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S U M M A R Y
Two simple end-member models of a subduction channel have been proposed in the literature:
(i) the ‘pressure-imposed’ model for which the pressure within the channel is assumed to be
lithostatic, the channel walls have negligible strength with respect to lateral pressure gradients,
and the channel geometry therefore varies with time and (ii) the ‘geometry-imposed’ model
of constant channel geometry, rigid walls and resultant lateral variation in pressure. Neither
of these models is realistic, but they provide lower and upper bounds to potential pressure
distributions in natural subduction zones. The critical parameter is the relative strength of the
confining plates, reflected in the effective viscosity ratio between the channel fill and the walls.
The assertion that the ‘geometry-imposed’ model is internally inconsistent is incorrect—it
merely represents one bound to possible behaviour and a bound that may be approached for
realistic values of the effective viscosity for weak channel fill (e.g. unconsolidated ocean-floor
sediments) and relatively cold and strong subducting and overriding lithospheric plates.
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C O M M E N T

Raimbourg et al. (2007) recently published a paper in this journal

where they consider a subduction channel model with walls of neg-

ligible strength with regard to normal stresses perpendicular to the

walls but effectively rigid with regard to shear stresses parallel to

the walls. In this end-member model, the pressure in the channel

is always taken to be lithostatic and the channel geometry changes

with the flux of material in the channel. This ‘pressure-imposed’

model is similar in its basic assumptions to that proposed by Shreve

& Cloos (1986). In Mancktelow (1995), I considered the opposite

end-member, namely a subduction channel of constant geometry

and thus rigid walls. In this ‘geometry-imposed’ model, significant

non-lithostatic pressures are generated for a wide range of prede-

fined channel geometries, viscosities and thicknesses of incoming

material riding on the subducted plate, and convergence rates.

Clearly the natural case lies somewhere between these two mod-

els, which represent upper and lower bounds. The channel walls

must have sufficient strength for the overall subduction zone geom-

etry to be maintained for tens of millions of years, typically with a

moderately dipping Benioff zone defined by the distribution of earth-

quakes (Jarrard 1986). Indeed, the occurrence of large earthquakes

within both the upper and lower plates (Shimamoto 1985; Magee

& Zoback 1993) establishes that there is at least transient strength

in the confining channel walls, capable of sustaining stresses up to

the yield envelope for brittle failure. However, as discussed in some

detail in Mancktelow (1995), it is clear that the overpressures pre-

dicted by the constant geometry model represent an upper bound

to potential values and that the values developed in nature will be

limited by the actual strength of the (non-rigid) walls. Effectively

rigid walls could also move apart to increase the channel width and

reduce overpressure values.

Raimbourg et al. (2007) propose that the transition between

the two end-member models is determined by a parameter λ =
( h0

L )3 ηwall

ηchannel
, with h0 the average width and L the length of the chan-

nel. The viscosity is η, and in their discussion they set ηwall =
ηmantle and ηchannel = ηcrust. They provide no details on the de-

velopment of this result but refer instead to another unpublished

manuscript (Raimbourg & Kimura 2006). However, they note that

for a value of λ � 1 deformation of the channel geometry cannot

be neglected whereas for λ � 1 the channel can be considered as

effectively rigid. They conclude that, for the channel geometry they

consider, an effectively rigid model is appropriate for ηwall

ηchannel
> 104.

This is in broad agreement with results from numerical modelling

of a viscous channel with viscous walls, which establishes that (i)

there is a gradual transition between the two models, (ii) significant

overpressures are certainly possible for ratios >104 and (iii) that the

walls are effectively rigid for ratios >106 (Mancktelow 2007).

However, I must take strong exception to their statement on

p. 385 that ‘(iii) Using the parameters used by Mancktelow (1995)
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yields λ � 1, in contradiction with the assumption the author made

that the channel is rigid!’. Rigid means exactly that—the material

is undeformable and therefore ηwall = ∞, which implies that λ =
∞. No other result could be possible, because the original model

assumed a priori a constant channel geometry with rigid walls. It is

not correct to claim that the constant geometry, rigid wall model is

internally inconsistent. This model simply provides an upper bound

to potential non-lithostatic pressure distributions in a convergent

subduction channel, just as the assumption of fully lithostatic dis-

tribution represents a lower bound.

In Mancktelow (1995), the average thickness of the channel is of

order 1 km and the length of the convergent part of the channel is

of order 100 km. It follows that the factor ( h0

L )3in the expression of

Raimbourg et al. (2007) is, in this case, of order 10−6. For λ to be

of order 1, the viscosity ratio would therefore need to be 106. This

is again similar to the result of Mancktelow (2007)—the channel

walls can be taken as effectively rigid for viscosity ratios of 106 or

greater. However, a marked overpressure effect can still be generated

for relatively strong walls as this ratio is gradually decreased, and

significant overpressures may still be attained for ratios on the order

of 104 (depending also of course on the width and convergence angle

of the channel).

In natural subduction zones, there will always be some non-

lithostatic component, but the critical question remains whether the

magnitudes and gradients developed are large enough to have any

significant influence on tectonic processes. Raimbourg et al. (2007)

argue that non-lithostatic pressures in a subduction channel will be

insignificant. However, their own analysis establishes that, for the

specific channel geometry they consider, a ratio of ηwall

ηchannel
> 104

would be sufficient for the upper bound, fixed-geometry model to

be appropriate. A channel fill viscosity of ≤ 1019 Pa s (e.g. for in-

coming unconsolidated ocean-floor sediments containing isolated

basaltic blocks, as considered in Mancktelow 1995) confined be-

tween walls of relatively cold lithospheric mantle, with a viscosity

on the order of 1023 Pa s, is a conceivable first-order model. Estimates

for the effective viscosity of the asthenospheric mantle below the

lithosphere are typically in the range of (3–5) × 1020 Pa s (Lambeck

et al. 1996; Steffen & Kaufmann 2005) and the experimental obser-

vations of Funiciello et al. (2007) suggest ‘that a lithosphere/upper

mantle viscosity contrast of about 300 is necessary to obtain real-

istic trench/subducting plate velocity ratio as well as the variability

of subduction styles recognized in nature’. Taken together, these

two observations imply that the subducting and overriding litho-

spheric plates could indeed have an effective viscosity on the order of

1023 Pa s, even without considering the effects of the reduced

geothermal gradient associated with a subduction zone. The ba-

sic criterion for the local development of significant non-lithostatic

pressures, namely an effective viscosity ratio between the channel

fill and the walls of 104 or more, is therefore not unrealistic and

could well be attained in natural subduction zones.
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