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Convergence and scatter of cluster density profiles
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ABSTRACT
We present new results from a series of �CDM simulations of cluster mass haloes resolved with
high force and mass resolution. These results are compared with recently published simulations
from groups using various codes including PKDGRAV, ART, TPM, GRAPE and GADGET. Careful
resolution tests show that with 25 million particles within the high-resolution region we can
resolve to about 0.3 per cent of the virial radius and that convergence in radius is proportional to
the mean interparticle separation. The density profiles of 26 high-resolution clusters obtained
with the different codes and from different initial conditions agree very well. The average
logarithmic slope at one per cent of the virial radius is γ = 1.26 with a scatter of ±0.17.
Over the entire resolved regions the density profiles are well fitted by a smooth function that
asymptotes to a central cusp ρ ∝ r−γ , where we find γ = 1.16 ± 0.14 from the mean of the
fits to our six highest-resolution clusters.

Key words: methods: N-body simulations – methods: numerical – galaxies: clusters: general –
galaxies: haloes – dark matter.

1 I N T RO D U C T I O N

A highly motivated and well-defined problem in computational as-
trophysics is to compute the non-linear structure of dark matter
haloes. This is especially timely given the abundance of new high-
resolution data that probe the central structure of galaxies (e.g.
de Blok et al. 2001a; de Blok, McGaugh & Rubin 2001b;
McGaugh, Rubin & de Blok 2001; de Blok & Bosma 2002;
Swaters et al. 2003) and clusters (e.g. Sand et al. 2004). Further-
more, a standard cosmological paradigm has been defined that gives
a well-defined framework within which to perform numerical calcu-
lations of structure formation (e.g. Spergel et al. 2003). This subject
has developed rapidly over the past few years, building upon the pi-
oneering results obtained in the early 1990s by Dubinski & Carlberg
(1991) and Warren et al. (1992). More recently, the systematic study
of many haloes at low resolution led to the proposal that cold dark
matter haloes could all be fit by a universal two-parameter function
(Navarro, Frenk & White 1996, hereafter NFW), with a slope of r−1

at one per cent of the virial radius. At the same time, the study of
a few haloes at high-resolution questioned these results (Fukushige
& Makino 1997; Moore et al. 1998, 1999, hereafter M99; Ghigna
et al. 2000; Jing & Suto 2000). These latter authors claimed that
of order a million particles within the virialized region where nec-
essary to resolve the halo structure to 1 per cent and the slopes at
that radius could be significantly steeper. Just within the last few
months, we have seen several groups publish reasonably large sam-
ples of haloes simulated with the necessary resolution that we can
finally determine the scatter in the density profiles across a range
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of mass scales (Fukushige, Kawai & Makino 2004, hereafter F04;
Hayashi et al. 2003, hereafter H03; Navarro et al. 2004; Reed et al.
2003; Tasitsiomi et al. 2004, hereafter T04; Wambsganss, Bode &
Ostriker 2004, hereafter W04).

Much of the recent controversy in the literature has been due to
limited statistics and the lack of agreement over what is a reliable
radius for trusting a given simulation with a given set of parameters.
Several studies have attempted to address this issue (Moore et al.
1998; Knebe et al. 2000; Klypin et al. 2001; Power et al. 2003;
Diemand et al. 2004). Integration and force accuracy can be un-
derstood using controlled test simulations. However, discreteness
is probably the most important and least understood numerical ef-
fect that can influence our numerical results, and it is exacerbated
owing to the lack of an analytic solution with which to compare
simulations. Our particle sampling of the nearly collisionless fluid
we attempt to simulate can lead to energy transfer and mass redis-
tribution, particularly in the central regions that we are often most
interested in.

Collisional effects in the final object or in the early hierarchy of
objects can be reduced by increasing the number of particles N in a
simulation (Diemand et al. 2004). The limitation to the phase space
densities that can be resolved due to discreteness in the initial con-
ditions can also be overcome by increasing the resolution (Binney
2004). As we increase the resolution within a particular non-linear
structure, we find that the global properties of the resolved struc-
ture is retained, including shape, density profile, substructure mass
functions and even the positions of the infalling substructures. This
gives us confidence that our N-body calculations are not biased by
using finite N (Baertschiger, Joyce & Sylos Labini 2002). The fact
that increasing the resolution allows us to resolve smaller radii is
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Table 1. Parameters of simulated cluster haloes.

