté-Agel et al. 2011).

By moving downstream, root vortices are rapidly diffused, whereas a system of
helicoidal tip vortices is still present; indeed, their signature in the velocity signals has
been clearly detected by both numerical simulations (e.g. Lu & Porté-Agel 2011) and
experimental investigations (e.g. Medici & Alfredsson 2006, Chamorro & Porté-Agel
2009, 2010, and Zhang et al. 2012).

Regarding the central part of the wake, root vortices are found to diffuse rapidly in
proximity to the wind turbine hub; however, a vorticity structure mainly oriented along
the streamwise direction, which is denoted as the hub vortex, is still present several
diameters downstream. The hub vortex is clearly visualized in the wake of a marine
propeller by Felli, Camussi & DiFelice (2011); regarding wind turbine wakes, the hub
vortex is detected in Schito (2012) by means of smoke visualizations. With the PIV
measurements carried out in Zhang et al. (2012), the hub vortex is observed up to a
downstream distance of 1.5d.

Further downstream, several instabilities of wind turbine wakes are observed (see
e.g. Medici & Alfredsson 2008 and Felli et al. 2011), which can affect the wake
recovery and increase fatigue loads for downstream wind turbines within a wind farm.
In the so-called transitional region, the helicoidal tip vortices show an instability
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that is mainly driven by the mutual inductance between adjacent spirals. With the
theoretical instability model of a helical vortex filament proposed by Widnall (1972),
three instability modes are predicted: short-wave instability, long-wave instability and
mutual-inductance instability. In Felli ef al. (2011), via water tunnel visualizations of a
marine propeller wake, all these three instability modes are found to be superimposed.

Joukowski (1912) considered a wake produced from a blade with a constant
circulation along the blade span, which is composed of helicoidal tip vortices and
root vortices. This vortex system is found to be unconditionally unstable, but it
becomes stable if the trailing vortex sheet is also considered. Okulov & Sgrensen
(2007) performed a linear stability analysis of helicoidal tip vortices, also including a
vorticity field mimicking the presence of the hub vortex. These authors found that the
stability of the tip vortices is strongly affected by the radial extent of the hub vortex
and by its vorticity distribution. Furthermore, it is shown that the interaction between
the hub vortex and the helicoidal tip vortices stabilizes the latter, otherwise they are
always unstable and not affected by the number of blades and by the characteristics
of the vorticity structures (see e.g. Levy & Forsdyke 1928; Widnall 1972; Gupta &
Loewy 1974; Okulov 2004; Okulov & Sgrensen 2007). Ivanell et al. (2010) carried
out a stability analysis of helicoidal tip vortices, with large eddy simulations of
the Navier-Stokes equations using the actuator line model, and introducing small
harmonic perturbations close to the blade tips. They found dispersive instabilities at
several specific frequencies, and vortex pairing was also detected. Typically, helicoidal
tip vortices diffuse more rapidly if immersed in a boundary layer flow; see e.g. Lu &
Porté-Agel (2011) and Porté-Agel et al. (2011). In Zhang et al. (2012) the helicoidal
tip vortices are detected up to a distance of 2d.

Downstream with respect to the destabilization of the helicoidal tip vortices, Felli
et al. (2011) found that the hub vortex also becomes unstable. By proceeding
further downstream, the hub vortex starts oscillating sinusoidally, according to a spiral
geometry, until breakdown occurs. This oscillation occurs with a frequency equal to
that of the rotor, and is found to be independent of the number of blades. These
authors hypothesize that the hub vortex instability can be excited by the perturbations
produced by the instability of the helicoidal tip vortices. A low-frequency instability
is also detected from wind tunnel tests of wind turbine models; see e.g. Medici &
Alfredsson (2006, 2008), Chamorro & Porté-Agel (2010) and Zhang et al. (2012). In
Medici & Alfredsson (2008) this low-frequency instability, called wake meandering
or wandering, is equal to 0.29 times the hub rotational frequency, and is ascribed to
transversal oscillations of the wind turbine wake, which may be excited by the vortex
shedding from the rotor disc in a similar way as for bluff bodies. This low frequency
is found to decrease with increasing tip speed ratio of the turbine and with increasing
thrust coefficient. In Chamorro & Porté-Agel (2010) and Zhang et al. (2012), the
low-frequency spectral component connected to wake meandering is equal to 0.34
times the hub rotational frequency, and it can be detected up to a downstream distance
of 1.5d.

Further downstream, hub vortex breakdown occurs, as documented in Klein, Majda
& Damodaran (1995) and Ortega, Bristol & Savas (2003). Sarpkaya (1971) and Felli
et al. (2011) found that the hub vortex breakdown occurs as a double helix with the
same rotation sense as the rotor.

In the far wake the helicoidal tip vortices and the hub vortex are completely
diffused, and the streamwise velocity field shows a smooth quasi-Gaussian shape,
with the location of the peak of the streamwise velocity deficit in correspondence to
the hub height. Due to this wake feature, several analytical wake models have been
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proposed for the far wake (see e.g. Burton er al. 2001), which are mainly used for
wind farm design. For cases of a wind turbine immersed in the boundary layer, the
mean streamwise velocity component is skewed due to the oncoming boundary layer
flow, but it recovers to an axisymmetric shape if the oncoming wind is subtracted, as
shown in Chamorro & Porté-Agel (2009). By moving downstream the wake gradually
recovers with increasing wake width and decreasing velocity deficit.

In the present work linear stability analysis of wind turbine wakes is performed
by using as a base flow velocity measurements averaged in time, which were carried
out in a wind tunnel for a down-scaled wind turbine model. The main goal of
this work is the physical characterization of the hub vortex low-frequency instability
observed experimentally in the near wake. Both temporal and spatial linear stability
analyses were performed; moreover, the Gaster transformation was also considered in
order to produce a first approximation of the results then obtained through the spatial
stability analysis. The stability properties of the experimental mean flow have been
investigated in detail, and the results are used to reconstruct the mode associated
with the instability of the hub vortex. The reconstructed mode has been successively
assessed through further dedicated wind tunnel tests.

