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Editor’s key points

† Relative concentration of
haemostatic factors and
cytokine could vary
between different plasma
products.

† These parameters were
measured in 25 samples
of solvent/
detergent-treated
plasma and fresh-frozen
plasma (FFP).

† Mean concentrations of
most factors were similar,
but there was more
variability in FFP, which
also had higher factor (F)
V, F X, ADAMTS-13, von
Willebrand factor, and
cytokine concentrations.

Background. Indications, efficacy, and safety of plasma products are highly debated. We
compared the concentrations of haemostatic proteins and cytokines in solvent/
detergent-treated plasma (SDP) and fresh-frozen plasma (FFP).

Methods. Concentrations of the following parameters were measured in 25 SDP and FFP
samples: fibrinogen (FBG), factor (F) II, F V, F VII, F VIII, F IX, F X, F XIII, von Willebrand
factor (vWF), D-Dimers, ADAMTS-13 protease, tumour necrosis factor-a (TNF-a),
interleukin (IL)-1b, IL-6, IL-8, and IL-10.

Results. Mean FBG concentrations in SDP and FFP were similar, but in FFP, the range was
larger than in SDP (P,0.01). Mean F II, F VII, F VIII, F IX, and F XIII levels did not differ
significantly. Higher concentrations of F V (P,0.01), F X (P,0.05), vWF (P,0.01), and
ADAMTS-13 (P,0.01) were found in FFP. With the exception of F VIII and F IX, the range
of concentrations for all of these factors was smaller (P,0.05) in SDP than in FFP.
Concentrations of TNF-a, IL-8, and IL-10 (all P,0.01) were higher in FFP than in SDP,
again with a higher variability and thus larger ranges (P,0.01).

Conclusions. Coagulation factor content is similar for SDP and FFP, with notable exceptions
of less F V, vWF, and ADAMTS-13 in SDP. Cytokine concentrations (TNFa, IL-8, and IL-10)
were significantly higher in FFP. The clinical relevance of these findings needs to be
established in outcome studies.

Keywords: coagulation factor; cytokines; haemostasis; plasma; transfusion

Accepted for publication: 3 January 2011

The indications for transfusion of plasma are highly
debated,1 but include perioperative use in actively bleeding
patients with multiple coagulation factor deficiencies and
prevention of dilutional coagulopathy in patients with
major trauma, massive haemorrhage, or both.2 3 Other
guideline-based indications include single coagulation
factor deficiencies whenever a factor concentrate is not
available [e.g. factor (F) V deficiency; in some countries, F
XI deficiency], multiple coagulation factor deficiency in the
presence of bleeding or disseminated intravascular coagu-
lation, and thrombotic thrombocytopenic purpura (TTP).4

However, most clinical uses of plasma recommended by
practice guidelines are not supported by evidence from ran-
domized, prospective, controlled high-quality trials.5

Efficacy of plasma infusions depends on the indication for
which it is prescribed, the dose and the composition of the
plasma being administered. There is very little high-quality

data from randomized prospective trials addressing the
question of dosing in plasma therapy.6 – 8

Safety issues in plasma transfusion include: (i) allergic reac-
tions, (ii) immunomodulatory effects (with increased risk of
subsequent infection), (iii) transmission of infectious agents,
(iv) transfusion-associated circulatory overload, and (v)
transfusion-related acute lung injury (TRALI).9 – 12 Allergic
reactions ranging from pyrexia to anaphylaxis are the most
frequent adverse effects with a frequency of 0.1–1%.4 TRALI
is a rare but clinically relevant adverse effect as it is associated
with a high morbidity and increased mortality. Incidence data
on TRALI are scarce but have been reported as 8% for intensive
care patients.13 14 The UK registry severe hazards of transfu-
sion (SHOT) reported .20 cases yr21 of TRALI but in the
2009 report only nine of the 21 cases could be clearly linked
to fresh-frozen plasma (FFP).4 15 16 In 766 trauma patients,
Bochicchio and colleagues17 have shown that transfusion of
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FFP is associated with an increased incidence of nosocomial
infection and ventilator-associated pneumonia, and recently,
an increased incidence of multiple organ failure and acute res-
piratory distress syndrome was found in patients treated with
FFP.18 In particular in patients undergoing surgery without
massive transfusion, administration of FFP was associated
with a trend towards increased mortality.19 20

