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Bernstein, Sturmfels, and Zelevinsky proved in 1993 that the maximal minors of a matrix

of variables form a universal Gröbner basis. We present a very short proof of this result,

along with broad generalization to matrices with multihomogeneous structures. Our

main tool is a rigidity statement for radical Borel fixed ideals in multigraded polynomial

rings.

1 Introduction

A set G of polynomials in a polynomial ring S over a field is said to be a universal

Gröbner basis if it is a Gröbner basis with respect to every term order on S. Twenty years

ago Bernstein, Sturmfels, and Zelevinsky proved in [3, 14] that the set of the maximal

minors of an m × n matrix of variables X is a universal Gröbner basis. Indeed, in [14],

the assertion is proved for certain values of m, n and the general problem is reduced to

a combinatorial statement that it is then proved in [3]. Kalinin gave in [10] a different

proof of this result. Boocher proved in [4] that any initial ideal of the ideal Im(X) of

maximal minors of X has a linear resolution (or, equivalently in this case, defines a

Cohen–Macaulay ring).

The goal of this paper is two-fold. First, we give a quick proof of the results

mentioned above. Our proof is based on a specialization argument, see Section 2, and,
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unlike the proofs given in [3, 10], does not involve combinatorial techniques. Secondly,

we show that similar statements hold in a more general setting, for matrices of lin-

ear forms satisfying certain homogeneity conditions. More precisely, in Section 4, we

show that the set of maximal minors of an m × n matrix L = (Lij) of linear forms is a

universal Gröbner basis, provided that L is column-graded. By this, we mean that the

entries Lij belong to a polynomial ring with a standard Zn-graded structure, and that

deg Lij = ej ∈ Zn. Under the same assumption, we show that every initial ideal of Im(L)

has a linear resolution. Furthermore, the projective dimension of Im(L) and of its initial

ideals is n− m, unless Im(L) = 0 or a column of L is identically 0 (note that, under these

assumptions, the codimension of Im(L) can be smaller than n− m + 1).

If instead L is row-graded, that is, deg Lij = ei ∈ Zm, then we prove in Section 5

that Im(L) has a universal Gröbner basis of elements of degree m and that every ini-

tial ideal of Im(L) has a linear resolution, provided that Im(L) has the expected codi-

mension. Note that in the row-graded case, the maximal minors do not form a univer-

sal Gröbner basis in general (since every maximal minor might have the same initial

term).

The proofs of the statements in Sections 4 and 5 are based on a rigidity property

of radical Borel fixed ideals in a multigraded setting. This property has been observed

already in special cases, for example, by Cartwright and Sturmfels [5, Proof of Theorem

2.1] in their studies of the multigraded Hilbert scheme associated to the Segre product of

two projective spaces and by Aholt et al. [1, Lemmas 2.4 and 2.5] in the study of varieties

associated with multilinear constructions arising in computer vision. In a polynomial

ring with a standard Zm-grading, one can take generic initial ideals with respect to the

product of general linear groups preserving the grading. Such generic initial ideals are

Borel fixed. The main theorem of Section 3 asserts that if two Zm-graded Borel fixed

ideals I, J have the same Hilbert series and I is radical, then I = J. This is the rigidity

property that we referred to, and which has very strong consequences. For instance,

if I is Cohen–Macaulay, radical, and Borel fixed, then all the multihomogeneous ideals

with the same multigraded Hilbert series are Cohen–Macaulay and radical as well.

Extensive computations performed with CoCoA [6] led to the discovery of the

results and examples presented in this paper.

2 A Simple Proof of the Universal Gröbner Bases Theorem

Let K be a field, S = K[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n]. Let X = (xij) be an m × n matrix of inde-

terminates, and let Im(X) be the ideal generated by the maximal minors of X. The goal of
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this section is giving a quick proof of the following result of Bernstein, Sturmfels, and

Zelevinsky [3, 14], and Boocher [4].

Theorem 2.1. The set of maximal minors of X is a universal Gröbner basis of Im(X),

that is, a Gröbner basis of Im(X) with respect to all the term orders. Furthermore, every

initial ideal of Im(X) has the same Betti numbers as Im(X). �

Let R be a standard graded K-algebra. We denote by

HS(M, y) =
∑
i∈Z

(dimK Mi)yi ∈ Q [|y|] [y−1]

the Hilbert series of a finitely generated graded R-module M =⊕
i∈Z

Mi. We need the

following “Hilfssatz”.