Run zi ε0 εmax N vir Mvir rvir Vcmax rmax rresolved

(kpc) (kpc) ×1015 (M�) (kpc) (km s−1) (kpc) (kpc)

A9 40.27 2.4 24 24 987 606 1.29 2850 1428 1853 9.0
B9 40.27 4.8 48 11 400 727 0.59 2166 1120 1321 14.4
C9 40.27 2.4 2.4 9 729 082 0.50 2055 1090 904 9.0

D3h 29.44 1.8 18 205 061 0.28 1704 944 834 27
D6h 36.13 1.8 18 1 756 313 0.31 1743 975 784 13.5
D6 36.13 3.6 36 1 776 849 0.31 1749 981 840 13.5
D9 40.27 2.4 24 6 046 638 0.31 1752 983 876 9.0
D9lt 40.27 2.4 24 6 036 701 0.31 1752 984 841 9.0
D12 43.31 1.8 18 14 066 458 0.31 1743 958 645 6.8

E9 40.27 2.4 24 5 005 907 0.26 1647 891 889 9.0

F9 40.27 2.4 24 4 567 075 0.24 1598 897 655 9.0
F9cm 40.27 2.4 2.4 4 566 800 0.24 1598 898 655 9.0
F9 f t 40.27 2.4 99.06 4 593 407 0.24 1601 905 464 9.0

important since the baryons often probe just the central few per cent
of a dark matter structure – the latest observations of galaxies and
clusters probe the mass distribution within one per cent of the virial
radius, which until recently was unresolved by numerical simula-
tions. Forthcoming experiments, such as VERITAS (Weekes et al.
2002) and MAGIC (Flix, Martinez & Prada 2004) will probe the
structure of dark matter haloes on even smaller scales by attempt-
ing to detect gamma-rays from dark matter annihilation within the
central hundred parsecs (∼0.1 per cent Rvirial) of the Galactic halo
(Calcaneo-Roldan & Moore 2000).

A simple estimate of the scaling of N with time shows remark-
able progress over and above that predicted by Moore’s law. The
first computer simulations used of the order of 102 particles and
force resolutions of the order of the half mass radii (Peebles 1970).
Today we can follow up to 108 particles with a resolution of 10−3 of
the final structure. The increase in resolution is significantly faster
than predicted by Moore’s law since equally impressive gains in
performance have been due to advances in software.

We are finally at the stage whereby dark matter clustering is un-
derstood at a level where the uncertainties are dominated by the
influence of the baryonic component. It is therefore a good time to
review and compare existing results from different groups together
with a set of new simulations that we have carried out that are the
state of the art in this subject and represent what is achievable with
several months of dedicated supercomputer time. For certain prob-
lems, such as predicting the annihilation flux discussed earlier, it
would be necessary significantly to increase the resolution. This is
not possible with existing resources and new techniques should be
explored. We begin by presenting our new simulations in Section
2. Section 3 discusses convergence tests and the asymptotic best-fit
density profiles. In Section 4 we compare our results with recently
published results from four other groups mentioned above.

2 N U M E R I C A L E X P E R I M E N T S

Table 1 gives an overview of the simulations we present in this
paper. With up to 25 × 106 particles inside the virial radius of a
cluster and an effective 105 time-steps, they are among the highest-
resolution �CDM simulations performed so far. They represent a
major investment of computing time, the largest run was completed
in about 105 CPU hours on the zBox supercomputer.1

1 http://www-theorie.physik.unizh.ch/∼stadel/zBox/

2.1 N-body code and numerical parameters

The simulations have been performed using a new version of PKD-
GRAV, written by Joachim Stadel and Thomas Quinn (Stadel 2001).
The code was optimized to reduce the computational cost of the
very-high-resolution runs we present in this paper. We tested the
new version of the code by rerunning the ‘Virgo cluster’ initial con-
ditions (Moore et al. 1998). We confirmed that density profile, shape
of the cluster and the amount of substructure it contains is identical
with that obtained with the original code presented in Ghigna et al.
(1998).

Individual time-steps are chosen for each particle proportional
to the square root of the softening length over the acceleration,
�ti = η

√
ε/ai . We used η = 0.2 for most runs, only in run D9lt we

used larger time-steps η = 0.3 for comparison. The node-opening
angle is set to θ = 0.55 initially, and after z = 2 to θ = 0.7. This
allows higher force accuracy when the mass distribution is nearly
smooth and the relative force errors can be large in the treecode. Cell
moments are expanded to fourth order in PKDGRAV, other treecodes
typically use just second- or first-order expansion. The code uses a
spline softening length ε; forces are completely Newtonian at 2ε.
In Table 1, ε 0 is the softening length at z = 0, εmax is the maximal
softening in comoving coordinates. In most runs, the softening is
constant in physical coordinates from z = 9 to the present and is
constant in comoving coordinates before, i.e. εmax = 10 ε0. In runs
C9 and F9cm the softening is constant in comoving coordinates for
the entire run, in run F9 f t the softening has a constant physical
length for the entire run.