FFP and solvent/detergent-treated plasma (SDP) are pro-
duced differently depending on national regulations. In Swit-
zerland where this study was conducted, each unit of FFP is
derived from a single donor. Two techniques exist for the pro-
duction of plasma (i) by aphaeresis and leucodepletion or
(ii) from whole blood filtered to reduce leucocytes. Plasma
for transfusion is produced from male donors. Plasma from
female donors is used to produce isolated coagulation
factors. SDP on the other hand is derived from pools of multiple
donors (1500 donors, batch volume 280 litre), which are then
treated specifically to reduce the risk of adverse events—par-
ticularly the transmission of viral agents. Currently published
studies comparing different coagulation factors in FFP and
SDP are characterized by relatively small sample sizes in
which the authors concluded that the differences between pro-
ducts were without clinical relevance.21–24 In theory, pooled
products such as SDP should have relatively uniform factor
content, while FFP should show more variation as it is derived
from individuals. To our knowledge, concentrations of cytokines
in SDP or FFP have not been reported on a larger scale.

We hypothesized that SDP composition is more consistent
compared with FFP, but that due to the production process,
the concentration of coagulation and other factors might
be lower, and that some adverse events related to plasma
transfusion are mediated by cytokines in the plasma. We
therefore designed this study to: (i) compare the concen-
tration of coagulation parameters in plasma transfusion in
SDP and FFP, (ii) compare the concentration range for these
parameters, and (iii) determine the concentrations of cyto-
kines potentially associated with adverse outcomes.

Methods
This study was performed after obtaining authorization by
the local ethics committee (Kantonale Ethikkommission,
Kanton Zürich, Switzerland, Study number StV 7-2007,
amendment 1). In the University Children’s Hospital in
Zurich, consecutive samples of 9 ml from 25 different units
of Octaplasw SDP (Octapharma AG, Lachen, Switzerland)
were collected before they were transfused in paediatric
cardiac surgery. The Octaplasw units were all delivered by
the local blood bank of Zurich. Samples of 9 ml from 25
units of FFP produced by the local blood bank in Zurich
were consecutively collected in the University Hospital in
Zurich before transfusion to adult cardiac surgery patients.
The samples were collected in sterile tubes without addition
of citrate or EDTA.

Fibrinogen (FBG), F II, FV, F VII, F VIII, F IX, F X, F XIII, von
Willebrand factor (vWF), D-Dimer, ADAMTS-13 protease,
interleukin-1b (IL-1), IL-6, IL-8, IL-10, and tumour necrosis

factor-a (TNF-a) concentrations were determined by the
institutional laboratory.

Assessment of factor levels was performed in a quality-
controlled ISO 17025 accredited institutional laboratory on
a Behring coagulation system (Behring Coagulation System,
Dade Behring, Düdingen, Switzerland) platform using the
manufacturer’s reagents (see below) and according to the
manufacturer’s instructions. Multifibrinw U (fibrinogen),
Inovinw (F II, F V, F X), Pathromtinw SL (F VIII, F IX), and
Berichromw F XIII (F XIII) were the respective activators/
reagents. The D-Dimer assay was performed using the
Tina-quantw reagent [Tina-quantw, Roche Diagnostics
(Schweiz) AG, Rotkreuz, Switzerland] on the same platform.
The reference range for the assays is as follows: fibrinogen
(1.5–4.0 g litre21), F II (60–150%), F V (50–150%), F VII
(60–150%), F VIII (50–200%), F IX (50–200%), F X (60–150%),
F XIII (70–140%), vWF 50–200%, and D-Dimer (,500 mg
litre21). ADAMTS-13 or vWF-cleaving protease was deter-
mined as described by Kostousov and colleagues.25 The
normal range for this assay is 60–130%.