Lemma 2.2. Let R be a standard graded K-algebra, let M, T be finitely generated

graded R-modules, and x1, . . . , xs ∈ R be homogeneous elements of positive degree. Set

J = (x1, . . . , xs). Suppose that:

(1) HS(T, y) ≥ HS(M, y) coefficientwise,

(2) HS(T/JT, y) = HS(M/JM, y),

(3) x1, . . . , xs is an M-regular sequence.

Then HS(M, y) = HS(T, y) and x1, . . . , xs is a T-regular sequence. �

Proof. For i = 1, . . . , s, set Ji = (x1, . . . , xi), Ti = T/JiT , di = deg(xi), and gi(y) =∏i
j=1

(1 − ydj ) ∈ Q[y]. Furthermore, set T0 = T and for i = 0, . . . , s − 1 denote by Ki+1 the sub-

module {m ∈ Ti : xi+1m = 0} of Ti shifted by −di+1.

The four terms exact complex induced the multiplication by xi+1 on Ti yields

HS(Ti+1, y) = (1 − ydi+1)HS(Ti, y) + HS(Ki+1, y),

and hence

HS(T/JT, y) = gs(y)HS(T, y) +
s∑

j=1

gs− j(y)HS(Kj, y).

Since HS(T/JT, y) = HS(M/JM, y) = gs(y)HS(M, y) by assumption, we have

gs(y)(HS(T, y) − HS(M, y)) +
s∑

j=1

gs− j(y)HS(Kj, y) = 0.
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Since HS(T, y) − HS(M, y) and HS(Kj, y) are powers series with nonnegative coef-

ficients and gi(y) are polynomials with positive least degree term coefficient, we obtain

that HS(T, y) = HS(M, y) and Kj = 0 for j = 1, . . . , s. �

Proof of Theorem 2.1. We may assume without loss of generality that K is infinite. Let

A= (aij) be an m × n matrix with entries in K∗, such that all its m-minors are nonzero.

It exists because K is infinite. Consider the K-algebra map

Φ : S = K[xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n] → K[y1, . . . , yn]

induced by Φ(xij) = aij yj for every i, j. By construction, the kernel of Φ is generated by

n(m − 1) linear forms. Let Y = Φ(X) = (aij yj). Denote by [c1, . . . , cm]W the minor with col-

umn indices c1, . . . , cm of an m × n matrix W. By construction

Φ([c1, . . . , cm]X) = [c1, . . . , cm]Ayc1 · · · ycm .

Hence, by our assumption on A, we have that

Φ(Im(X)) = Im(Y) = (yc1 · · · ycm : 1 ≤ c1 < · · · < cm ≤ n),

that is, Im(Y) is generated by all the square-free monomials in y1, . . . , yn of total degree

m. In particular, it has codimension n− m + 1. It follows that Im(Y) is resolved by the

Eagon–Northcott complex, hence Ker Φ is generated by a regular sequence on S/Im(X).

Now let ≺ be any term order on S and let D be the ideal generated by the leading terms

of the maximal minors of X with respect to ≺. We have D ⊆ in≺(Im(X)) and

Φ(in≺([c1, . . . , cm]X)) = Φ(xσ1c1 · · · xσmcm) = aσ1c1 · · · aσmcm yc1 · · · ycm ,

for some σ ∈ Sm. Hence,

Φ(D) = Im(Y).

We apply Lemma 2.2 to the following data:

M = S/Im(X), T = S/D, and J = Ker Φ,

to conclude that D = in≺(Im(X)). The Betti numbers of Im(X) equal those of D since,

in this case, T/JT = M/JM and J is generated by a sequence of linear forms which is

regular on both T and N. �
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Can one generalize Theorem 2.1 to ideals of maximal minors of matrices of linear

forms? In Sections 4 and 5, we will give positive answers to the question by assuming

that the matrix is multigraded, either by rows or by columns. In general, however, one

cannot expect too much, as the following remark shows.