The work is organized as follows. Wind tunnel velocity measurements of wakes
produced by a down-scaled wind turbine model with a uniform flow are described in
§ 2. The numerical formulation of the linear stability analysis is presented in § 3, while
results of the temporal stability analysis are reported in § 4. The spatial linear stability
analysis is then described in § 5. Concluding remarks are presented in § 6.

2. Wind tunnel measurements of wind turbine wakes
2.1. Set-up

Velocity measurements of wind turbine wakes were performed in the boundary layer
wind tunnel of the Wind Engineering and Renewable Energy Laboratory (WIRE)
of the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The facility
is an open loop wind tunnel with an inlet providing a contraction with 4:1 area
ratio. Several turbulence devices consisting of coarse meshes and honeycomb flow
straighteners are used to increase flow quality. The wind tunnel consists of three
different test sections: the section used for this work is the first one downstream
of the inlet, which has a length of 28 m, a width of 2.5 m and a height of 2 m.
This testing chamber provides an adjustable ceiling in order to eventually change the
pressure gradient along the streamwise direction; for this work the pressure gradient
was negligible (dC,/dx ~ —0.1% m™"). The flow is produced by a single fan with
a power of 90 kW, producing a maximum velocity of ~7 m s~! with a minimum
turbulence level of 2 %. A three-degrees-of-freedom traversing system allows probes to
be positioned with an accuracy higher than 0.1 mm.

The wind turbine down-scaled model used is a three-bladed GWS/EP-6030x3
anticlockwise. The rotor, with a diameter, d, of 152 mm, is connected to a DC
motor with a diameter of 10 mm. The wind turbine model is mounted with a stem of
height 127 mm, which is in turn placed on a vertical support with a NACA 0018 cross-
section and height of 500 mm. This set-up enables the turbine to be placed outside
the boundary layer, thus allowing it to have a uniform oncoming flow. A sketch of
the experimental set-up is shown in figure 1. Typically for the tests considered here,
the tip speed ratio of the turbine (TSR), which is the ratio between the speed of the
blade tip and the oncoming velocity at hub height, U, is 4.7. The turbine’s rotational
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FIGURE 1. Sketch of the experimental set-up.

velocity was monitored through a laser tachometer manufactured by Monarch with an
accuracy of ~10 r.p.m. For these tests the mean rotational frequency, f,.,, was 57 Hz,
with average fluctuations of 2.7 % of the mean value. The velocity at hub height is
5.8 m s~! and the turbulence level is equal to 7 %, which was obtained by removing
one of the three turbulence screens located in the wind tunnel relaxation chamber. A
Reynolds number of 60800 is obtained by considering Uy, as reference velocity, and
the rotor diameter, d, as reference length.

The wind tunnel flow velocity was measured via two Pitot static tubes located near
the entrance and end of the testing chamber; the Pitot tubes were in turn connected
to two SETRA 239 transducers. Atmospheric pressure into the testing chamber was
measured with a SETRA 276 transducer, and the static temperature was measured
with a Pt100 Eliwell SN206000. All the analogue signals were acquired with three NI
PXI-6143 data acquisition systems.

Measurements of three components of the velocity were performed with a
customized Cobra probe produced by Turbulent Flow Instrumentation, which is a
four-hole pressure probe. This probe, with an external diameter of 1.5 mm, can
measure velocity fluctuations characterized by frequencies lower than 300 Hz. The
maximum admissible angle between the probe stem and the wind direction is ~45°.
This miniaturized version of the Cobra probe allows us to obtain accuracy higher than
2% in the velocity module and ~1° for pitch and yaw angles. Cobra measurements
were typically carried out with a sampling frequency of 5 kHz and a number of
samples equal to 2.

Wake measurements were also performed with hot-wire anemometers, both single-
component (DANTEC 55P11) or cross-wire probes (DANTEC 55P61). For the
simultaneous hot-wire measurements presented in §5, hot-wire probes with right-
angled prongs and with the sensor perpendicular to the probe axis were used
(DANTEC 55P14). These probes were introduced from the wake side in order
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FIGURE 2. Mean velocity field of the wind turbine wake: (a) radial velocity, U,; (b)
azimuthal velocity, Uy; (c¢) non-dimensional axial vorticity, w,; (d) axial velocity, U,. These
data are obtained with the Cobra probe, except for x/d = 0.5 HWA, obtained by hot-wire
anemometry.

to reduce intrusiveness of the measuring system. The hot-wire anemometers were
connected to an A.A. Lab Systems AN-1003. Their calibration was performed
by setting the probes on a StreamLine Pro Automatic Calibrator manufactured by
Dantec, which guarantees flow accuracy higher than 1%. Hot-wire measurements
were typically carried out with a sampling frequency of 20 kHz and a number of
samples equal to 2%!. Statistics of the hot-wire measurements were generally in good
agreement with those performed with the Cobra probe (see figure 2); however, their
higher-frequency resolution allowed more accurate spectral analyses to be performed.

The reference frame used has its origin placed just behind the hub of the wind
turbine, with the x-axis corresponding to the streamwise direction, positive pointing
downstream. The z-axis is along the vertical direction, positive from the bottom
towards the top, while the y-axis is along the spanwise direction oriented so as to
produce a right-handed Cartesian coordinate system.