Cytokines were determined using R&D Systemsw assays
(R&D Systemsw, Minneapolis, MN, USA) and the manufac-
turer’s reagents (see below) according to the manufacturer’s
instructions. Reference range and lot numbers for the kits are
as follows: Interleukin 1 Human IL-1 beta Quantikine ELISA
Kit (Catalogue no. DLB50, Lot 270960, normal range ,3.9
pg ml21), Interleukin 6 Human IL-6 Quantikine ELISA Kit
(Catalogue no. S6050, Lot 269425, normal range ,3.1 pg
ml21), Interleukin 8 Human IL-8 Quantikine ELISA Kit (Cata-
logue no. D8000C, Lot 270510, normal range ,0.1 pg ml21),
Interleukin 10 Human IL-10 Quantikine ELISA Kit (Catalogue
no. D1000B, Lot 271015, normal range ,8.0 pg ml21), TNF-a
Human TNF-a Quantikine HS ELISA Kit (Catalogue no.
SSTA00D, Lot 270475, normal range ,6.3 pg ml21), and
Quantikine Immunoassay Control Group 1 (Catalogue no.
QC01-1, Lot 208867). Measurements of the ELISA which
were less than the limit of detection were registered as zero.

Statistical and graphic analyses

The sample size of 25 per group was determined by power
analysis based on the data of Nifong and colleagues26 to
permit determination of a 5% difference in concentration
with a power of 90%. Data were transferred from the hospital
information system into Microsoft Excel (Microsoft Office
2007, Microsoft Corporation, Redmond, WA, USA) and ana-
lysed using PASW Statisticw (version 18, SPSS Inc., Chicago,
IL, USA). Factors were expressed as mean (SD), median with
minimum and maximum. A Mann–Whitney test and
Levene’s test for equality of variances were used. P,0.05 is
considered significant. Sigma Plot for Windows (version
11.0, Systat Software Inc., San Jose, CA, USA) was used to
prepare graphs.

Results
Twenty-five plasma samples of SDP and 25 of FFP were ana-
lysed for concentrations of coagulation factors and cytokines
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(Fig. 1A–C). Reference ranges for the determined factors are
given in Table 1. Mean concentrations of FBG, F XIII, F II, F
VII, F VIII, and F IX and also of IL-1 and IL-6 were similar
in SDP and FFP. For vWF, ADAMTS-13, F V, and F X, and also
for TNF-a, IL-8, and IL-10, significantly higher mean values
(P,0.01) were found in FFP, whereas the mean value for

D-Dimers was significantly lower in SDP (P,0.01). Only in
FFP, one sample was found with D-Dimers 2.5-fold higher
than the reference range.

With the exception of F VIII and F IX, the range of
measured values of other investigated parameters was sig-
nificantly larger in FFP (P,0.01) than in SDP (Table 1,
Fig. 1A–C). Whereas IL-1 was not detected in FFP (Fig. 1C),
the measured values ranged from zero to 1 pg ml21 in SDP.
In contrast, IL-6 was not detected in SDP (Fig. 1C), but
showed a large range in FFP. For the five cytokines tested,
only two, TNF-a and IL-10, were detected in 25 of 25
samples. For the other three cytokines, samples with
undetectable levels were found: IL-1 (SDP 22 of 25, FFP 25
of 25), IL-6 (SDP 25 of 25, FFP 22 of 25), and IL-8 (SDP 12
of 25, FFP one of 25).