Remark 2.3. One can consider various properties related to the existence of Gröbner

bases and various families of matrices of linear forms. For instance, we can look at the

following properties for the ideal Im(L) of m-minors of an m × nmatrix L of linear forms

in a polynomial ring S:

(a) Im(L) has a Gröbner basis of elements of degree m with respect to some

term order and possibly after a change of coordinates.

(b) Im(L) has a Gröbner basis of elements of degree m with respect to some

term order and in the given coordinates.

(c) Property (b) holds and the associated initial ideal has a linear resolution.

(d) Im(L) has a universal Gröbner basis of elements of degree m.

We consider the following families of matrices of linear forms:

(1) No further assumption on L is made.

(2) Im(L) has codimension n− m + 1.

(3) The entries of L are linearly independent over the base field (i.e., L arises

from a matrix of variables by a change of coordinates).

What we know (and do not know) is summarized in the following table:

(a) (b) (c) (d)

(1) No No No No

(2) Yes No No No

(3) Yes ? ? No

There are ideals of 2-minors of 2 × 4 matrices of linear forms that define non-

Koszul rings (see [7, Remark 3.6]). Hence, those ideals cannot have a single Gröbner

bases of quadrics (not even after a change of coordinates). This explains the four “no” in

the first row of the table.

Every initial ideal of the ideal of 2-minors of(
x1 + x2 x3 x3

0 x1 x2

)
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has a generator in degree 3 if the characteristic of the base field is 
= 2. The codimension

of I2(L) is 2. This example explains the three “no” in the second row of the table. The

“yes” in the second row follows because the generic initial ideal with respect to the

reverse lexicographic order is generated in degree m under assumption (2).

Finally, the matrix (
x1 x4 x3

x5 x1 + x6 x2

)

belongs to the family (3) and the initial ideal with respect to any term order satisfying

x1 > x2 > · · · > x6 has a generator in degree 3. This explains the “no” in the third row. The

“yes” is there because (3) is contained in (2).

It remains open whether the ideal of maximal minors of a matrix in the family

(3) has at least a Gröbner basis of elements of degree m in the given coordinates, and

whether the associated initial ideal has a linear resolution. �

3 Radical and Borel Fixed Ideals

The goal of the section is to prove Theorem 3.5, a rigidity result for multigraded Hilbert

series associated to radical multigraded Borel fixed ideals. Special cases of it appeared

already in [1, 5]. We will introduce the G-multidegree, a generalization of the notion of

multidegree of Miller and Sturmfels [11, Chapter 8], that allows us to deal with minimal

components of various codimensions in the case of Borel fixed ideals.

Given m ∈ N and (n1, . . . , nm) ∈ Nm, let S be the polynomial ring in the set of vari-

ables xij with 1 ≤ i ≤ m and 1 ≤ j ≤ ni over an infinite field K, with grading induced by

deg(xij) = ei ∈ Zm. Let M be a finitely generated, Zm-graded S-module. The multigraded

Hilbert series of M is

HS(M, y) = HS(M, y1, . . . , ym) =
∑

a∈Zm

(dim Ma)ya ∈ Q [|y1, . . . , ym|] [y−1
1 , . . . , y−1

m

]
.

The group G = GLn1(K) × · · · × GLnm(K) acts on S as the group of Zm-graded

K-algebra automorphisms. Let B = Bn1(K) × · · · × Bnm(K) be the Borel subgroup of G

consisting of the upper triangular matrices with arbitrary nonzero diagonal entries.

An ideal I is said to be Borel fixed (or Zm-graded Borel fixed to avoid confusion with the

standard graded setting) if g(I ) = I for every g ∈ B. Borel fixed ideals are monomial ide-

als that can be characterized in a combinatorial way by means of exchange properties

as it is explained in [8, Theorem 15.23]. Indeed in [8, Theorem 15.23], details are given in
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the standard graded setting but, as observed in [2, Section 1], the same characterization

holds also in the multigraded setting.

Given a term order ≺ such that xik ≺ xij for every j > k, one can associate a (multi-

graded) generic initial ideal gin≺(I ) to any Zm-graded ideal of I of S. As in the standard

graded setting, it turns out that gin≺(I ) is a Zm-graded Borel fixed ideal.

The prime Zm-graded Borel fixed ideals are easy to describe. Set

U = {(b1, . . . , bm) ∈ Nm : bi ≤ ni for every i = 1, . . . , m}.

