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The instability of the hub vortex observed in wind turbine wakes has recently
been studied by Iungo et al. (J. Fluid Mech., vol. 737, 2013, pp. 499–526) via local
stability analysis of the mean velocity field measured through wind tunnel experiments.
This analysis was carried out by neglecting the effect of turbulent fluctuations on
the development of the coherent perturbations. In the present paper, we perform a
stability analysis taking into account the Reynolds stresses modelled by eddy-viscosity
models, which are calibrated on the wind tunnel data. This new formulation for the
stability analysis leads to the identification of one clear dominant mode associated
with the hub vortex instability, which is the one with the largest overall downstream
amplification. Moreover, this analysis also predicts accurately the frequency of the
hub vortex instability observed experimentally. The proposed formulation is of general
interest for the stability analysis of swirling turbulent flows.

Key words: absolute/convective instability, turbulent flows, vortex instability

1. Introduction

The flow past a wind turbine is characterized by two main large-scale vorticity
structures: the helicoidal tip vortices, which detach from the tip of each turbine
blade, and the hub vortex, which is a streamwise-oriented vorticity structure located
approximately at the wake centre. Several wind tunnel experiments of down-scaled
wind turbine models have shown that, besides the frequency connected with the
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shedding of tip vortices, wake velocity signals can present a different spectral
contribution with a frequency lower than that of the rotor rotation. In Medici &
Alfredsson (2006, 2008), Chamorro & Porté-Agel (2009) and Zhang, Markfort &
Porté-Agel (2012), this low-frequency instability was typically ascribed to a global
meandering of the wind turbine wake. In large eddy simulations (LES), using actuator
disc and actuator line turbine models the far-wake is simulated with sufficient accuracy
to reproduce wake meandering (see, for instance, España et al. 2011 and Wu &
Porté-Agel 2011). More recently, Iungo et al. (2013) showed, via local stability
analysis performed on time-averaged wind tunnel velocity measurements, that the low
frequency clearly detected in the near-wake is related to a single-helix counter-winding
instability of the hub vortex, which can also affect the meandering phenomenon in
the far-wake. Kang, Yang & Sotiropoulos (2014) confirmed the results of Iungo et al.
(2013) by carrying out LES simulations, which included all geometrical details of the
wind turbine by a curvilinear immersed-boundary method. Recent investigations by
Okulov et al. (2014) show experimentally, through laser doppler anemometry (LDA)
and particle image velocimetry (PIV) visualization, the rotation of the helical vortex
core.

The main limitation of the analysis presented by Iungo et al. (2013), which is
focused on the hub vortex instability, is that the instability observed experimentally
was not predicted through the local stability analysis as the unstable mode with
the largest growth rate. Indeed, it was necessary to use the instability frequency
of the hub vortex, which was determined via wind tunnel measurements, as an
additional input for the stability analysis in order to detect the mode associated with
the hub vortex instability. The main reason for difficulties in the identification of the
dominant unstable mode by the sole stability analysis was attributed to the neglect of
the Reynolds stresses in the Orr–Sommerfeld equations.

In this paper, a stability analysis is performed by taking into account the effects
of the Reynolds stresses by means of eddy-viscosity models, which are calibrated on
the wind tunnel data. Other studies in the literature have considered eddy-viscosity
models to close the linearized equations for the coherent velocity field in a turbulent
flow (see, e.g. Reynolds & Hussain 1972; Bottaro, Soueid & Galletti 2006; Crouch,
Garbaruk & Magidov 2007; Cossu, Pujals & Depardon 2009; Meliga, Pujals & Serre
2012). A similar but more sophisticated closure is proposed by Kitsios et al. (2010,
2011). For the present investigation three eddy-viscosity models are considered. One
model is based on the assumption of a uniform eddy viscosity for each streamwise
location, whereas for the other two models a mixing length is estimated. In this paper
it is shown that with the proposed improved formulation, stability analysis allows not
only the unambiguous identification of the hub vortex instability, but also the accurate
prediction of its instability frequency.

The paper is organized as follows: the formulation of the stability analysis is
presented in § 2 by taking the Reynolds stresses into account. The wind tunnel data
are then described in § 3, while the three eddy-viscosity models and their calibration
against the wind tunnel data are reported in § 4. The characterization of the hub
vortex instability is presented in § 5. Finally, conclusions are drawn in § 6.