For SDP with the exception of F VIII (15 of 25 samples
under the reference range) and vWF (24 of 25 samples
under the reference range), all other measurements for indi-
vidual factors were found within the reference range for each
test (Table 1). In FFP samples, F VIII (nine of 25 samples), F IX
(one of 25 samples), F XIII (four of 25 samples), and vWF
(two of 25 samples) were under the reference range
(Table 1). However, in SDP, 24 of 25 samples had vWF
under the reference range. For F VIII in SDP, 15 of 25
samples had values under the reference range. In 13 of 25
samples of SDP, IL-8 was above the reference range with
the highest measured value being 2.00 pg ml21 (Table 1).
In contrast, FFP values for F XIII (four of 25 samples), vWF
(two of 25 samples), F VIII (nine of 25 samples), and F IX
(one of 25 samples) were considerably below the reference
range (Table 1). TNF-a and IL-1 were within the normal
range in all SDP and FFP samples. However, in FFP, IL-8 (in
24 of 25 samples) and IL-10 (in three of 25 samples) concen-
trations were detected well above the reference range with
values up to 5.19 and 12.80 pg ml21, respectively (Table 1).

Discussion
The main findings are that (i) the composition of SDP and FFP
was similar in most aspects, (ii) the mean value of D-Dimer,
vWF, ADAMTS-13, F V, TNF-a, IL-8, and IL-10 was significantly
higher in FFP compared with SDP, and (iii) there was a signifi-
cantly higher variability of the individual values in FFP.

Treatment of congenital or acquired coagulation factor
deficiencies requires therapeutic agents with predictable
and sufficient concentrations of the respective factors.
Unpredictable or insufficient coagulation factor content
could preclude efficient and safe patient body weight-guided
replacement therapy. SDP and FFP are medical products used
for the treatment of coagulation disorders in major bleeding
with multiple coagulation factor deficiencies or in deficiency
of factors that cannot be replaced by single factor concen-
trate, such as F V deficiency.27

FBG and F XIII are key determinants for clot stability.28

Both are present in SDP and FFP in similar amounts. The
observed ranges are larger in FFP, making the prediction
and achievement of a post-transfusional or target level
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Fig 1 (A–C) Haemostatic parameters and cytokine levels in SDP
and FFP. (A) Box and whisker plots for fibrinogen, D-Dimer, F
XIII, vWF (ristocetin cofactor assay), and ADAMTS-13 activity in
25 SDP (blue bars) and 25 FFP samples (green striped bars). A
separate axis is shown for fibrinogen (see additional y-axis to
the right). The largest D-Dimer value of 1250 mg litre21 lies
outside the range of the graph. Outliers are indicated as circles.
A statistically significant difference (SDP vs FFP) for the means
(D mean) and the ranges (D range) are indicated by a ‘+’. (B)
Box and whisker plots for F II, F V, F VII, F VIII, F IX, and F
X. (C) Box and whisker plots for TNF-a, IL-1, IL-6, IL-8, and IL-10.
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more difficult and uncertain. For both FBG and F XIII, factor
concentrates are available in Europe and many other
countries. Plasma might thus not represent the treatment
of choice for complex deficiency states with low FBG, F XIII
concentrations, or both, when the aim of treatment is an iso-
lated increase in FBG or F XIII levels.

There is a potentially relevant difference in the production
of SDP and FFP that is illustrated by the D-Dimer levels. In one
unit of FFP, we observed D-Dimer levels of 1250 mg litre21.
This value was 2.5-fold higher than the maximum of the
reference range. Despite the selection process to assure the
recruitment of only healthy donors, some FFP units might
contain fibrin split products in concentrations high enough
to interfere with fibrin polymerization. In patients with
fully activated coagulation, additional administration of
D-Dimers by transfusion of FFP could further inhibit fibrin
polymerization.29 Each unit of FFP is generated from a
single donor. SDP is generated from a large pool of donor
plasma, which overcomes the problem of extreme values in
a single unit. This explains why the range of nearly all par-
ameters measured was smaller in SDP than FFP.