The following assertion follows immediately from the definition.

Lemma 3.1. For every vector b ∈ U, the ideal

Pb = (xij : i = 1, . . . , m and 1 ≤ j ≤ bi)

is prime and Zm-graded Borel fixed, and every prime Zm-graded Borel fixed ideal is of

this form. �

Lemma 3.2. The associated prime ideals of a Zm-graded Borel fixed ideal I are

Zm-graded Borel fixed. �

Proof. Let P be an associated prime to S/I . Clearly, P is monomial (i.e., generated by

variables) because I is monomial. We have to prove that if xij ∈ P , then also xik ∈ P for

all k< j. We may write P = I : f for some monomial f . Let α be the exponent of xij in f .

Consider g ∈ B such that g(xij) = xij + xik and fixes all the other variables. Then g(xij f) ∈ I

because xij f ∈ I . The monomial xα+1
ik f/xα

i j appears with nonzero coefficient in g(xij f).

Hence, xα+1
ik f/xα

i j ∈ I and xα+1
ik f ∈ I . In other words, xα+1

ik ∈ I : f = P and hence xik ∈ P . �

Lemma 3.3. Let I be a radical Zm-graded Borel fixed ideal. Then every minimal genera-

tor of I has multidegree bounded above by (1, 1, . . . , 1) ∈ Zm. �

Proof. Consider a generator f of I of degree (a1, . . . , am) ∈ Nm. Assume that one of the

ai’s is positive, say a1 ≥ 1. We will show that a1 = 1. We may write f = ug with u a mono-

mial of degree a1e1 and g a monomial of degree (0, a2, . . . , am). Set j = min{k : x1k|u}. By

construction, x1 jg divides f . Since I is Zm-graded Borel fixed, we have xa1
1 jg ∈ I . Since I

is radical, we have x1 jg ∈ I and x1 jg is a proper divisor of f , unless a1 = 1. �
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Lemma 3.4. Let I be a radical Zm-graded Borel fixed ideal and let {Pb1 , . . . , Pbc},
with b1, . . . , bc ∈ U , be the minimal primes of I . Then I is the Alexander dual of the

polarization of

J =
⎛
⎝∏

bij>0

x
bij

j : i = 1, . . . , c

⎞
⎠⊂ K[x1, . . . , xm].

In particular, if all the generators of I have the same multidegree, then I has a linear

resolution. �

Proof. The first assertion follows immediately from the definition of polarization and

Alexander duality, see [11, Chapter 5]. For the second, one observes that if all the gener-

ators of I have degree, say,
∑

i∈A ei ∈ Zm with A⊂ {1, . . . , m}, then I is the Alexander dual

of the polarization of an ideal J ⊂ K[x1, . . . , xm] involving only variables xi with i ∈ A and

whose radical is (xi : i ∈ A). Hence, J defines a Cohen–Macaulay ring, and so does its

polarization. Finally, one applies [9, Theorem 8.1.9]. �

The goal of this section is to prove the following theorem.

Theorem 3.5. Let I, J ⊂ S be Zm-graded Borel fixed ideals such that HS(I, y) = HS(J, y).

If I is radical, then I = J. �

Remark 3.6. In the case m = 1, the assertion of Theorem 3.5 is a simple consequence

of the fact that (ordinary) Borel fixed radical ideals are indeed prime ideals of the form

(x1, . . . , xj). Similarly, the case ni = 1 for every i = 1, . . . , m is also obvious because in

that case Zm-graded Borel ideals are simply monomial ideals in m variables, and they

are determined by their Zm-graded Hilbert series. �

The most important consequence of Theorem 3.5 is the following rigidity result.

Corollary 3.7. Let I be a radical Zm-graded Borel fixed ideal. For every multigraded

ideal J with HS(J, y) = HS(I, y), one has:

(a) gin≺(J) = I for every term order ≺.

(b) J is radical.

(c) J has a linear resolution whenever I has a linear resolution.

(d) S/J is Cohen–Macaulay whenever S/I is Cohen–Macaulay.

(e) βi,a(S/J) ≤ βi,a(S/I ) for every i ∈ N and a∈ Zm and βi,a(S/J) = 0 if a 
≤
(i, i, . . . , i) ∈ Zm. �
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Proof. The ideal gin≺(J) is a Zm-graded Borel fixed ideal and HS(J, y) = HS(gin≺(J), y).