Velocity measurements were performed from a downstream distance of 0.125d up to
20d. For each downstream location considered, two-dimensional maps were measured
with an area of 1.5d x 1.5d with a spacing between adjacent points of ~0.025d.
Moreover, measurements over the horizontal and vertical planes passing through the
hub location were performed with a higher resolution along the streamwise direction.
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2.2. Velocity measurements

As already proven in previous experimental and numerical works (Alfredsson &
Dahlberg 1979; Vermeer, Sgrensen & Crespo 2003; Medici & Alfredsson 2006) and
confirmed by the present experimental campaign, the wake velocity field produced by
a wind turbine immersed in a uniform flow can be considered to be axisymmetric
with respect to the axis passing through the hub location and directed along the
oncoming wind direction, i.e. the x-axis. Two-dimensional measurements performed
over transversal planes located at different downstream locations, not reported here
for the sake of brevity, confirmed that velocity profiles are invariant for different
azimuthal orientations of the traverses. A small wake produced by the wind turbine
stem is detected in the very near wake; however, it is completely recovered at the
downstream locations considered for this investigation. Moreover, the radial velocity is
also found to be practically negligible, as shown in figure 2(a). Therefore, the wake
flow can be completely characterized through the axial and azimuthal velocities as a
function of the radial and streamwise positions. In figure 2 the radial velocity, U,,
the mean azimuthal velocity, Uy, the non-dimensional axial vorticity, w,, and the axial
velocity, U,, are shown as a function of the radial position and for several downstream
locations considered for the linear stability analysis. For the sake of brevity, only the
mean velocity obtained via the Cobra probe measurements is presented; however, the
velocity obtained from the two component hot-wire anemometry is practically equal,
i.e. with differences lower than 1% for each location, as shown in figure 2 for the
measurements carried out at the downstream location x/d = 0.5.

In figure 2(b) significant peaks of the azimuthal velocity are detected for radial
positions r/d =~ 0.15, which are connected to the rotational velocity induced by
the hub vortex, which is a vorticity structure mainly oriented along the streamwise
direction. Indeed, a dominant peak of the axial vorticity is typically detected in
figure 2(c) corresponding to the wake centre, and it is shielded by a ring-like negative
vorticity structure, which is the result of the time-averaging of the helicoidal tip
vortices. The hub vortex produced by a rotor has already been detected in the near
wake by several experimental works, e.g. Felli et al. (2011) and Zhang et al. (2012).
The azimuthal velocity connected to the hub vortex and its related axial vorticity
are rapidly reduced by moving downstream, and the hub vortex can be considered
as completely diffused for downstream distances larger than 4d. Secondary peaks of
the azimuthal velocity are also observed for radial positions approximately equal to
r/d ~ 0.5, which are related to the presence of the helicoidal tip vortices. Further, the
azimuthal velocity connected to the tip vortices is decreased by moving downstream,
and at x/d =4 it is practically diffused.

In figure 2(d) the axial velocity field shows a significant deficit in correspondence to
the wake centre, which gradually recovers by moving downstream, while wake width
increases. A velocity deficit connected to the presence of the helicoidal tip vortices
is also observed in the near wake at r/d ~ 0.5, but it disappears as the helicoidal tip
vortices diffuse.

Spectral analysis of the velocity signals acquired in the wind turbine wake clearly
shows the presence of two main spectral components, as presented in figure 3: a low
frequency, which is typically detected in correspondence to the wake core within a
radial distance of about r/d ~ 0.2, and a high frequency related to the shedding of
the tip vortices. In the present investigation the high frequency connected to the tip
vortex shedding is 171 Hz, which is equal to three times the rotational frequency of
the turbine (a three-bladed model was tested). On the other hand, the spectral energy
detected in the central part of the wake has a frequency of ~20 Hz. This frequency,
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FIGURE 3. Fourier power spectral density of the velocity signals acquired at x/d = 0.5,
z/d = 0, and different radial locations.

which could be connected to the hub vortex oscillations, is equal to 0.34 times the
hub rotational frequency, which is in good agreement with results of previous works,
e.g. Medici & Alfredsson (2008), Chamorro & Porté-Agel (2010) and Zhang et al.
(2012). This low-frequency spectral contribution corresponds to a non-dimensional
frequency of w = 2nfd/U,,, = 3.18. In figure 4 the average power spectral density
obtained from two-dimensional measurements performed in the wake core within
a radial distance of r/d = 0.2 is reported for several downstream locations. It is
shown that the spectral energy connected to this low-frequency component increases
by moving downstream up to x/d = 1, then further downstream its energy starts to
decrease.

Tests were also performed by setting different values of the tip speed ratio (TSR).
Spectral analysis of the velocity signals, briefly summarized in table 1, shows that
both the frequency connected to the helicoidal tip vortices and that related to the hub
vortex vary roughly linearly with the rotational frequency of the rotor, f,,. This result
indicates that the dynamics of these vorticity structures are dependent on the wake
swirl, and confirms an outcome presented in Felli ef al. (2011), where an invariant hub
vortex frequency was detected by changing the tip vortex frequency by means of a
different number of rotor blades.

3. Linear stability analysis: formulation of the numerical problem

In this section the classical local linear stability theory of shear flows is presented,
which is related to the development in space and time of infinitesimal perturbations
on a given base flow. The base flow is assumed to be quasi-parallel and slowly
evolving along the streamwise direction. Flow fluctuations are typically decomposed
into elementary instability waves of axial and azimuthal wavenumbers k and m,
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FIGURE 4. Average power spectral density obtained from two-dimensional velocity
measurements performed within the wake core with a radius of r/d = 0.2, and evaluated
for different downstream locations.

Case Uhuh (m Sil) TSR fhub (HZ) ﬁip vortices (HZ) ﬁzub vortex (HZ)
1 5.8 7.6 92 276 31.5

2 5.8 53 65 195 21.5

3 5.8 4.7 57 171 20

4 5.8 32 39 118 17

TABLE 1. Spectral analysis for the tests performed with different TSR values.

respectively, and frequency w. The perturbations satisfy an ordinary differential
equation of Orr—Sommerfeld type. Enforcement of appropriate boundary conditions
then leads to an eigenvalue problem, whereby eigenfunction solutions for the
perturbations exist only if k, m and w satisfy a dispersion relation of the form

Dlk, m, ] = 0. 3.1)

Temporal modes refer to cases where the complex frequency w is determined as a
function of real wavenumbers k and m. Conversely, spatial branches are obtained by
solving the dispersion relation with complex wavenumbers k, whereas m and w are
real numbers.