Mean vWF concentrations were significantly lower in SDP
(43% vs. 97% in FFP). This can be of clinical relevance in
cases of unknown vWF deficiencies or perioperatively
acquired vWF deficiencies. The latter can develop despite
the perioperative inflammatory stimulus which results in an
increase in vWF levels. As factor concentrates and recombi-
nant vWF formulations are available, these preparations
would be preferred over an SDP and FFP for most patients
with a known vWF deficiency.

ADAMTS-13 protease mediates degradation of vWF multi-
mers following their release from the endothelium. Severe
ADAMTS-13 deficiency with activity below 5–10% is associ-
ated with clinically overt TTP.30 Plasma therapy is directed
at restoration of ADAMTS-13 activity to levels above a puta-
tive critical threshold and replacement of inhibitor containing
plasma in the subset of patients with acquired TTP. The sig-
nificantly higher amount of ADAMTS-13 protease in FFP
found in the current study suggests FFP as the preferred
therapeutic option for ADAMTS-13 in TTP or sepsis associated
with DIC, where deficiency of ADAMTS-13 might be associ-
ated with unfavourable outcome.31 However, a threshold
has not been validated by outcome studies and the lower
concentrations of ADAMTS-13 in SDP might in fact be suffi-
cient. UK guidelines for TTP suggest that treatment duration
be defined by the patient’s clinical response to treatment
and not the achievement of a putative target level, and
that a pathogen reduced formulation of plasma such as
SDP is preferred over FFP.32

For combined factor deficiencies in patients with massive
bleeding, major indications for plasma transfusion, both SDP
and FFP appear adequate based on the measured activities.
For F VIII and F IX deficiencies, the two factors in which we
observed the lowest concentrations, factor concentrates
and recombinant forms are the treatment of choice.

The fact that we observed a greater variability of factor
concentrations in FFP than SDP might be clinically relevant
when only few plasma products are transfused. In this
setting, unexpectedly low post-transfusion levels might
result from FFP transfusion, whereas in SDP, the response

Table 1 Reference ranges and measured values in SDP and FFP. Values are presented as mean; median (minimum; maximum); and mean and
variances of the individual parameters. *P,0.01; **P,0.001

Haemostatic parameters/
cytokines

Number of samples
outside the normal
range, SDP; FFP

Reference range SDP FFP

Fibrinogen (g litre21) 0; 1 1.5–4.0 2.0; 2.0 (1.9; 2.1) 2.0; 2.0 (0.9; 3.2)**

D-Dimer (mg litre21) 0; 1 ,500 110; 110 (80; 140) 130*; 60 (0; 1250)*

F XIII (%) 0; 4 70–140 86; 85 (79; 95) 91; 89 (62; 126)**

vWF (%) 24; 2 50–200 43; 44 (29; 50) 97**; 93 (43; 176)**

ADAMTS-13 (%) 1; 0 60–130 68; 66 (56; 78) 94**; 93.0 (68; 123)**

F II (%) 0; 0 60–150 84; 84 (75; 93) 87; 90 (72; 108)*

F V (%) 0; 0 50–150 69; 70 (55; 80) 89**; 88 (70; 108)*

F VII (%) 0; 0 60–150 88; 89 (79; 96) 88; 90 (59; 120)**

F VIII (%) 15; 9 50–200 65; 49 (42; 191) 56; 53 (32; 92)

F IX (%) 0; 1 50–200 74; 63 (55; 134) 70; 68 (45; 87)

F X (%) 0; 0 60–150 84; 84 (77; 91) 89*; 88 (72; 108)*

TNF-a (pg ml21) 0; 0 ,6.3 0.65; 0.58 (0.40; 1.23) 1.03**; 0.80 (0.43; 3.55)*

IL-1 (pg ml21) 0; 0 ,3.9 0.10; 0.00 (0.00; 1.00) 0.00**

IL-6 (pg ml21) 0; 0 ,3.1 0 0.15; 0 (0.00; 2.00)**

IL-8 (pg ml21) 13; 24 ,0.1 0.29; 0.11 (0.00; 2.00) 1.28**; 1.01 (0.00; 5.00)*

IL-10
(pg ml21)