Since, by assumption, HS(J, y) = HS(I, y), we may conclude, by virtue of Theorem 3.5 that

gin≺(J) = I . This proves (a). Statements (b)–(d) are standard applications of well-known

principles. Finally, (e) follows from Lemma 3.3 and from the bounds derived from the

Taylor complex, see [11, Chapter 6]. �

In order to prove Theorem 3.5, we need the following definitions.

Definition 3.8. Let M be a finitely generated Zm-graded S-module. The Hilbert series

HS(M, y) is rational, that is, it can be written as

HS(M, y) = K(M, y)∏m
i=1(1 − yi)ni

,

where K(M, y) ∈ Z [y1, . . . , ym]
[
y−1

1 , . . . , y−1
m

]
is a uniquely determined Laurent polynomial

that is called the K-polynomial of M. �

Definition 3.9. For every finitely generated Zm-graded S-module M, we set

C(M, y) =K(M, 1 − y1, . . . , 1 − ym) ∈ Z [|y1, . . . , ym|] .

We define the G-multidegree of M as

G(M, y) =
∑

caya ∈ Z[y1, . . . , ym],

where the sum runs over the a∈ Zm which are minimal in the support of C(M, y) and ca

is the coefficient of ya in C(M, y). �

Example 3.10. Let m = 2, n1 = 2, and n2 = 2. Let M = S/I where

I = (x2
11, x11x12, x12x21, x21x22).

Then

HS(S/I, y1, y2) = 1 − y2
2 − y1y2 − 2y2

1 + y1y2
2 + y2

1 y2 + y2
1 y2

2 + y3
1 − y3

1 y2
2

(1 − y1)2(1 − y2)2
.

Hence,

K(S/I, y1, y2) = 1 − y2
2 − y1y2 − 2y2

1 + y1y2
2 + y2

1 y2 + y2
1 y2

2 + y3
1 − y3

1 y2
2

and

C(S/I, y1, y2) = y3
1 y2

2 − 2y3
1 y2 − 2y2

1 y2
2 + 3y2

1 y2 + y1y2.
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Therefore,

G(M, y) = y1y2. �

The following result follows immediately from the definition above.

Proposition 3.11. (1) Let P be a prime ideal generated by variables and let a(P ) be the

vector whose ith coordinate is #(P ∩ {xi1, . . . , xini }). Then

G(S/P , y) = ya(P ).

(2) One has a(Pb) = b for every b ∈ U and for b1, b2 ∈ U one has Pb1 ⊆ Pb2 if and

only if yb1 |yb2 . �

The key observation is the following proposition.

Proposition 3.12. Let I be a Zm-graded Borel fixed ideal. One has

G(S/I, y) =
c∑

i=1

length((S/I )Pbi
)ybi ,

where Min(I ) = {Pb1 , . . . , Pbc} with b1, . . . , bc ∈ U . �

Proof. In order to compute the K-polynomial of M = S/I , consider a filtration of

Zm-graded modules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mh = M,

such that Mi/Mi−1 
 S/Pi(−vi). Here Pi is a Zm-graded monomial prime ideal and vi =
(vi1, . . . , vim) ∈ Zm. Existence of such a filtration follows from basic commutative algebra

facts, see [8, Proposition 3.7]. Furthermore,

Min(I ) ⊆ Ass(S/I ) ⊆ {P1, . . . , Ph},

and the set of minimal elements in {P1, . . . , Ph} is exactly Min(I ). Hence, we have

K(S/I, y) =
h∑

i=1

K(S/Pi(−vi), y) =
h∑

i=1

yviK(S/Pi, y).