2. Problem formulation

2.1. Triple decomposition and linearized equations for the coherent perturbation
Following the approach proposed in Reynolds & Hussain (1972), the unsteady
flow, U(x, t), is decomposed into the time-averaged base flow, U(x), the coherent
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fluctuation, ũ(x, t), and the turbulent motion, u′(x, t),

U =U + ũ+ u′, (2.1)

where the sum of the time-averaged flow and the coherent fluctuation coincides with
the ensemble-averaged flow 〈U〉 =U + ũ (see also Reau & Tumin 2002).

The stability of the flow is given by the tendency of ũ to grow (unstable) or decay
(stable) in time and space. Thus, stability can be verified by a modal analysis of the
linearized dynamics of ũ. To this purpose the nonlinear evolution of the coherent
perturbation for an incompressible flow can be written as (see, e.g. Reynolds &
Hussain 1972)

∇ · ũ= 0, (2.2)
∂ ũ
∂t
+∇ũ ·U +∇U · ũ=−∇p̃+ 1

Re
1ũ−∇ · [ũũ− ũũ] −∇ · [〈u′u′〉 − u′u′],(2.3)

where variables t and p represent time and pressure, respectively. In the framework of
a linear analysis with respect to the coherent fluctuations ũ, the third term of the right-
hand side is neglected. However, the system of equations is not closed and the last
term of the right-hand side, related to the turbulent diffusion, has to be modelled. As
in Reynolds & Hussain (1972) and Cossu et al. (2009), the linear relationship between
the strain rate and the Reynolds stresses is considered here. In the following two
equations, the Boussinesq hypothesis is written using time and ensemble averaging,
respectively, {−u′u′ + 2

3 qI ' νm
t [∇+∇T]U,

−〈u′u′〉 + 2
3 〈q〉I ' νe

t [∇+∇T]〈U〉,
(2.4)

where q is the turbulent kinetic energy (TKE) and I is the 3×3 identity matrix. The
eddy viscosity depends on U (i.e. νm

t (U)) in the case of time averaging and on 〈U〉
(i.e. νe

t (〈U〉)= νe
t (U + ũ)) in the case of ensemble averaging. By linearizing νe

t at first
order with respect to ũ, it is possible to rewrite it as the sum of one function of the
mean flow and one linear function of the coherent fluctuation, νe

t (U + ũ)'νe
t (U) +

∇Uν
e
t (U) · ũ (see appendix A). In order to determine the relation between νm

t (U) and
νe

t (U), the second equation in (2.4) is averaged in time. Since the time average of
an ensemble average corresponds to the time average itself (〈·〉 = ·), we obtain the
following set of identities:

− u′u′ + 2
3 qI = −〈u′u′〉 + 2

3 〈q〉I ' νe
t (〈U〉)[∇+∇T]〈U〉

' νe
t (U)[∇+∇T]U + (∇Uνe

t (U) · ũ)[∇+∇T]U + νe
t (U)[∇+∇T]ũ

+ (∇Uνe
t (U) · ũ)[∇+∇T]ũ ' νe

t (U)[∇+∇T]U, (2.5)

where the second and third terms of the right-hand side in the last identity
are rigorously null because the averaged quantities depend linearly on ũ. The
fourth term is neglected since it is of higher order in ũ. Consequently, the last
(quasi-)identity follows and, together with the first equation in (2.4), it leads to the
result νe

t (U)= νm
t (U).
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According to the previous results, the term 〈u′u′〉 − u′u′ can be modelled as

〈u′u′〉 − u′u′ ' −νe
t (U + ũ)[∇+∇T]〈U〉 + νm

t (U)[∇+∇T]U + 2
3 〈q〉I − 2

3 qI

' −νe
t (U)[∇+∇T]U − (∇Uν

e
t (U) · ũ)[∇+∇T]U − νe

t (U)[∇+∇T]ũ
− (∇Uν

e
t (U) · ũ)[∇+∇T]ũ+ νm

t (U)[∇+∇T]U + 2
3 〈q〉I − 2

3 qI.
(2.6)