0; 3 ,8.0 1.20; 0.70 (0.10; 4.50) 4.66**; 4.90 (0.60; 12.80)*
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will likely be more predictable because of less variation.
This aspect can be neglected in massive transfusions
with the administration of a high number of plasma
units administered where the inter-unit variability is of
minor importance since the factor concentrations tend
towards the mean, which was not statistically different
between FFP and SDP.

There are data suggesting that soluble mediators in blood
products could be responsible for immunomodulatory
adverse effects associated with transfusion,33 including
TNF-a, IL-1, IL-6, IL-8, and IL-10,34 35 and also in febrile
transfusion reactions36 and lung dysfunction after cardiopul-
monary bypass.37 On the basis of the hypothesis that trans-
fusion of cytokines into a susceptible host might favour the
occurrence of adverse events, we also measured cytokine
concentrations in SDP and FFP. FFP contained higher mean
concentrations of TNFa, IL-8, and IL-10. IL-1 was only
detected in three of 25 preparations of SDP, whereas IL-6
was only found in three FFP preparations. Measurements
higher than the reference range were only observed for
IL-10 in FFP. These findings support the hypothesis of immu-
nomodulatory effects for ‘cell-free’ plasma products. In vitro
data from Schneider and colleagues38 lend further support to
this hypothesis. They reported that blood products (FFP,
platelet, and red blood cells) influence spontaneous and
stimulated cytokine release. An increase in IL-10 was
observed and might be one of the reasons for
transfusion-associated immunomodulation leading to
higher rates of infections in transfused patients. Another
potential adverse effect of plasma products with high IL-10
content is IL-10-dependent development of anaemia in
patients with a systemic inflammatory state, that is,
Crohn’s disease.39

Limitations of this pilot study are that no outcome data
were assessed, that it is a single institution study, that
blood group status was not included, and that coagulation
inhibitors were not measured. Strengths of this unsponsored
study include a relatively large sample size (25 SDP and FFP
units each), and inclusion of cytokine data.

The choice of a plasma product be it SDP, FFP, or factor
concentrates necessitates a critical benefit/risk evaluation.19

On the basis of recent findings that the use of plasma is
associated with a higher incidence of nosocomial infections,
multiple organ failure, lung injury, and possibly with an
increase in mortality,18 the accepted and mostly
non-evidence-based guidelines for plasma transfusion need
to be revised. In the context of ‘simple’ clotting factor
deficiencies involving one or few identified coagulation
factors, replacement therapy with specific factor concen-
trates appears more desirable than the use of unfractionated
products in view of documented efficiency and lower risk of
adverse reactions. Non-infectious complications including
volume overload and TRALI and also potential infectious
complications need to be integrated into the risk–benefit
analysis that should precede every potential transfusion of
plasma products. Indeed while TRALI has been reported
after FFP use, we are not aware of TRALI after SDP

transfusion.40 A currently undisputed indication for SDP or
FFP remains F V deficiency, for which no factor concentrate
is currently available.21

In conclusion, our data show that coagulation factor com-
position of SDP and FFP are similar in many regards. Statisti-
cally and possibly also clinically relevant differences in
individual parameters exist with significantly higher concen-
trations of F V, vWF, and ADAMTS-13 and more interestingly
of D-Dimers, IL-8, and IL-10 in FFP. In other instances where
multiple factors need to be replaced simultaneously, SDP
might be the preferred agent because of the more uniform
distribution of most coagulation factors and lower cytokine
levels. However, outcome studies will be necessary to deter-
mine the clinical impact of these in vitro findings.
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