It follows that

C(S/I, y) =
h∑

i=1

m∏
j=1

(1 − yj)
vi jC(S/Pi, y).
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Then the support of the polynomial
∏m

j=1(1 − yj)
vi jC(S/Pi, y) contains exactly one

minimal element, namely ya(Pi), which appears in the polynomial with coefficient 1. It

follows that G(S/I, y) is obtained as the sum of the terms which are minimal in the

support of the polynomial

h∑
i=1

ya(Pi). (3.1)

Now the elements that are minimal in the support of (3.1) are exactly the ybi correspond-

ing to the minimal primes Pbi . This follows from Proposition 3.11, since if P ⊆ P ′, then

ya(P )|ya(P ′). Finally, by standard localization arguments, we have that each minimal prime

Pbi appears in the multiset {P1, . . . , Ph} as many times as length((S/I )Pbi
). �

Remark 3.13. The notion of geometric degree is discussed in the paper [13] as a variant

of the ordinary degree that takes into consideration the presence of minimal primes of

different codimension. As proved in Proposition 3.12, the G-multidegree is a variant of

Miller and Sturmfels’ multidegree which encodes minimal associated primes of differ-

ent codimension, for ideals which are Zm-graded Borel fixed (but unfortunately not in

general, as Example 3.10 shows). �

We are finally ready to prove Theorem 3.5.

Proof of Theorem 3.5. Since I and J have the same Hilbert series, we have that

C(S/I, y) = C(S/J, y) and hence

G(S/I, y) = G(S/J, y).

It follows by Proposition 3.12 that Min(I ) = Min(J). Since I is radical, we deduce that

J ⊆ I and the Hilbert series forces the equality I = J. �

4 Column-Graded Ideals of Maximal Minors

Consider S = K
[
xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n

]
graded by deg(xij) = ej ∈ Zn. The group of Zn-

graded K-algebra automorphism is G = GLm(K)n acting by linear substitution on

the columns. The generic initial ideals computed below refer to this multigraded

structure.
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Let L = (Lij) be an m × n matrix of linear forms which is column-graded, that is,

whose entries Lij satisfy deg(Lij) = ej. In other words,

Lij =
m∑

k=1

λi jkxkj,

where λi jk ∈ K. As a first direct application of Corollary 3.7, we have the following

theorem.

Theorem 4.1. Let L = (Lij) be an m × nmatrix which is column-graded and assume that

the codimension of Im(L) is n− m + 1. Then Im(L) is radical and the maximal minors of L

form a universal Gröbner basis of it. Furthermore, every initial ideal of Im(L) is radical,

has a linear resolution, and its Betti numbers equal those of Im(L). �

Proof. We may assume without loss of generality that K is infinite. Let I =
(x1 j1 x1 j2 · · · x1 jm : 1 ≤ j1 < j2 < · · · < jm ≤ n). Then I is generated by the maximal minors of

a column-graded matrix whose (i, j)th entry is aijx1 j with sufficiently general scalars

aij. Since the codimension of I is n− m + 1, by the Eagon–Northcott complex it follows

that I and Im(L) have the same multigraded Hilbert series and the same Betti numbers.

Since I is radical and Zn-graded Borel fixed, we may apply Corollary 3.7 with J = Im(L)

or J equal any initial ideal of Im(L). It follows that Im(L) and all its initial ideals are

radical and they have a linear resolution (and hence the same Betti numbers). Finally,

the maximal minors of L form a universal Gröbner basis since distinct maximal minors

have distinct multidegree. �

We want now to generalize Theorem 4.1 and get rid of the assumption on the

codimension of Im(L).

Theorem 4.2. Let L = (Lij) be an m × n matrix which is column-graded. Then:

(a) The maximal minors of L form a universal Gröbner basis of Im(L).

(b) Im(L) is radical and it has a linear resolution.

(c) Any initial ideal J of Im(L) is radical and has a linear resolution. In partic-

ular, βi, j(Im(L)) = βi, j(J) for all i, j.

(d) Assume that Im(L) 
= 0 and that no column of L is identically 0. Then

the projective dimension of Im(L) (and hence of all its initial ideals)

is n− m. �
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Proof. Again we may assume that K is infinite. Fix a term order ≺. It is not restrictive

to assume that x1 j � xij for all i 
= 1 and j; set for simplicity xj = x1 j. Let

I = (xj1 · · · xjm | [ j1, . . . , jm]L 
= 0).

We claim that I = gin≺(Im(L)). First we note that I ⊆ gin≺(Im(L)). This is because if

[ j1, . . . , jm]L 
= 0, then Im(L) contains a nonzero element of degree ej1 + · · · + ejm and its

initial term in generic coordinates is xj1 · · · xjm .