The base flow used for the linear stability analysis was obtained by averaging
in time the above-mentioned wind tunnel velocity measurements, as was done by
Oberleithner et al. (2011) to study the breakdown of swirling jets. Although the mean
flow does not represent an equilibrium point for the system, accurate results can be
obtained by a stability analysis, as proven in Barkley (2006), Leontini, Thompson
& Hourigan (2010) and Camarri, Fallenius & Fransson (2013), for example. The
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relevance of considering the stability of the time-averaged flow was assessed by
Sipp & Lebedev (2007) theoretically close to onset of instability. In the presence
of background turbulence, despite the lack of a solid theoretical framework, stability
analyses of mean flows were observed to accurately compare with experimental
observations by Monkewitz (1988) and Meliga, Sipp & Chomaz (2009), for instance.

The wind turbine wake flow is practically axisymmetric and has a negligible radial
velocity: see §2. Moreover, according to the local nature of the present stability
analysis, for each section the flow is considered to be invariant for translations along
the x-axis. Let us consider the base flow expressed in cylindrical coordinates:

U, 0
| Us | | r2(n)
U= v =l wo | (3.2)
P P(r)

where U, is the streamwise velocity, U, is the azimuthal velocity, U, is the radial
velocity and P is the pressure field. The radial velocity, U,, is identically null, while
the azimuthal velocity, Uy, is proportional to the the angular velocity, £2.

According to the linear stability analysis, the evolution of small perturbations can be
described by the Navier—Stokes equations linearized on the base flow. Let us consider
the normal modes expansion of the perturbation:

u(r,0,x, 1) =a(r, e+ (3.3)

where k is the axial wavenumber, m is the azimuthal wavenumber and i is the
imaginary unit. The expansion in normal modes imposes a helicoidal symmetry
on the perturbation, allowing us to investigate each Fourier component separately
by solving the corresponding one-dimensional problem for each pair (k,m). The
continuity equation and the momentum equations in cylindrical coordinates are

10(ru,) im .
- + —up + iku, =0, (3.4a)
r dr r
a ap 1 u, 2im
<3t + En,k) u, — 282uy = _E + R76 (Am,kur - ﬁ - r2”9> > (3.4b)
' ir + (P22 a0 (A o 2m Y B
— k| U r— Uy = —— — millo — — + —u, |, B.4c
ot ) or 7T Re KR r?
0 ow 1
—+ 1, .+ —u, = —ik — (Al 3.4d
(azJr ’k>”+ar” i + gy (Bt (34d)
where I, and A, ; are expressed as follows:
L (r) =1m82 (r) + kW (r), (3.5a)
A=t 22N e (3.5b)
mk= "\ | ——5 — k. ’
T rar Uar r?

In order to solve numerically the equation system (3.4), a reduced formulation is
obtained by using the variable v = (u,, ug)T,

Foy=12" 1 co— Lpv=o0 (3.6)
v)=L— v — —Dv=0, )
at Re
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where the operators are defined as follows:

l 0
L= > +b,b7, (3.7a)
-282
ow
+b1Fm,kbg _bl <’0> ’ (37b)
r— +22 T ar
2im
2 T
( 21m 1 + b1 Am,kbz , (37C)
m.k - ﬁ
1 1m
T =—(—,—), 3.7d
b ik ar r ( )
1 /0 1 im
b=—(—+-,—|. 3.7
2 ik<8r+r’r> (3.7¢)

For the stability analysis, a code based on a Chebyshev spectral collocation method
is used: see Antkowiak (2005) for more details. The Gauss—Lobatto—Chebyshev
collocation grid is mapped into the infinite physical space through algebraic map
r=L¢/y/1 — 2 (Canuto et al. 1993), where the parameter L is set in order to fix the
second-to-last and the second point to r,, and —r,,,, respectively. Moreover, taking
into account the parity of the functions in the expression of the derivatives (Kerswell
& Davey 1996), and imposing the boundary conditions at infinity, the equations are
discretized in the finite domain ]0, 7,,,,]. The computational sensitivity related to the
number of collocation points, N, and the size of the physical domain was investigated,
but for the sake of brevity these results are not reported here. The selected settings
with N =120 and r,,,, = 50 are seen to provide the convergence of the most unstable
eigenvalue with five-digit accuracy, which is deemed to be sufficient for the present
purposes. For the stability analysis the same Reynolds number was used as in the
experimental measurements, i.e. 60800; indeed, the equations used were made non-
dimensional by using Uy, and d as reference dimensions.

The experimental data were fitted with spline functions in order to produce an
adequate spatially resolved base flow for the stability analysis. Different fitting
methods were tested and they were observed not to affect the results of the stability
analysis.

4. Temporal stability analysis

Temporal stability analysis allows the investigation of the temporal evolution of
disturbances on a base flow within a volume large enough to include the complete
disturbance: see Schmid & Henningson (2001). After a transient period the evolution
of the perturbations is dominated by the less damped mode, which is in the form e~
with w € C. In particular, if w; = Im(w) > 0, the corresponding mode is unstable with
a growth rate equal to w;, while @, = Re(w) is the frequency related to the propagating
harmonic mode (Lighthill 1978). Considering harmonic perturbations in time, equation
(3.6) becomes

1
F,(v) = —wilv + Cv — R—Dv =0. 4.1)
e
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FIGURE 5. Growth rates (w,,;) of the unstable modes as a function of the axial wavenumber
k for the downstream location x/d = 1.

In order to carry out the temporal stability analysis, (4.1) is integrated with k € R,
m € R and w € C. By considering normal mode expansion, as in (3.3), positive values
of m correspond to modes winding in the opposite direction with respect to the
rotation inferred by the hub vortex; see Gallaire & Chomaz (2003) for a more detailed
discussion. For each pair (k, m), solving (4.1) is equivalent to solving the following
generalized eigenvalue problem:

A(k)v = wB(k)v 4.2)

where, referring to (4.1),

Ak)=C-— iD B(k) =iL. 4.3)
Re

The growth rates w,, ;(k) of the unstable modes calculated as a function of the axial
wavenumber, k, and different m are shown in figure 5. For the downstream location
x/d =1 considered, the modes are unstable for k < 82 and for values of m up to 42.
The maximum growth rate connected to the most unstable mode is in good agreement
with the value predicted via the Leibovich—Stewartson instability criterion. The latter is
a generalization of the Rayleigh criterion and provides a necessary instability condition
for a rotating inviscid vortex in the presence of axial flow (Leibovich & Stewartson
1983). As for the above-mentioned criterion, the vortex is unstable when the following
sufficient condition is satisfied:

W 2Uy(rDUy — U,)(U2/1* — (DUy)* — (DU,)?) .
! (rDU, — U,)* + r»(DU,)*

where D is the spatial first derivative along the radial direction. Moreover, when the
inequality (4.4) is satisfied for a certain value of r, that relation provides the square
of the growth rate of the most unstable mode corresponding to an eigenfunction
with a certain characteristic size, r: see Gallaire & Chomaz (2003) for details.
Figure 6 shows that the Leibovich—Stewartson instability criterion, evaluated for the

0, 4.4)
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FIGURE 6. Growth rate predicted via the Leibovich—Stewartson instability criterion for the
measurements carried out at x/d = 1.

measurements carried out at x/d = 1, predicts instability for every radial position with
the highest values in proximity to the azimuthal velocity peak connected to the hub
vortex (see figure 2a). The growth rate of the most unstable mode predicted via the
Leibovich—Stewartson criterion is ~0.8, which confirms the result obtained with the
temporal stability analysis shown in figure 5.

The main goal of the present work is the characterization of the low-frequency
spectral component detected through the wind tunnel velocity measurements carried
out into the core of the wind turbine wake, which are interpreted as the effect of
an instability of the hub vortex. To this end, in figures 7 and 8 the growth rate
w; is plotted as a function of the non-dimensional frequency, w,, for the different
downstream locations analysed. In these figures the non-dimensional frequency related
to the above-mentioned low-frequency instability is indicated by a vertical dashed line
corresponding to the value 3.18, obtained from the spectral analysis of the velocity
signals (see figures 3 and 4).

Starting from the location x/d = 0.5, the selected unstable mode corresponding to
the non-dimensional frequency related to the hub vortex instability is m =1, i.e. a
counter-winding single-helix mode. However, the unstable mode m =1 is not the
one with the highest growth rate overall. For the unstable high-frequency modes,
the diffusive contribution of the turbulent fluctuations, which is neglected in the
present stability analysis, is expected to damp them significantly, in particular as m
increases, so as to change the picture given in figure 5. Indeed, one of the simplest
ways to take into account this effect in the stability analysis might be to include an
eddy viscosity turbulence model in (3.4). Assuming, in its simplest approximation, a
constant eddy viscosity model would be equivalent to reducing the effective Reynolds
number of the stability analysis and, in turn, this would decrease the growth rate
of the unstable modes depending on m; indeed, the viscous terms scale as m?. This
aspect, which is delicate and mentioned here only very briefly, is the object of on-
going investigations by the authors, and at present the interpretation provided here is
confirmed by preliminary results.

By moving downstream, the scenario remains practically unchanged with a general
reduction of the growth rate for all unstable modes. However, at the downstream
position of x/d = 2.5, the non-dimensional frequency corresponding to the hub vortex
instability starts selecting the mode m = 2, i.e. the counter-winding double-helix mode.
For the location x/d =4 the mode m =4 is selected. In order to provide a physical
interpretation of this stability analysis, several factors should be considered. First, the
growth rates generally decrease by moving downstream, as shown in figure 9 for the
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FIGURE 7. Growth rate as a function of the non-dimensional frequency for downstream
locations from x/d = 0.5 up to x/d = 1.75. The vertical dashed line corresponds to the
non-dimensional frequency measured experimentally and related to the hub vortex instability:
(a)x/d=0.5; (b) x/d =0.75; (¢c) x/d = 1; (d) x/d = 1.25; (e) x/d = 1.5; (f) x/d = 1.75.

mode m = 1. Moreover, the hub vortex diffuses rapidly by moving downstream, as
shown by the experimental measurements in figure 2. Therefore, the unstable mode
with m = 1 should dominate because it is the mode selected through the hub vortex
instability frequency (w, = 3.18) in the very near wake, which is a wake region where
the hub vortex has a significant vorticity.

The temporal analysis suggests that in the near wake the hub vortex is characterized
by a single-helix counter-winding instability, i.e. m = 1. Furthermore, by considering
that , is positive, the helicoidal unstable mode is rotating in the same direction as the
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FIGURE 8. Growth rate as a function of the non-dimensional frequency for downstream
locations from x/d = 2 up to x/d = 4. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability:
(a)x/d=2; (b) x/d =2.25;(c) x/d =2.5; (d) x/d = 2.75; (e) x/d = 3; (f) x/d = 4.

hub vortex. By moving downstream the hub vortex diffuses, and unstable modes with
higher values of m could be selected, even with decreasing growth rates. This mode
competition will be better investigated in the following section by means of the spatial
stability analysis.

5. Spatial stability analysis and characterization of the hub vortex instability

This section is devoted to the spatial stability analysis of disturbances generated
at a fixed position within a wind turbine wake and evolving downstream. In the
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FIGURE 9. Growth rate as a function of the non-dimensional frequency for the mode
m =1 and different downstream locations. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

temporal setting of §4, the mode m =1 could not be singled out, although it was
seen to ‘resonate’ well at the frequency observed in the experiments. In order to better
elucidate this mode selection, a spatial stability analysis is more suitable, since it is
adapted to convectively unstable flows submitted to incoming noise. These flows are
known to act as selective amplifiers. The weakly non-parallel spatial stability theory is
the preferred analysis tool to better understand this selection.

Note, however, that a spatial stability analysis is only justified if the flow is
convectively unstable. We have therefore checked that the flow is not absolutely
unstable for x/d > 0.5 where the present analysis applies. The presented measurements
do not allow us to determine the nature of the instability closer to the hub, where a
backflow region could be expected. We can therefore only speculate on the existence
of a sufficiently extended pocket of absolutely unstable flow in the very near-wake
region as the origin of the sharp frequency selection observed at x/d = 0.5 and
beyond, through the development of a self-sustained steep nonlinear global mode (Pier
& Huerre 2001; Chomaz 2005). While it cannot elucidate the detailed origin of the
spectral signature, the spatial stability analysis of the convective region is perfectly
valid: it will be seen to be very useful in characterizing the spatial structure of the
mode.