2.2 Initial conditions and cosmological parameters

We adopt a �CDM cosmological model with parameters from the
first year WMAP results: 	� = 0.732, 	m = 0.268, σ 8 = 0.9, h =
0.71 (Spergel et al. 2003). The initial conditions are generated with
the GRAFIC 2 package (Bertschinger 2001). The starting redshifts
zi are set to the time when the standard deviation of the density
fluctuations in the refined region reaches 0.2.

First we run a parent simulation: a 3003 particle cubic grid with
a comoving cube size of 300 Mpc (particle mass m p = 3.7 × 1010

M�, force resolution ε0 = 100 kpc, εmax = 1 Mpc). Then we use the
friends-of-friends (FoF) algorithm (Davis et al. 1985) with a linking
length of 0.164 mean interparticle separations to identify clusters.
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We found 39 objects with virial masses above 2.3 × 1014 M�. We
selected six of these clusters for re-simulation, discarding objects
close to the periodic boundaries and objects that show clear signs of
recent major mergers at z = 0. We label the six clusters with letters
A to F according to their mass. It turned out that two of the clusters
selected in this way (runs A and C) have ongoing major mergers at
z = 0 (i.e. two clearly distinguishable central cores), which is not
evident from the parent simulation due to lack of resolution. These
clusters were evolved slightly into the future to obtain a sample of
six ‘relaxed’ clusters.

For re-simulation we trace back the particles within a cluster’s
virial radius to the initial conditions and add all particles within
4 Mpc of these to the refinement region. This ensures that there
is no pollution of heavier particles within the virial radius of the
re-simulated cluster. Typically one third or one quarter of the refine-
ment particles end up within the virial radius. To reduce the mass
differences at the border of the refinement region we define a 5-Mpc
thick ‘buffer region’ around the high-resolution region, where an in-
termediate refinement factor of three or four in length is used. The
final refinement factors are 6, 9 and 12 in length, i.e. 216, 729 and
1728 in mass, so that the mass resolution is m p = 2.14 × 107 M� in
the highest-resolution run. We label each run with a letter indicating
the object and number that gives the refinement factor in length. To
reduce the mass differences at the border of the refinement region
we define a 5-Mpc thick ‘buffer region’ around the high-resolution
region, where an intermediate refinement factor of three or four in
length is used.

2.3 Measuring density profiles

We define the virial radius rvir such that the mean density within rvir

is 178 	0.45
Mρ crit = 98.4 ρ crit for the adopted model (Eke, Cole &

Frenk 1996). We use 30 spherical bins of equal logarithmic width,
centred on the densest region of each cluster using TIPSY.2 We con-
firmed that using triaxial bins adapted to the shape of the isodensity
surfaces (at some given radius, we tried 0.1, 0.5 and 1rvir) does
not change the form of the density profile, in agreement with Jing &
Suto (2002). Binned profiles, and especially the slopes derived from
them, are noisy; a kernel-based smoothing algorithm is presented in
Reed et al. (2003). For simplicity and easier comparison with other
results, we present only profiles obtained using spherical bins and
without smoothing. Data points are plotted at the arithmetic mean
of the corresponding bin boundaries; the first bin ends at 1.5 kpc,
the last bin at the virial radius.

3 ΛC D M C L U S T E R P RO F I L E S

3.1 Profile convergence tests

Numerical convergence tests show that, with sufficient time-steps,
force accuracy and force resolution, the radius a CDM simulation
can resolve is limited by the mass resolution (Moore et al. 1998;
Ghigna et al. 2000; Knebe et al. 2000; Klypin et al. 2001; F04; H03;
Power et al. 2003; Reed et al. 2003). These tests compare different
mass resolution simulations of the same object to determine the
resolved radius. The resulting radii scale with N−0.45 according to
F04, H03 and Power et al. (2003), but only with N−1/3 in the tests
in Moore et al. (1998), Ghigna et al. (2000) and Reed et al. (2003).