The first and fifth terms in the last identity cancel out since νe
t (U)= νm

t (U). The fourth
term is neglected because it is of higher order in ũ, yielding

〈u′u′〉 − u′u′ '−(∇Uν
e
t (U) · ũ)[∇+∇T]U − νe

t (U)[∇+∇T]ũ+ 2
3 〈q〉I − 2

3 qI. (2.7)

As in Reynolds & Hussain (1972) and Kitsios et al. (2010), we assume that the
phase-averaging process affects the turbulence structure but not the energy, i.e. 〈q〉' q,
obtaining

〈u′u′〉 − u′u′ '−(∇Uν
e
t (U) · ũ)[∇+∇T]U − νe

t (U)[∇+∇T]ũ. (2.8)

The term νe
t (U) = νm

t (U) in (2.8) can be evaluated from the statistics of the
experimental data, as in Kitsios et al. (2010), while the term ∇Uνt(U) · ũ is obtained
by the linearization of the turbulence model used to close the equations, as detailed in
appendix A. When (2.8) is substituted into (2.2), the linear evolution of the coherent
perturbation ũ with modelled Reynolds stresses is retrieved:

∂ ũ
∂t
+∇ũ ·U +∇U · ũ = −∇p̃+ 1

Re
1ũ+∇ · (νt(U)[∇+∇T]ũ)

+∇ · ((∇Uνt(U) · ũ)[∇+∇T]U). (2.9)

Equation (2.9) is analogous to the one used in Reynolds & Hussain (1972), del
Àlamo & Jimenez (2006) and Cossu et al. (2009), but the last term on the right-hand
side is included to take the linearization of the turbulence model into account. This
corresponds to a generalization of the formulation of Crouch et al. (2007) and Meliga
et al. (2012) based on the Spalart–Allmaras model. From now on the subscripts for
the eddy viscosity, e and m, will not be specified any longer because they are
redundant.

2.2. Application to parallel flow
In the framework of weakly non-parallel stability analysis, (2.9) is now applied
to a parallel flow U = (Ux, Uθ , 0) extracted at a given streamwise location, since
experiments have shown a negligible radial velocity component (Iungo et al. 2013).
This allows for a modal expansion of the coherent fluctuation in the following form:

ũ(x, θ, r, t)= û(r) exp(ikx+ imθ − iωt), (2.10)

where k and m are the axial and azimuthal wavenumbers respectively, and ω is the
frequency. When this modal form is substituted into (2.9), an eigenvalue problem
is obtained. In the temporal stability analysis k is real and assigned, while ω is
the complex eigenvalue of the problem. The opposite choice is made for the spatial
stability analysis. In both cases, m is a free integer parameter.

For the stability analysis, equation (2.9) and the continuity equation are discretized
using a code based on a Chebyshev spectral collocation method. In the present
analysis the number of collocation points is N = 120 and the size of the domain
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in the radial direction is rmax/d = 50. This choice provides the convergence of the
most unstable eigenvalue with a five-digit accuracy, which is sufficient for the present
purposes.

3. Wind tunnel measurements

Velocity measurements of the wake produced by a down-scaled three-bladed wind
turbine were performed in the boundary-layer wind tunnel of the Wind Engineering
and Renewable Energy Laboratory (WIRE) of the École Polytechnique Fédérale de
Lausanne (EPFL). For details on the experimental set-up and measurement techniques
we refer to Iungo et al. (2013). The tip speed ratio of the turbine (TSR), which
is the ratio between the speed of the blade tip and the oncoming velocity at hub
height (Uhub = 6.9 m s−1), is equal to 4.6 with a free stream turbulence level equal
to 6 %. The stability equations and the subsequent results are normalized using
Uhub as the reference velocity and the rotor diameter, d = 0.152 m, as the reference
length, leading to a flow Reynolds number equal to 72 000. For these tests the
mean rotational frequency was fhub ≈ 66 Hz and the frequency connected with
the tip vortex shedding was equal to three times fhub, i.e. ftip vortices ≈ 198 Hz. The
frequency related to the hub vortex instability was 21 Hz, i.e. approximately equal
to 0.32 fhub. This instability frequency corresponds to a non-dimensional pulsation of
ωhub vortex = 2πd fhub vortex/Uhub = 2.9.