The numerical formulation of the spatial stability analysis is analogous to that
of the temporal analysis (see (4.1)), with the exception that a complex streamwise
wavenumber, k, and a real frequency, w, are now considered. Therefore, the spatial
stability analysis consists of a nonlinear polynomial eigenvalue problem, as follows:

Ap(@)V + kA (0)v + KAy (0)v + A5 (0)v + K*As(w)v = 0. (5.1)

The negative of the imaginary part of k, —k;, is the spatial amplification rate, whereas
its real part, k., corresponds to the streamwise wavenumber of the travelling wave,
whose frequency is given by w.
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The solution of the equation (5.1) leads to a blow-up of spurious eigenvalues due
to numerical discretization, which makes it difficult to detect the correct eigenvalue
with physical significance. However, unstable waves propagating downstream are
characterized by a positive axial phase velocity, ¢, = w/k,, and a negative growth
rate, k;. Thus, for positive w the eigenvalues of interest are located in the fourth
quadrant, i.e. with k, > 0 and k; < 0. To overcome issues related to detection of the
correct eigenvalue among many spurious ones, the solution of (5.1) is evaluated by
searching for the eigenvalue closest to the one predicted via the Gaster transformation.
The Gaster relation allows us to relate the temporal growth rate to the spatial growth
rate in the vicinity of marginal stability: see Gaster (1962). In fact, the same dispersion
relation is considered for the temporal analysis and spatial analysis, but it is solved for
different variables. On the neutral curves temporal and spatial results are coincident,
since k; = w; =0 and (k, w) € R. For small imaginary parts a Taylor series expansion
in the neighbourhood of the neutral curves is used. The Gaster relation is

o = —c.k>, (5.2)
which states that in the limit of small imaginary parts the temporal growth rate, ",
and the spatial growth rate, —kfs), are related by the group velocity, c,. Therefore,
an approximation of the spatial instability results can be obtained from the temporal
analysis via the Gaster transformation.

For the spatial stability analysis, growth rates —k;(w,, m) of the unstable spatial
modes are represented as a function of the non-dimensional frequency, w,, for different
m and downstream locations. In figures 10 and 11 the dashed lines represent the
results of the Gaster approximation, whereas the solid lines correspond to the values
—k; obtained from the spatial stability analysis. For downstream locations x/d > 1.75
the dashed and solid lines in figures 10 and 11 are practically coincident; in fact,
the Gaster transformation and the spatial stability analysis produce roughly the same
results, despite the large values of the spatial growth rate, —k;. For the downstream
location x/d = 0.5 the Gaster relation significantly underestimates the growth rate
obtained with the spatial analysis. This discrepancy is mainly due to the large values
of k; and to the strong wake velocity deficit observed at this downstream location.
Indeed, the Gaster transformation produces more accurate results for convectively
dominated flows: see e.g. Olendraru et al. (1999), Schmid & Henningson (2001) and
Olendraru & Sellier (2002). Furthermore, as mentioned above, it has been verified
that the strong peak of the spatial growth rate for m =1 at x/d = 0.5, obtained
from the spatial stability analysis, is not related to an absolute instability; indeed, no
intersection in the complex plane k. — k; between the positive and negative branches,
k™ and k=, was detected; see Huerre (1998), Olendraru et al. (1999), Schmid &
Henningson (2001) and Olendraru & Sellier (2002) for details.

The results obtained with the spatial stability analysis are qualitatively similar to
those obtained with the temporal stability analysis presented in § 4. By considering the
low-frequency instability connected to the hub vortex, indicated in figures 10 and 11
by a vertical dashed line corresponding to w, = 3.18, it is evident that for downstream
locations from x/d = 0.5 up to x/d = 2.75 the selected unstable mode is the one with
m = 1. Further downstream, i.e. at x/d ~ 3, the most unstable mode switches to m =2
but with a much smaller spatial growth rate. At x/d =4 the selected mode is the one
with m = 4.

In order to determine the dominant unstable mode related to the low-frequency
instability of the hub vortex, the growth rates corresponding to w, = 3.18 for the
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FIGURE 10. Growth rate evaluated via the Gaster approximation (dashed line) and spatial
stability analysis (solid line) as a function of the non-dimensional frequency for downstream
locations from x/d = 0.5 up to x/d = 1.75. The vertical dashed line corresponds to the
non-dimensional frequency measured experimentally and related to the hub vortex instability:

(a)x/d =0.5; (b) x/d =0.75; (c) x/d = 1; (d) x/d = 1.25; (e) x/d = 1.5; (f) x/d = 1.75.

modes with m =1 and m = 2 are plotted in figure 12 as a function of the streamwise
location. Then, the integral amplification factor is evaluated for the two modes m =1
and m =2, as proposed by Oberleithner et al. (2011) and Juniper, Tammisola &
Lundell (2011), according to

X
G(w, m) = exp (/ ' —ki(w, m, X") dX’) ) (5.3)
X

0
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FIGURE 11. Growth rate evaluated via the Gaster approximation (dashed line) and spatial
stability analysis (solid line) as a function of the non-dimensional frequency for downstream
locations from x/d = 2 up to x/d = 4. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability:
(@) x/d=2;(b)x/d=2.25;(c)x/d =2.5;(d) x/d =2.75; (e) x/d = 3; () x/d = 4.

where Xy is the streamwise position where the flow re-enters in a stable domain,
and G(w, m) represents the overall amplification of the mode m at the frequency w
within the wake, after it has gone through its entire amplification process. This integral
amplification factor, computed from the position x/d = 0.5 up to x/d = 4, is equal
to 6.6 for the unstable mode with m = 1, and for the mode with m =2 it is 2.47,
thereby suggesting the predominance of the m = 1 mode, i.e. a counter-winding single-
helix structure. Using this simple procedure, the integral amplification factor can be
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FIGURE 12. Spatial growth rates of the unstable modes with m = 1 and m = 2 as a function
of the downstream location, x, corresponding to the non-dimensional frequency w, = 3.18.
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FIGURE 13. Integral amplification factor of the unstable mode with m = 1 as a function of
the pulsation w,.

systematically determined as a function of the frequency for the single helical mode,
as shown in figure 13. It is striking to observe that the counter-winding single-helix
mode is not only the most amplified in this frequency range, but it reaches its
maximum amplification at a frequency very close to the one observed experimentally.
While the present analysis does not reveal the origin of the sharp frequency selection
mechanism observed in the experiments, this shows that the most amplified frequency
downstream from x/d = 0.5 matches the one measured in our experiments.