2 TIPSY is available form the University of Washington N-body group:
http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html

Table 2. Convergence radii measured by comparing with run D12. The
numbers in the run labels are ∝ N 1/3, at fixed force resolution we get r ∝
N−1/3 (bold values). Question marks indicate that a run with much better
mass resolution than D12 would be needed to measure these convergence
radii reliably. Stars indicate estimated radii assuming a convergence rate of
r ∝ N−1/3.

Run ε0 N vir r 10 per cent vc r 10 per cent M r 10 per cent ρ

(kpc) (kpc) (kpc) (kpc)

D3h 1.8 205 061 17.2 21.9 9.5
D6h 1.8 1 756 313 8.4 10.7 4.6
D6 3.6 1 776 849 8.4 17.3 12.1

D9 2.4 6 046 638 3.2 ? 5.2 ? 2.2 ?
D9lt 2.4 6 036 701 5.2 ? 6.6 ? 2.8 ?

D9 2.4 6 046 638 5.7∗ 7.3∗ 3.2∗
D12 1.8 14 066 458 4.2∗ 5.3∗ 2.4∗

3.1.1 Mass resolution

The finite mass resolution of N-body simulations always leads to
two-body relaxation effects, i.e. heat is transported into the cold halo
cores and they expand. It is not obvious that better mass resolution
reduces the effects of two-body relaxation, since in hierarchical
models the first-resolved objects always contain just a few particles
and with higher resolution these first objects form earlier, i.e. they
are denser and more affected by relaxation effects (Moore 2001;
Binney & Knebe 2002). Estimates of relaxation based on following
the local phase-space density in simulations show that the amount
of relaxation can be reduced with better mass resolution, but the
average degree of relaxation scales roughly like N−0.3, much slower
than the N−1 expected from the relaxation time of the final structure
(Diemand et al. 2004). This confirms the validity of performing
convergence tests in N, but one has to bear in mind that convergence
can be quite slow.

We checked a series of re-simulations of the same cluster (D)
for convergence in circular velocity, mass enclosed3 and density.
Outside of the converged radii the values must be within 10 per cent
of the reference run D12. Table 2 shows the measured converged
radii.

(i) Convergence is slow, roughly ∝ N−1/3. Therefore a high-
resolution reference run should have at least eight times as many
particles. Between run D9 and D12 the factor is only 2.37. Using
D12 to determine the converged radii of D9 gives radii that are about
a factor two too small (Table 2). F04 compare runs with N vir = 14
× 106 and N vir = 29 × 106. At radii where both runs have similar
densities it is still not clear if the simulations have converged; even
higher-resolution studies are needed to demonstrate this.

(ii) If one sets the force resolution to one half of expected resolved
radius, then it is not surprising to measure a resolved radius close to
the expected value. With this method one can demonstrate almost
arbitrary convergence criteria, as long as they overestimate rconv.
Therefore convergence tests in N should be performed with small
softenings (high force resolution). Runs D3h, D6h and D12 all have
ε 0 = 1.8 kpc; their converged radii scale as the mean interparticle
separation N−1/3. In run D6, ε0 = 3.2 kpc is close to the ‘optimal
value’ from Power et al. (2003), and the converged radii are larger
than in D6h (see Fig. 2).

3 Convergence within 10 per cent in cumulative mass is the same as con-
vergence in circular velocity with a tolerance of 5 per cent.
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Figure 1. Numerical convergence tests for the cluster profiles. Panel (a): density profiles of cluster D resolved with N vir = 205k, 1.8M, 6M and 14M particles.
Panel (b): logarithmic slope for the profiles from (a). Panel (c): density profiles of cluster F simulated with different numerical parameters: F9 f t used 4096
fixed time-steps and constant ε in physical coordinates as in F04. F9cm and F9 used adaptive time-steps 0.2

√
ε(z)/a with comoving softening in F9 and

mixed comoving/physical softening in F9 (εmax = 10 ε0). Panel (d): logarithmic slope for the profiles from (c).

(iii) Different small-scale noise in the initial conditions leads to
different formation histories. Therefore the shape and the density
profile can differ even at radii were all runs have converged. For
example between r = 10 and 320 kpc, the densities in run D9
are about 7 per cent higher than in run D12. Therefore the den-
sities in D9 are within 10 per cent of those of D12 quite early. If
one re-scales ρ in this range r 10 per cent ρ of D9 grows from 2.2 to
4.6 kpc.

Extrapolating r conv ∝ N−1/3 to our highest-resolution runs gives
the values on the last two lines of Table 2. Note that this is just an
extrapolation, it is not clear that this scaling is valid down to this
level, only larger simulations could verify this. To be conservative
we assume the limit due to mass resolution to be 9 kpc for the
‘9-series’ of runs, and 6.8 kpc for run D12. The force resolution
sets another limit at about 3 ε0. We give the larger of the two limits
as the trusted radius in Table 1.