Since the turbine is placed outside the boundary layer and immersed in a uniform
oncoming flow, the mean wake flow produced is axisymmetric. Experiments show also
a negligible radial component of the velocity, which is thus completely characterized
by the axial, Ux, and azimuthal, Uθ , velocity components. The experimental
time-averaged velocity field and the Reynolds stresses used for the stability analysis
are plotted in figure 1. Velocity measurements cannot be performed at a downstream
distance smaller than 0.5 d with hot-wire anemometers and multi-hole (Cobra) probes.
Indeed, at those locations the strong axial velocity deficit and the large tangential
velocity produce an angle between the probe axis and the velocity vector larger than
45◦, which is the limit angle to perform velocity measurements with an acceptable
accuracy. Apart from this technical limitation, in the very near-wake the rollup of
the wake vorticity structures produces strong velocity gradients along the streamwise
direction, thus the weakly non-parallel assumption adopted for the stability analysis
cannot be ensured. In figure 1 the reported vertical lines correspond to the sections
where local stability analysis was carried out, i.e. x/d = 0.5, 0.75, 1, 1.25, 1.5, 2. On
the other hand, sections at x/d > 2 are not considered here since in that region the
growth rates are significantly smaller in comparison with the ones evaluated for the
upstream locations (see Iungo et al. 2013).

4. Eddy-viscosity models

4.1. Description of the considered turbulence closure models
As already pointed out, the Boussinesq hypothesis yields

R= u′u′ '−2νtS+ 2
3 qI, (4.1)

where R is the Reynolds stress tensor and S is the strain rate tensor. In the framework
of a local stability analysis of a wind turbine wake flow, we have Ur=0 and ∂U/∂θ =
∂U/∂x= 0, which implies that the term Rxθ = u′θu′x is null, and the model leads to null

750 R1-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
9:

27
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

4.
26

3

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.263


F. Viola, G. V. Iungo, S. Camarri, F. Porté-Agel and F. Gallaire

0 0

–0.05

–15
–10
–5
0

4
2
0

0
0.05
0.10
0.15

0.5

1.0

0.5
(a)

(b)

(c)

(d)

0

0.5

0

0.5

0
0 0.5 1.0 1.5 2.0 3.0 4.0

0.5

FIGURE 1. Non-dimensional mean velocity components and tangential Reynolds stresses
acquired in the wind tunnel. (a) Axial Ux/Uhub and (b) azimuthal Uθ/Uhub velocities,
(c) u′ru

′
θ/U2

hub and (d) u′ru′x/U
2
hub. Vertical lines depict the streamwise positions where local

stability analysis has been carried out. In the white region measurements are not available.

normal stresses (see Kitsios et al. 2010). Consequently, the only non-null components
of the modelled tensor R are Rrθ , Rrx and their symmetric counterparts.

Three different turbulence models are considered here, which are concisely
described in the following. The first is a uniform eddy-viscosity model, in which
the eddy viscosity, νt, in (4.1) is assumed to be only a function of the streamwise
location, and it is the only unknown closure parameter of the resulting model. The
same model for a local stability analysis is employed, for instance, in Oberleithner,
Paschereit & Wygnanski (2014). The other two turbulence models are based on the
concept of a mixing length, lm, in order to define the eddy viscosity. The mixing
length, lm, is a function of the streamwise position and it is the only unknown
parameter of the turbulence closure model. The second considered model is the
classical mixing-length model, in which νt is related to lm as follows:

νt(r)= l2
m

∣∣∣∣∂Ux

∂r

∣∣∣∣ . (4.2)

The third model is a generalized mixing-length model for swirling flows (see
appendix A and Pope 2000 for more details):

νt(r)= l2
m(2S : S)1/2 = l2

m

[(
r
∂

∂r

(
Uθ

r

))2

+
(
∂Ux

∂r

)2
]1/2

. (4.3)

4.2. Calibration of the turbulence closure models against wind tunnel data
The free parameters of the eddy-viscosity models are calibrated by using the statistics
of the experimental velocity data at each streamwise section. Specifically, a best-fit
strategy between the measured Reynolds stresses and the modelled ones, minimizing
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(a)

–1
0 0.2 0.4 0.6 0.8
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0
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–10

–15

(b) (c)