Next note that I is the Stanley–Reisner ideal of the Alexander dual of the matroid

dual M∗
L of the matroid ML associated to L. As such, I has a linear resolution by a

result of Eagon and Reiner [9, Theorem 8.1.9], since M∗
L is Cohen–Macaulay, see [12,

Chapter III, Section 3]. By Buchberger’s Algorithm, in order to prove that I = gin≺(Im(L)),

it suffices to show that any S-pair associated to a linear syzygy among the generators of

I reduces to 0. Any such linear syzygy involves at most m + 1 column indices in total.

After renaming the column indices, we may assume that the syzygy in question involves

the column indices {1, 2, . . . , m + 1}. Set

d= e1 + e2 + · · · + em+1.

To prove that the S-polynomial reduces to 0, we may as well prove that dim Im(L)d ≤
dim Id. Let

W = {
u: 1 ≤ u≤ m + 1 and [{1, . . . , m + 1} \ {u}]L 
= 0

}
.

Renaming if needed, we may assume that

W = {1, 2, . . . , s}.

By definition, Id is generated by the set of monomials

{
x1x2 · · · xm+1

xj
xij : j = 1, . . . , s and i = 1, . . . , m

}
,

whose cardinality is easily seen to be sm − s + 1. Hence, it remains to prove that

dim Im(L)d ≤ sm − s + 1.

Denote by Ω the first syzygy module of
{
[{1, . . . , m + 1} \ {u}]L : u= 1, . . . , s

}
. Since

dim Im(L)d = sm − dim Ωd,
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it suffices to show that

dim Ωd ≥ s − 1.

Let L1 be the submatrix of L consisting of the first s columns of L. Since the

rows of L1 are elements of Ωd, it is enough to show that L1 has at least s − 1 linearly

independent rows over K. By contradiction, if this is not the case, by applying invertible

K-linear operations to the rows of L we may assume that the last m − s + 2 rows of

L1 are identically zero. In particular, the minor [2, . . . , m + 1]L = 0, contradicting our

assumptions.

Since I is Zn-graded Borel fixed and radical with HS(I, y) = HS(Im(L), y), we

may apply Corollary 3.7 and deduce (b) and (c). Then (a) follows, as in the proof of

Theorem 4.1, from the fact that each nonzero maximal minor of L has a distinct multi-

degree. Finally, for (d) one observes that, under the assumption that no column of L is

0 and Im(L) 
= 0, the ideal I is nonzero and each of the variables x1, . . . , xn is involved in

some generator. Then M∗
L has dimension n− m and has no cone-points. This implies that

the Stanley–Reisner ring of M∗
L has regularity n− m, as it is 2-Cohen–Macaulay (see [12,

p. 94] for details). By [9, Proposition 8.1.10], the projective dimension of I (that is, the

Alexander dual of M∗
L ) is n− m. �

5 Row-Graded Ideals of Maximal Minors

In this section, we treat ideals of maximal minors of row-graded matrices. Consider S =
K
[
xij : i = 1, . . . , m and j = 1, . . . , n

]
graded by deg(xij) = ei ∈ Zm. The group of Zm-graded

K-algebra automorphism is G = GLn(K)m acting by linear substitution on the rows. The

generic initial ideals computed below refer to this multigraded structure.

Let L = (Lij) be an m × n matrix of linear forms with m ≤ n. We assume that L is

row-graded, that is, the entries Lij satisfy deg(Lij) = ei. In other words,

Lij =
m∑

k=1

λi jkxik,

where λi jk ∈ K. Observe that in the row-graded case, we cannot expect that the maximal

minors of X form a Gröbner basis simply because every maximal minor might have the

same leading term. Nevertheless, we can prove the following theorem.

Theorem 5.1. Let L = (Lij) be an m × n matrix which is row-graded and assume that

the codimension of Im(L) is n− m + 1. Then Im(L) is radical and every initial ideal is

generated by elements of total degree m (equivalently, there is a universal Gröbner basis
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of elements of degree m). Furthermore, every initial ideal of Im(L) is radical, has a linear

resolution, and its Betti numbers equal those of Im(L). �

Set

I = (x1 j1 · · · xmjm : j1 + · · · + jm ≤ n).

Theorem 5.1 follows immediately from Corollary 3.7 and from the following proposition,

by observing that I is radical and Zm-graded Borel fixed. Note that Corollary 3.7 also

implies that I = gin≺(Im(L)) for every term order ≺.