With the spatial stability analysis, the real part of k, k,, represents the axial
wavenumber of the respective unstable mode. In figure 14, k, is plotted as a function
of the non-dimensional frequency, w,, for several downstream locations, considering
different values of m. For the selected mode with m = 1 representing the hub
vortex instability, the axial growth rate is ~4.5 and it is slightly reduced by moving
downstream, except for the position x/d = 0.5 where k, = 6.31 is obtained. Therefore,
the single-helix instability of the hub vortex is characterized by an axial wavelength,
A/d =2m/k,, of ~1 at x/d = 0.5, and then it is increased by moving downstream with
a value of 1.65 at the location x/d = 4.
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FIGURE 14. Axial wavenumber, k,, evaluated via the spatial stability analysis as a
function of the non-dimensional frequency. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability:
(@)x/d=0.5; (b)x/d=1;(c) x/d =1.5;(d) x/d =2; (e) x/d = 3; (f) x/d = 4.

It is now possible to perform the reconstruction of the single helix global mode
representing the hub vortex instability by integrating the unstable eigenmode m =1 in
the x-direction, in agreement with (5.4) (see Oberleithner et al. 2011; Juniper et al.
2011):

X

u(x,r,0,1)~Re {AO(X)ﬁ(r, X)exp [i (/
X

0

kX', ) dX' + mo — wt>] } (5.4)

where k is the complex wavenumber, w is the instability frequency and & gives the
eigenmodes at the X-position normalized using the Euclidean norm, and phase-aligned
at the characteristic vortex radius. The slowly varying amplitude Ay(X) could be
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considered uniform to first order, in agreement with the WKBJ formulation. The
axial vorticity of the local unstable mode with m =1 is plotted in figure 15. These
vorticity structures clearly represent a coherent evolution of a single-helix unstable
mode, although these eigenfunctions were obtained from experimental data acquired
at different downstream locations. Finally, the global unstable mode with m =1 is
reconstructed along the x-direction, as for the axial vorticity reported in figure 16.

Further wind tunnel measurements were performed in order to provide experimental
evidence of this outlined helicoidal mode structure, and in particular to assess the
axial wavenumber predicted by the local stability analysis. To this end, simultaneous
measurements with two single-component hot-wire anemometers were carried out. For
these tests one probe was placed at the fixed location x/d = 0.13, y/d =0.1, z/d =0
and another probe was set on the traversing system, which allows displacements of the
probe along the x-direction, and at the transversal position y/d = —0.1 and z/d = 0.
In other words the two probes were symmetrically located with respect to the wake
centre and at a transversal distance where the spectral component related to the hub
vortex instability was typically detected with maximum energy. For each acquired
velocity signal, the spectral component of interest was extracted by using a filtering
technique based on proper orthogonal decomposition proposed in Iungo & Lombardi
(2011), with a frequency resolution of 5 Hz. This technique presents the advantage
in automatically detecting and extracting the dominant spectral component, thus
emphasizing the correlation between simultaneous signals by removing experimental
noise and other spectral contributions.

The cross-correlation coefficient between the extracted components from the velocity
signals acquired simultaneously on the two sides of the wake was then calculated for
different downstream locations. These tests were driven by the idea that when the
hub vortex is characterized by helicoidal instability, the cross-correlation coefficient
between the time series acquired on the two sides of the wake should follow a
harmonic function when one probe is placed at a fixed position and the other one
is moved downstream. Furthermore, the wavelength of the harmonic function detected
through the cross-correlation coefficient should reproduce the same axial wavenumber
as the helicoidal structure. Indeed, the cross-correlation coefficient evaluated for
different downstream locations clearly reproduces a harmonic trend, as shown in
figure 17, with a slightly reducing amplitude and increasing wavelength by moving
downstream, which can be connected to the diffusion of the hub vortex. Therefore, the
simultaneous hot-wire measurements confirm the presence of a helicoidal instability of
the hub vortex predicted by the linear stability analysis.

Moreover, the instantaneous wavelength of the cross-correlation coefficient as a
function of the downstream location is then computed via the Hilbert transform:
see Iungo & Lombardi (2011) for details. This parameter is plotted in figure 18
and compared to the results obtained with the spatial stability analysis, i.e. with
2mn/k, corresponding to the unstable mode with m =1 and at the non-dimensional
frequency corresponding to the hub vortex instability, @, = 3.18. The experimental
data generally confirm the results obtained with the linear stability analysis, i.e. the
hub vortex is characterized by a helicoidal instability with a wavelength A/d =1
at the downstream location x/d = 0.5. Then, it is gradually increased by moving
downstream up to a value A/d ~ 1.6 at x/d = 4. Slightly different results are found for
the locations 0.5 < x/d < 1.5, where the wavelength varies more rapidly. However,
both experimental data and linear instability results show good agreement and a
gradual increase of the streamwise wavelength with increasing streamwise distance
from the turbine location. By moving downstream, an increase of the wavelength
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FIGURE 15. Axial vorticity of the selected unstable eigenmode with m = 1 reconstructed via

the spatial stability analysis: (a) x/d = 0.5; (b) x/d = 0.75; (c) x/d = 1; (d) x/d = 1.5; (e)
x/d="2;(f)x/d=3.

of the unstable mode related to the hub vortex is connected to the diffusion of the
hub vortex and the imminent breakdown of this vorticity structure, which compares
well with previous works such as those of Sarpkaya (1971) and Felli et al. (2011).
Furthermore, from figure 17, and also from the Fourier spectra shown in figure 4,
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FIGURE 16. Reconstruction of the hub vortex instability corresponding to the mode with
m = 1. Iso-surface of the axial vorticity.