0 0.2 0.4 0.6 0.8 0.2 0.4

Experiments
Uniform EV
Standard ML
Generalized ML

0.6 0.8

FIGURE 2. Calibration of the closure turbulence models against the wind tunnel data
(solid curve) for the downstream position x/d = 0.75. The Reynolds stresses (a) Rrθ and
(b) Rrx are shown. The symbols refer to the three calibrated models, detailed in the legend
(EV and ML stand for eddy viscosity and mixing length, respectively). The resulting eddy
viscosities obtained for the different models are then reported in (c). The uniform EV
appears as a straight line.

the norm of the residuals of (4.1), has been adopted. For the uniform eddy-viscosity
model, the value of νt, which is independent of r, is estimated at each streamwise
location by minimizing the functional,

νt(x) : min
νt

∑
j

∥∥(R(rj, x)− 2/3q(rj, x)I)− (−2νt(x)S(rj, x)
)∥∥2

, (4.4)

where the rj are the discrete radial positions where experimental data are acquired.
In the case of mixing-length turbulence models, at a given x-location the function

to minimize is obtained by substituting in (4.4) the mixing-length model expressions
for νt ((4.2) and (4.3)) and optimizing with respect to the scalar lm, which varies with
x and is independent of r. It should be noted that direct use of the statistics of the
experimental velocity field needs a further assumption, since measurements include the
saturated coherent fluctuation ũiũj, which cannot be modelled using the Boussinesq
approximation. Thus, the best-fit strategy used requires that the stresses ũiũj are small
in comparison with u′iu′j (see, for instance, Kitsios et al. 2010). This assumption is very
reasonable for high-Reynolds-number turbulent flows, as for the considered case, and
it is supported a posteriori by the accuracy of the obtained stability results (see § 5).

An example of the calibration fitting procedure performed for all the considered
models is shown in figure 2 for the measurements acquired at x/d = 0.75. In
figure 2(a–b) the Reynolds stresses modelled from the experimental strain rate
tensor through the calibrated turbulence closure models are compared with the ones
directly measured through the wind tunnel tests. It is evident that a fair accuracy
is generally achieved through the fitting procedure. Specifically, the Reynolds stress
peaks connected with the presence of the hub vortex, observed at r/d' 0.15 for both
Rrθ and Rrx, are well reproduced by the models. However, some differences can be
observed in proximity to the tip vortex location at r/d ' 0.5, especially with respect
to Rrθ . This feature suggests that the turbulence closure models and the calibration
fitting procedure could be improved. However, in § 5 we will show that the results of
the stability analysis are very robust with respect to the differences in the calibrated
νt, which arise from the use of different closure models and/or due to the accuracy
of the calibration procedure.
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FIGURE 3. Calibration of the closure turbulence models. (a) Superposition of νt in the
case of uniform EV (left ordinate axis) and lm for standard and generalized ML (right
ordinate axis), as a function of the streamwise position x/d. (b) Radial profiles of νt
evaluated via the generalized mixing-length model for different streamwise locations.

Figure 2(c) represents the tuned eddy viscosity resulting from the models. It
should be noted that νt is constant for the uniform eddy-viscosity (EV) model and
its normalized value of the eddy viscosity evaluated at x/d = 0.75 is νt ' 0.0029.
In this case the stability analysis of the turbulent mean flow reduces to a laminar
calculation carried out using a locally modified Reynolds number Re∗, defined as
(1/Re∗)= (1/Re)+ νt. In the case of mixing-length (ML) models, νt is a function of
the radial position r/d and its value in the hub vortex region is comparable with the
one obtained with the uniform eddy-viscosity model.

The described best-fit procedure has been carried out for all the considered
streamwise sections, leading to results analogous to the ones presented for the
location x/d = 0.75. In order to provide further information on the trend of the
free model parameters as a function of the streamwise location, x/d, we report in
figure 3(a) the calibrated values of νt and lm. This figure shows that νt and lm obtained
through the calibration procedure grow almost linearly with x/d, implying that the
diffusive effects due to turbulence increase on moving downstream. This result is in
qualitative agreement with the experiments where it was observed that the hub vortex
is almost completely diffused for x/d> 3 (Iungo et al. 2013). Moreover, for the two
mixing-length models, the obtained values for lm almost coincide since the expression
2S : S is dominated by the term ∂Ux/∂r in the considered flow (compare (4.2) with
(4.3)). Lastly, figure 3(b) shows that the profiles of νt obtained by the generalized
mixing-length model as a function of the radial position remain similar at the different
streamwise sections. In particular, they are characterized by a higher peak located in
the proximity of the hub vortex position, and a smaller one in proximity to the tip
vortex location. The same conclusions apply for the standard mixing-length model.
The eddy-viscosity profiles in figure 3(b) are then introduced into the local linear
stability analysis through the term νt(U) of (2.9).