3.1.2 Force and time resolution

Finite time-steps and force resolution also sets a limiting ra-
dius/density that a run can resolve. We use multistepping, individual
time-steps for the particles that are obtained by dividing the main
time-step (usually t 0/200) by two until it is smaller than η

√
ε(z)/a,

where a is the local acceleration. Our standard choice is η = 0.2 and
ε(z = 0) between 0.001 rvir and 0.0022 rvir, ε is constant in physical

length units since z = 9 and comoving before that epoch. Here we ar-
gue that the resolution limit imposed by this choice of multistepping
lies well below the scale affected by finite mass resolution.

In run D9lt , the number of time-steps was reduced by using η =
0.3, at equal force resolution as in D9. Run F9cm had a constant
comoving softening during the entire simulation, in run F9 f t the
softening is physical and the time-steps are fixed at �t = t 0 / 4096
and are equal for all particles (i.e. the same numerical parameters as
in F04). The density profiles are very similar (Fig. 1, Panel c); there
is no significant difference above the mass resolution scale of 9 kpc.
There is a small difference in the inner profile of F9 compared with
F9 f t and F9cm, at large z this run has larger ε and therefore larger
time-steps than F9cm. So it is possible that runs with our standard
parameters have slightly shallower density profiles at the resolution
limit than runs with entirely comoving softening, or runs with a
sufficiently large number of fixed time-steps. However run F9cm
takes twice as much CPU time as run F9 and run F9 f t three times
more, therefore we accept this compromise.

Fig. 3 shows the time-step criterion η
√

ε(z)/a as a function of
radius at z = 0 for runs D9 (triangles, solid line), D9lt (dashed
line) D12 (long-dashed line) and for F9 f t (horizontal line). Parti-
cles near the cluster centre must take time-steps below 2 × 10−4t 0,
i.e. their time-steps are t 0/200 × 2−5 = t 0/6400. According to
Power et al. (2003), the resolution limit due to finite time-steps t ts

is where the circular velocity (circles) equals 15 (�t/t 0)5/6t circ(r vir)
(open squares). This radius is indeed close to that where the
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Figure 2. Ratios of the mass enclosed in low-resolution runs to the mass
enclosed in the high-resolution run D12. By comparing runs with equal
softening (smaller than one third of the convergence scale) like D3h and
D6h one finds that the resolved radii scale like r ∝ N−1/3. A larger softening
(see run D6) can increase the converged scales and change this scaling.

circular velocities and densities start to differ; however, for run D9lt
this estimate is even a bit too conservative, since the density (and
also vcirc) profiles of D9lt and D9 agree down to at least 0.005
r vir. This suggest that about 15 time-steps per local dynamical time
are sufficient for the simulations presented here. Other codes may
require convergence conditions different from those we present in
this paper. For example, F04 claim that their runs converge down to
0.003 rvir even with only 2048 fixed time-steps, which corresponds
to only eight time-steps per dynamical time at this radius.

3.2 Density profiles

In this section we present the profiles of the six high-resolution runs:
A9, B9, C9, D12, E9, F9cm. The output at z = 0 was used, except
for clusters A9 and C9, which had a recent major merger4 and the
core of the infalling cluster is at about 0.02 rvir in A9 and at 0.1 r
vir in C9. These cores spiral in due to dynamical friction and in the
‘near’ future both clusters have a regular, ‘relaxed’ central region
again. Therefore we use outputs at z = −0.137 (+2.1 Gyr) for run
A9 and z = −0.167 (+2.6 Gyr) for C9.

3.3 Two-parameter fits

Fig. 4 shows the density profiles of the six different clusters. We
also show best fits to functions previously proposed in the litera-
ture that have asymptotic central slopes of −1 (NFW) and −1.5
(M99). The fits are carried out over the resolved region by mini-
mizing the mean square of the relative density differences. These
two profiles have two free parameters, namely the scale radius rs

and the density at this radius ρ s = ρ(r s). The scale radii rs of these
best fits give the concentrations c = rvir/r s listed in Table 3. The
residuals are plotted in the top and bottom panels of Fig. 4 and the
rms of the residuals are given in Table 3 as �NFW and �M99. The
residuals are quite large and show that neither profile is a good fit

4 An mpeg movie of the formation of cluster C9 can be downloaded from
http://www-theorie.physik.unizh.ch/∼diemand/clusters/

Figure 3. The triangles show the time-step criterion η
√

ε(z)/a as a func-
tion of radius for run D9 at z = 0. The dashed line is for run D9lt , which
has η = 0.3, and the long-dashed line for run D12. The open squares
give the 15 (�t/t 0)5/6t circ(rvir) form of Power et al. (2003), the circles
are the circular orbit time-scale 2π r/vcirc(r ). Lines without symbols show
tdyn/15 = 1/(

√
Gρ(< r )15). The two horizontal lines are the time-steps

and 15 (�t/t 0)5/6t circ(rvir) for run F9 f t .