Cross-correlation coef.

FIGURE 17. Cross-correlation coefficient between hot-wire time-series acquired
simultaneously at y/d = £0.1 and z/d = 0 as a function of the streamwise location.

the energy content connected to the hub vortex instability decays in the downstream
direction, whereas the linear stability analysis predicts growth. This feature can be
ascribed to the linearity of the stability analysis, which does not take into account the
nonlinear saturation of the mode. Indeed, diffusive effects caused by Reynolds stresses
are neglected, which affects the estimated growth rates.

6. Discussion and final remarks

Wind tunnel measurements of a wake produced by a wind turbine immersed in
uniform flow showed the presence of an axial vorticity structure in the very near wake,
which is denoted as the hub vortex. The hub vortex is characterized by oscillations
with a frequency equal to 0.34 times the rotational frequency of the wind turbine
rotor. In previous works these flow fluctuations were ascribed to wake wandering or
meandering, which consists of transversal oscillations of the wind turbine wake. Wake
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FIGURE 18. Comparison of the axial wavelength of the global unstable mode evaluated via
the linear stability analysis and the simultaneous hot-wire measurements, HWA.

meandering was investigated in detail by Medici & Alfredsson (2008); in fact, these
authors stated that this phenomenon is mainly excited by the shedding of vorticity
structures from the rotor disc acting as a bluff body.

To further investigate the above-mentioned low-frequency wake instability detected
experimentally, linear stability analysis was performed. The evolution of perturbations
acting on a mean flow obtained using wind tunnel velocity measurements was
investigated. The temporal stability analysis showed that the most unstable mode
corresponding to the low-frequency instability of the hub vortex is characterized by a
single-helix counter-winding mode, rotating in the same direction as the hub vortex.
This result is obtained in the near wake up to a downstream distance of 2.5 rotor
diameters. Further downstream, unstable modes with a higher azimuthal wavenumber,
m, start to be dominant. However, by moving downstream, a reduction of the growth
rates of the unstable modes is generally observed. Therefore, possible competition
between different unstable modes can take place by moving downstream, while the
hub vortex is rapidly diffusing. It should be pointed out that the single-helix counter-
winding unstable mode (m = 1) is not always the one with the highest growth rate, but
it is generally the one corresponding to the experimentally measured frequency of the
spectral component connected to the hub vortex instability. This suggests that for the
wind turbine wake flow produced in the wind tunnel, unstable modes with a higher
azimuthal wavenumber are damped, and thus the dominating mode turns out to be the
one with m = 1. This reduction of the growth rates related to unstable modes with a
higher azimuthal wavenumber could be due to diffusive effects connected to turbulent
fluctuations, which are not taken into account in the linear stability analysis.

In order to investigate in greater depth possible competition between unstable
modes with a different azimuthal wavenumber, m, a spatial stability analysis was
performed, which is more suitable for convectively unstable flows. The spatial stability
analysis confirmed the results obtained from the temporal analysis, and in addition it
allowed us to determine by means of evaluation of the integral growth rate that the
dominant unstable mode has an azimuthal wavenumber equal to one (m = 1). The
global unstable mode characterized by a single-helix counter-winding structure has
been reconstructed, in particular characterizing the evolution of the axial wavelength
by moving downstream. Further hot-wire measurements were then performed to assess
experimentally the presence of helicoidal instability of the hub vortex. To this end,
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simultaneous hot-wire measurements were performed by placing two probes at hub
height, on both sides of the wake and at the same spanwise distance from the hub, i.e.
where the frequency connected to the hub vortex instability has the maximum energy.
During the tests one probe was placed at a fixed location, while the other one was
moved downstream. The spectral component connected to the hub vortex instability
was then extracted from the velocity signals. The cross-correlation coefficient between
the signals acquired simultaneously, evaluated as a function of the streamwise location,
has shown a harmonic trend confirming the presence of helicoidal instability of the
hub vortex. Furthermore, the local axial wavelength of this harmonic function obtained
from the cross-correlation coefficient accurately confirms the evolution of the axial
wavenumber of the most unstable mode predicted through the linear stability analysis.

The single-helix counter-winding unstable mode of the hub vortex obtained by this
linear stability analysis is in good agreement with the instability of the hub vortex
produced by a marine propeller visualized in Felli et al. (2011). The main difference
in comparison to the present work is that for the marine propeller the frequency
related to hub vortex instability is equal to the rotational frequency of the rotor,
whereas for the present experimental case this frequency is 0.34 times the rotational
frequency of the rotor, which is in good agreement with previous wind tunnel
investigations of wind turbine models, e.g. Medici & Alfredsson (2008), Chamorro
& Porté-Agel (2010) and Zhang et al. (2012).

While it is very tempting to attribute the sharp frequency selection typical of
oscillator behaviour to an absolutely unstable region in the near-wake region, this
could not be confirmed experimentally with the measurement techniques used at
present. Nevertheless, our study has revealed the following.

(i) The most amplified frequency downstream of x/d = 0.5 matches the frequency
measured in our experiments. This might be pure coincidence, or it might indicate
a selective noise amplification mechanism yet to be identified.

(ii) In contrast to most commonly accepted nonlinear global mode shapes predicted
from nonlinear front theories (see Chomaz 2005 for a review and Couairon &
Chomaz 1999 for a detailed analysis), the coherent structure observed in this
study does not display a sharp front located at the convective-to-absolute transition.
The spectral energy associated with the hub vortex is seen to increase up to
x/d =1 before it starts to decay, as is readily seen in figure 4. This observation is
consistent with the study of Felli et al. (2011), who have also observed that hub
vortex instability only starts at a downstream distance of a few rotor diameters.

Therefore, unravelling the detailed origin of the sharp frequency selection by
means of precise measurements in the very near-wake region constitutes a natural
continuation of this study, as well as a formidable experimental challenge.

Further wind tunnel tests and respective linear instability analyses are currently
underway in order to address more practical applications, such as the case of a wind
turbine immersed in a boundary layer flow, or the case of interaction of wind turbine
wakes within a wind farm.
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