5. Stability analysis results

5.1. Temporal stability analysis and mode selection
Figure 4 depicts the results of temporal stability analysis carried out at the streamwise
location x/d= 0.5, (a) neglecting the contribution of the Reynolds stresses, (b) using
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FIGURE 4. Temporal analysis results at section x/d = 0.5 (a) without Reynolds stresses,
(b) with the uniform eddy-viscosity model and (c) with the generalized and standard
(dashed line) mixing-length models. Growth rates are reported as a function of the axial
wavenumber k, and each branch corresponds to a different azimuthal wavenumber m.

the uniform eddy-viscosity model and (c) using both the standard and the generalized
mixing-length models. For each case the growth rate, ωi, is reported as a function
of the axial wavenumber, k, while each branch corresponds to a different azimuthal
wavenumber, m. As in Iungo et al. (2013), when Reynolds stresses are neglected, the
temporal stability analysis predicts many unstable modes, and it is not possible to
identify a single dominant mode as observed in the experiments. Conversely, figures
4(b,c) show that, when a model for the turbulent diffusion is introduced, the temporal
stability analysis identifies a clearly dominant unstable mode among only four unstable
modes detected. Specifically, the higher-wavenumber modes are more damped since
the diffusion term is proportional to k2 and m2, and the mode with m= 1 results to
be the one with the largest growth rate at every considered downstream position. This
mode, not shown here for the sake of brevity, is the single-helix counter-winding
mode characterized experimentally by Iungo et al. (2013). Thus, the present results
demonstrate the important role of the turbulent diffusion mechanism in the evolution
of the perturbation, and that even a simple eddy-viscosity model is sufficient to
improve the results of the local temporal stability analysis, so as to identify a clearly
dominant unstable mode. Moreover, figures 4(b,c) show that the differences among
the results obtained by the different closure turbulence models are moderate with
respect to the detection of a dominant unstable mode, and that mixing-length models
damp the modes associated with higher frequencies slightly less. Similar results have
been found for all the analysed streamwise locations.

5.2. Spatial stability analysis, integral growth rate and instability frequency
prediction

In the framework of local stability analysis of weakly non-parallel flows, the integral
amplification factor of each unstable mode is determined by integrating in the
streamwise direction its spatial growth rate, −ki(m, ω, x), which is obtained from
dedicated spatial stability analyses. Thus, −ki(m, ω, x) is integrated from a given
streamwise position, x0, up to the downstream position where the mode becomes
stable again, xs,

G(m, ω)= exp
∫ xS

x0

−ki(m, ω, x′)dx′. (5.1)
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FIGURE 5. Integral amplification factor in the wake (a) without Reynolds stresses,
(b) with the uniform eddy-viscosity model and (c) with the generalized and the standard
(dashed line) mixing-length models. Growth rates are reported as a function of the
frequency ω, and each branch corresponds to a different azimuthal wavenumber m. The
vertical dash-dotted line represents the frequency of the hub vortex instability measured
experimentally, corresponding to a non-dimensional pulsation ωhub vortex = 2.9.

Here, G(ω,m) represents the overall amplification of the mode m at the frequency ω
within the wake, after it has undergone its entire amplification process. We recall that
G(m, ω) is a synthesis of the results obtained by local spatial stability analyses carried
out at different streamwise sections.