Table 3. Density profile parameters. � is the root mean square of (ρ −
ρfit)/ρ for the four fitting functions used.

Run cNFW �NFW cM99 �M99 γ G cG �G αN cN �N

A9 5.7 0.10 1.7 0.21 1.16 3.9 0.057 0.167 4.2 0.033
B9 4.2 0.16 1.5 0.13 1.29 2.1 0.083 0.141 2.6 0.093
C9 7.6 0.09 3.0 0.26 0.92 8.7 0.081 0.247 7.2 0.068

D3h 7.4 0.17 3.9 0.13 1.42 4.0 0.103 0.175 7.3 0.101
D6h 7.9 0.11 3.8 0.13 1.17 4.6 0.089 0.206 7.2 0.081
D6 7.9 0.12 3.8 0.16 1.25 5.4 0.101 0.193 7.2 0.097
D9 8.8 0.12 3.9 0.12 1.21 6.2 0.096 0.190 7.8 0.087
D9lt 8.7 0.12 3.8 0.12 1.20 6.2 0.098 0.191 7.7 0.087
D12 8.4 0.12 3.1 0.14 1.25 4.5 0.066 0.174 6.9 0.051

E9 7.4 0.12 3.0 0.10 1.25 4.5 0.072 0.176 6.2 0.069

F9 6.9 0.06 3.0 0.14 1.02 6.7 0.054 0.224 6.5 0.048
F9cm 7.3 0.06 3.1 0.14 1.10 6.2 0.055 0.212 6.6 0.057
F9 f t 7.2 0.05 3.1 0.16 1.05 6.6 0.043 0.218 6.5 0.045

to all the simulations, which lie somewhere in between these two
extremes.

3.4 Three-parameter fits

Navarro et al. (2004) argue that the large residuals of NFW and M99
fits are evidence against any constant asymptotic central slope and
propose a profile that curves smoothly over to a constant density at
very small radii:

ln(ρN(r )/ρs) = (−2/αN)
[
(r/rs)

αN − 1
]
. (1)

This function gives a much better fit to the simulations, see the dash–
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Figure 4. Density profiles of the six clusters in our sample, clusters B to F are shifted downwards for clarity. Clusters are ordered by mass form top to bottom.
Profiles of cluster A and C are shown at redshifts −0.14 and −0.17, i.e. when they have reached a ‘relaxed’ state with one well-defined centre. Best-fit NFW
and M99 profiles and residual are shown, obtained by minimizing the squares of the relative density differences.

dotted lines in Fig. 5, but this should be expected since there is an
additional third free parameter αN, while the NFW and M99 profiles
only have two free parameters. αN determines how fast the profile
(1) turns away from a power law near the centre. Navarro et al.
(2004) found that αN is independent of halo mass and αN = 0.172
± 0.032 for all their simulations, including galaxies and dwarfs. The
mean and scatter of our six high-resolution clusters is αN = 0.186
± 0.037. (Excluding cluster C9 yields αN = 0.174 ± 0.025.)

We also show fits to a general αβγ -profile (ρG, subscript ‘G’
stands for ‘general’) that asymptotes to a central cusp ρ(r ) ∝ r−γ :

ρG(r ) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (2)

We fix the outer slope β = 3 and the turnover parameter α = 1. For
comparison, the NFW profile has (α, β, γ ) = (1, 3, 1) and the M99
profile has (α, β, γ ) = (1.5, 3, 1.5). We fit the three parameters γ ,
r s and ρ s to the data and find that this cuspy profile also provides
a very good fit to the data. The best-fit values and rms residual are
listed in Table 3 and we find a mean slope of γ = 1.16 ± 0.14.

Using a sharper turnover α = 1.5 makes the fits slightly worse
(the average of �G is about 20 per cent larger) and the best-fit inner
slopes are somewhat steeper at γ = 1.31 ± 0.11.