Proposition 5.2. Under the assumptions of Theorem 5.1, the Zm-graded Hilbert series

of Im(L) equals that of I . �

Proof. The Hilbert series of Im(L) equals that of Im(X) with X = (xij), because both

ideals are resolved by the multigraded version of the Eagon–Northcott complex. Hence,

we may assume without loss of generality that L = X. We will show that S/Im(X) and

S/I have the same K-polynomial.

Let Km,n(y) be the K-polynomial of S/Im(X). By looking at the diagonal initial

ideal of Im(X), one obtains the recursion:

Km,n(y) = (1 − ym)Km,n−1(y1, . . . , ym) + ymKm−1,n−1(y1, . . . , ym−1).

Solving the recursion or, alternatively, by looking directly at the multigraded version of

the Eagon–Northcott complex, one obtains

Km,n(y) = 1 −
(

m∏
i=1

yi

)
n−m∑
k=0

(−1)k

(
n

m + k

)
hk(y1, . . . , ym), (5.1)

where hk(y1, . . . , ym) is the complete symmetric polynomial of degree k, that is, the sum

of all the monomials of degree k in the variables y1, . . . , ym.

We now compute the K-polynomial of S/I . For b ∈ [n]m, set xb = x1b1 x2b2 · · · xmbm

so that

I = (xb : b ∈ Nm
>0 and |b| ≤ n).

Extend the natural partial order, that is, xb ≤ xc if b ≤ c coefficientwise, to a total order

< (no matter how). For every b ∈ [n]m, we have

(xc : xc < xb) : xb = (xij : i = 1, . . . , m and 1 ≤ j < bi). (5.2)
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Filtering I according to < and using (5.2), one obtains

K(S/I, y) = 1 − y1 · · · ym

∑
b

m∏
i=1

(1 − yi)
bi−1, (5.3)

where the sum
∑

b is over all the b ∈ Nm
>0 and |b| ≤ n. Setting c = b − (1, . . . , 1) and replac-

ing b with c in (5.3), we obtain

K(S/I, y) = 1 − y1 · · · ym

∑
c

m∏
i=1

(1 − yi)
ci , (5.4)

where the sum
∑

c is over all the c ∈ Nm and |c| ≤ n− m. We may rewrite the last expres-

sion as

K(S/I, y) = 1 − y1 · · · ym

n−m∑
k=0

hk(1 − y1, . . . , 1 − ym). (5.5)

Taking into consideration (5.1) and (5.5), it remains to prove that

n−m∑
k=0

hk(1 − y1, . . . , 1 − ym) =
n−m∑
k=0

(−1)k

(
n

m + k

)
hk(y1, . . . , ym), (5.6)

or equivalently, by replacing yi with −yi in (5.6), it is left to show that

n−m∑
k=0

hk(1 + y1, . . . , 1 + ym) =
n−m∑
k=0

(
n

m + k

)
hk(y1, . . . , ym). (5.7)

Setting t = n− m, (5.7) is equivalent to the assertion that the equality:

t∑
k=0

hk(1 + y1, . . . , 1 + ym) =
t∑

k=0

(
m + t

m + k

)
hk(y1, . . . , ym) (5.8)

holds for every m and t. Formula (5.8) can be derived from the more precise:

ht(1 + y1, . . . , 1 + ym) =
t∑

k=0

(
m + t − 1

m + k − 1

)
hk(y1, . . . , ym). (5.9)

Equation (5.9) can be proved by (long and tedious) induction on m. The following

simple argument using generating functions was suggested by Christian Krattenthaler.
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First note that ∑
t≥0

ht(y1, . . . , ym)zt =
m∏

i=1

1

1 − yiz
. (5.10)

Replacing in (5.10) yi with yi + 1 and observing that

m∏
i=1

1

1 − (yi + 1)z
= 1

(1 − z)m

m∏
i=1

1

1 − yi
z

(1−z)

,

we have ∑
t≥0

ht(1 + y1, . . . , 1 + ym)zt =
∑
t≥0

ht(y1, . . . , ym)
zt

(1 − z)t+m
. (5.11)

Expanding the right-hand side of (5.11), one obtains (5.9). �
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