In figure 5 the integral amplification factors of the unstable modes are reported
as a function of the frequency ω. As shown in figure 5(a), when the Reynolds
stresses are neglected many unstable modes exist and, as for the temporal analysis,
it is not possible to select a dominant mode without considering as additional input
the instability frequency detected experimentally. On the other hand, the use of an
eddy-viscosity model allows a clear mode identification, as shown in figure 5(b,c), and
the mode associated with m= 1 is the most spatially amplified one. Its amplification
factor has a clear and definitely dominant peak at a frequency ωf , which is almost
coincident with the one measured experimentally (ωhub vortex=2.9 is reported in figure 5
as a vertical dash-dotted line). For a more quantitative comparison, the relative error
between the experimental instability frequency (ωhub vortex) and the predicted frequency
ωf has been computed: a relative error of approximately 7.1 % is obtained for the
mixing-length models, and this error is further decreased to 5.3 % when the uniform
eddy-viscosity model is used.

6. Conclusions

In this paper eddy-viscosity models are applied in order to take into account
turbulence in the stability analysis of the time-averaged flow field past a wind turbine.
The work is motivated by a previous investigation, Iungo et al. (2013), in which
stability analysis was carried out by neglecting the Reynolds stresses. In that study,
the characterization of the hub vortex instability was achieved by using as additional
input to the stability analysis the instability frequency, which was evaluated via wind
tunnel experiments. Here, three turbulence closure models have been considered: a
uniform eddy-viscosity model and two mixing-length models (a standard one and
a generalized one for swirling flows). The free parameters of the models have
been tuned using the available wind tunnel data. Using the considered models, the
number of unstable modes detected via stability analysis is drastically reduced, and

750 R1-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
9:

27
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

4.
26

3

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2014.263


Prediction of the hub vortex instability in wind turbine wakes

the spatially integrated growth factors clearly indicate one dominant unstable mode,
i.e. the single-helix counter-winding mode observed experimentally by Iungo et al.
(2013). Its instability frequency is also predicted with a very good agreement with
the experimental evidence.

The present results show that the use of calibrated turbulence models in the stability
analysis of the time-averaged flow field allows not only the characterization of the
hub vortex instability, but also the accurate prediction of the associated instability
frequency. This result is obtained using simple algebraic closures, properly calibrated,
even if the framework proposed here can include more complex Reynolds averaged
Navier–Stokes models as well. The fact that the mode identification is the result
of the sole stability analysis, and that it does not require any additional external
information, is of crucial importance for many further applications of the proposed
method. Specifically, this technique should allow for significant improvements in
the prediction of the downstream recovery of wind turbine wakes, and ultimately
their control. For this reason, and also due to the accuracy observed in the present
application, we believe that this strategy and the results discussed in this paper are
also of general interest for the stability analysis of turbulent swirling flows.
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Appendix A

In order to include the effect of turbulent fluctuations in the equation of the
coherent perturbation (2.9), the gradient of the eddy viscosity with respect to the
velocity evaluated in the mean flow configuration, U, needs to be calculated. While
it is undetermined and set to zero in the uniform eddy-viscosity model, it is now
evaluated for the two mixing-length models studied in this paper. In the case of
standard mixing length

νe
t (〈U〉)= l2

m

∣∣∣∣∂〈Ux〉
∂r

∣∣∣∣' l2
m

∣∣∣∣∂Ux

∂r

∣∣∣∣+ sign
(
∂Ux

∂r

)
l2
m
∂ ũx

∂r
= νe

t (U)+∇Uν
e
t (U) · ũ. (A 1)

Now, considering the generalized expression for the mixing-length model (see Pope
2000), in the case of an axisymmetric locally parallel mean flow

νe
t (〈U〉)= l2

m(2〈S〉 : 〈S〉)1/2 = l2
m

[(
r
∂〈Uθ 〉/r
∂r

)2

+
(
∂〈Ux〉
∂r

)2
]1/2

. (A 2)

By splitting, as usual, the ensemble-averaged flow into the time-averaged flow plus
the coherent fluctuation, and recalling that

√
1+ x= 1+ (1/2)x+O(x2) for x→ 0,

νe
t (〈U〉) = l2

m(2〈S〉 : 〈S〉)1/2 ' l2
m(2S : S)1/2 + l2

m

(2S : S)1/2

×
[

r
∂Uθ/r
∂r

(
∂ ũθ
∂r
+ ũθ

r

)
+ ∂Ux

∂r
∂ ũx

∂r

]
= νe

t (U)+∇Uν
e
t (U) · ũ. (A 3)

It should be noted that if Uθ = 0, νe
t (U) and ∇Uν

e
t (U) · ũ reduce to the ones of

standard mixing length.
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