The fitting functions (1) and (2) fit the measured density profiles
very well over the whole resolved range. Function (1) is even a
relatively good approximation below the resolved scale: for example
if one is extremely optimistic about r resolved in run D6 and uses

r resolved = 2.8 kpc instead of 13.5 kpc one gets αN = 0.0203, cN =
7.1 and �N = 0.127, while the generalized fit is now clearly worse:
γ G = 0.99, cG = 3.6 and �G = 0.216. Also note that the residuals
near r resolved are very small or positive for (1), i.e. the measured
density is as large as the fitted value. But at r resolved it is possible
that the measured density is slightly too low since in this region the
numerical limitations start to play a role. If extrapolation beyond
the converged radius is necessary it is not clear which profile is a
safer choice. We agree with Navarro et al. (2004) that all simple
fitting formulae have their drawbacks, that direct comparison with
simulations should be attempted whenever possible and that much
higher-resolution simulations are needed to establish (or exclude)
that CDM haloes have divergent inner density cusps (as predicted
in Binney 2003).

3.5 Maximum inner slope

The results from the last section suggest that profiles with a
central cusp in the range γ = 1.16 ± 0.14 provide a good
approximation to the inner density profiles of �CDM haloes. But
fig. 4 in Navarro et al. (2004) seems to exclude our mean value
for more than half of their cluster profiles. This is not totally in-
consistent, it is only a hint of a mild discrepancy that we will try
to explain: in principle the mass inside the converged radius limits
the inner slope: γmax = 3[1 − ρ(r )/ρ(, r )]. This is true if both the
density and the cumulative density are correct down to the resolved
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scale. But up to now the central density of a simulated profile al-
ways increased with better numerical resolution, so it is likely that
also today’s highest-resolution simulations underestimate the dark
matter density near the centre. This means that cumulative quan-
tities like vcirc(r ), M(< r ) and ρ(< r ) tend to be too low even at
radii where the density has converged. The converged radii used
in Navarro et al. (2004) are close to the radius where the circu-
lar velocity is within 10 per cent of a higher-resolution run, while
the density converges further in at about 0.6 r conv (H03). If we
assume that this is also true for their highest-resolution runs then
ρ(< r ) ∝ vcirc(r )2 is up to 20 per cent too low, while the error
in ρ(r ) is much smaller. This raises the values for γ max by about
0.2 ∼ 0.3 and our mean value γ = 1.16 is not excluded by any
of their clusters anymore. If the convergence with mass resolution
is not as fast as r conv ∝ N−0.45 but rather r conv ∝ N−1/3, see Sec-
tion 3.1, then the maximum inner slopes could have even larger
errors.

4 C O M PA R I S O N W I T H OT H E R G RO U P S

Recently, several groups have published simulations of dark mat-
ter clusters in the concordance cosmological model. These authors
kindly supplied their density profiles and we show the comparison
here. F04 simulated four �CDM clusters with 7 to 26 million par-
ticles using a Treecode and the GRAPE hardware. These authors also
used the GRAFIC 2 software (Bertschinger 2001) to generate their
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Figure 5. Same as Fig. 4, but with fitting functions that have one additional free parameter. The dash–dotted lines show the profile (1) proposed by (Navarro
et al. 2004). The dashed lines show a general αβγ -profile (2). We fitted the inner slope γ to the data and used fixed values for the outer slope β = 3 and turning
parameter α = 1. γ = 1 corresponds to the NFW profile. The fit parameters and rms of the residuals are given in Table 3.

initial conditions. H03 and Navarro et al. (2004) presented eight
clusters resolved with up to 1.6 million particles within r200 sim-
ulated with the GADGET code (Springel, Yoshida & White 2001);
the method used to generate the initial conditions is described in
Power et al. (2003). T04 simulated six clusters with up to 0.8 mil-
lion particles within r180 using the adaptive refinement tree code ART

(Kravtsov, Klypin & Khokhlov 1997) and a technique for setting up
multi-mass initial conditions described in Klypin et al. (2001). W04
present a cosmological simulation without re-simulation of refined
regions, i.e. constant mass resolution (10243 particles in a 320 h−1

Mpc box). The four most massive clusters in this cube are resolved
within 0.5 to 0.9 million particles. This simulation was performed
with a Tree–Particle–Mesh (TPM) code (Bode & Ostriker 2003) with
a softening of 3.2 h−1 kpc.

In Fig. 6 we show these data along with the new simulations pre-
sented in this paper. We plot the density profiles and the logarithmic
slopes of the clusters all normalized at the radius such that the circu-
lar velocity curve peaks r Vcmax and to ρ(< rVcmax). This corresponds
to the radius at which d log ρ/d log r = −2. We plot the curves to
the ‘believable’ radius stated by each group and down to about
0.01 rvir for W04.

The density profiles are reassuringly similar. Furthermore, the
scatter is small, roughly ± 0.15 in the logarithmic gradient at small
radii (0.01–0.5 r Vcmax). Table 4 lists the measured slopes at different
radii. There is no value at 3 per cent r Vcmax for the cluster from
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Figure 6. Panel (a): density profiles of cluster simulated by different groups normalized to the radius were the circular velocity peaks r Vcmax and to ρ(< rVcmax):
six clusters from this paper (solid lines), four from F04 (thick-dashed lines), eight from H03 (thin-dashed lines), six from T04 (dash–dotted lines), four from
W04 (dotted lines). Despite the different codes, parameters and initial conditions used, the results are very similar. Panel (b): logarithmic slope for the profiles
from (a). Points with error bars give the averages at 0.03 and 0.09 r Vcmax and a scatter of 0.15 (see Table 4).

T04 and W04 because this is below their quoted resolution limit.
Most values agree within the scatter, the profiles from T04 are
steeper when compared at 0.01 and 0.03 rvir ≡ r 98.4, but within
the scatter at 3 per cent r Vcmax. This could be due to different
halo selection. The majority of their clusters are not isolated but
in close pairs or triplets. In a close pair the density falls slower
with radius to 98.4 ρ crit, so rvir ≡ r 98.4 is further out as in a
isolated cluster with similar inner profile. Among the samples
of isolated clusters (F04; H03; W04 and our clusters) there is a

Table 4. Logarithmic slopes (absolute values) of our six high-resolution cluster density profiles. Line (a) gives the averages and scatter.
(b) and (c) are average slopes from other groups (see text for details).

1 per cent rvir 3 per cent rvir 3 per cent r Vcmax 9 per cent r Vcmax

A9 1.22 1.36 1.24 1.64
B9 1.33 1.43 1.21 1.63
C9 1.24 1.21 1.25 1.26
D12 1.28 1.54 1.32 1.58
E9 1.31 1.44 1.41 1.62
F9cm 1.19 1.47 1.22 1.43

(a) A–F 1.26 ± 0.05 1.41 ± 0.11 1.28 ± 0.08 1.53 ± 0.15
(b) F04 1.25 ± 0.05 1.52 ± 0.06 1.33 ± 0.15 1.54 ± 0.15
(c) H03 1.18 ± 0.13 1.38 ± 0.14 1.23 ± 0.17 1.50 ± 0.14
(d) T04 1.50 ± 0.14 1.79 ± 0.07 – 1.56 ± 0.12
(e) W04 1.11 ± 0.04 1.41 ± 0.13 – 1.35 ± 0.06

avg (a–e) 1.26 1.50 – 1.49
avg (a–c) 1.23 1.44 1.28 1.52

small trend at 0.01 rvir towards steeper slopes with better mass
resolution.

5 S U M M A RY

We have carried out a series of six very-high-resolution calculations
of the structure of cluster mass objects in a hierarchical universe. The
clusters contain up to 25 million particles and have force softening
as small as 0.1 per cent rvir.
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A convergence analysis demonstrates that for our Treecode with
our integration scheme, the radius beyond which we can trust the
density profiles scale according to the mean interparticle separation.
In the best case we reach a resolution of about 0.3 per cent rvir.

Neither of the two-parameter functions, the NFW and M99 pro-
files, are very good fits over the whole resolved range in most clus-
ters. One additional free parameter is needed to fit all six clusters: the
asymptotically flat profile from Navarro et al. (2004) and an NFW
profile with variable inner slope provide much improved fits. The
best-fit inner slopes are γ = 1.16 ± 0.14. Below the resolved radius
the two fitting formulas used are very different. Future simulations
with much higher resolution will show which one (if either) of the
two is still a good approximation on scales of 0.1 per cent rvir and
smaller.

We compare our results with simulations from other groups who
used independent codes and initial conditions. We find a good agree-
ment between the cluster density profiles calculated with different
algorithms. From 0.03–0.5 r Vcmax the scatter in the profiles is nearly
constant and equal to about 0.17 in logarithmic slope. At one per
cent of the virial radius (defined such that the mean density within
rvir is 178 	0.45

M ρ crit = 98.4 ρ crit) the slope of the density profiles is
1.26 ± 0.16.
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