
HOW TO SOLVE A QUADRATIC EQUATION

IN RATIONALS

D. W. MASSER

1. Introduction

The title alludes to a similar title of the paper [3] by Grunewald and Segal, in

which it is shown how to solve a quadratic equation in integers. This latter procedure

seems to be quite difficult, and the algorithm outlined in [3] is rather involved,

although it is completely effective in the logical sense.

Kornhauser has given fairly good explicit ‘ search bounds’ for integral solutions

if the number of variables is two or essentially at least five. Thus let P(X
"
,…,X

n
) be

a polynomial of total degree at most 2, with rational integer coefficients, and write

H¯H(P) for the maximum of the absolute values of the coefficients.

For the case n¯ 2, it is shown in [4] that if the equation

P(X
"
,X

#
)¯ 0 (1)

has a solution in rational integers X
"
¯x

"
, X

#
¯x

#
, then it has one with

max ²rx
"
r, rx

#
r´% (14H )&H. (2)

For the case n& 5, assuming that the quadratic homogeneous part of P is non-

singular, it is shown in [5] that if the equation

P(X
"
,…,X

n
)¯ 0 (n)

has a solution in rational integers X
"
¯x

"
, …, X

n
¯x

n
, then it has one with

max ²rx
"
r,…, rx

n
r´% (n$H )&!n(HoH ). (3)

Both (2) and (3) are actually close to best possible in their dependence on H :

consideration of a generalized Pell-type equation shows that any bound exp ( f(H )) in

(2) with lim
H!¢ f(H )}H¯ 0 cannot be valid, and variations of a counterexample of

Kneser show that any bound like (3) with exponent less than n}2 also cannot be valid.

As far as I know, there are no explicit search bounds at all in the literature for the

cases n¯ 3, n¯ 4 of three and four variables.

However, if P happens to be homogeneous, then much more precise search

bounds are known, in this context for non-trivial solutions. These are traditionally

stated for ‘classically integral ’ forms

P(X
"
,…,X

n
)¯3

n

i="

3
n

j="

p
ij
X

i
X

j

with integers p
ij
¯ p

ji
. Thus the ‘off-diagonal ’ coefficients are even. In [1] (see
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also [2, Lemma 8.1, p. 87]) Cassels proved that if (n) has an integral solution

X
"
¯x

"
, …, X

n
¯x

n
with x

"
,…,x

n
not all zero, then there is one with

max ²rx
"
r,…, rx

n
r´% (3L)(n−")/#, (4)

where

L¯L(P)¯3
n

i="

3
n

j="

rp
ij
r.

Furthermore, the original Kneser counterexample shows that the exponent (n®1)}2

is best possible for every n. The result (4) has since been generalized in a number of

directions, most recently by Schlickewei and Schmidt (see, for example, [6]).

Now for rational solutions. If P remains homogeneous, then these are essentially

the same as integral solutions, and so we shall regard P as not necessarily

homogeneous. So it must now be written as

P(X
"
,…,X

n
)¯3

n

i="

3
n

j="

p
ij
X

i
X

j
23

n

i="

p
i!

X
i
p

!!

for integers p
ij
¯ p

ji
, and we define

L(P)¯3
n

i=!

3
n

j=!

rp
ij
r.

The Corollary of [3, p. 2] asserts the existence of an algorithm to decide if (n) has a

rational solution, via the Hasse–Minkowski Theorem. The main result of the present

paper is a search bound of the same precision as Cassels’s estimate (4).

Accordingly, for ξ¯ (ξ
"
,…, ξ

n
) in Qn, define

H(ξ )¯0
v

max ²1, rξ
"
r
v
,…, rξ

n
r
v
´,

where the product is taken over all standard valuations � of the rational field Q ; if we

write ξ
"
¯x

"
}x

!
, …, ξ

n
¯x

n
}x

!
for coprime integers x

!
1 0, x

"
,…,x

n
, then

H(ξ )¯max ²rx
!
r, rx

"
r,…, rx

n
r´.

This makes it clear that for any B there are only finitely many ξ in Qn with

H(ξ )%B.

T. Suppose that (n) has a rational solution X
"
¯ ξ

"
, …, X

n
¯ ξ

n
for

ξ¯ (ξ
"
,…, ξ

n
). Then it has one with

H(ξ )% (3L)(n+")/#.

We shall also show that the exponent (n1)}2 is best possible.

Finally, in [3] an analogue for polynomials of the Hasse–Minkowski Theorem for

forms was proved, namely the following.

T (Grunewald–Segal). Suppose that (n) has a solution o�er the real

numbers R and o�er each p-adic completion Q
p
. Then it has a solution o�er Q.

We shall give another short proof of this fact.
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2. Proofs

It is more convenient to work with forms, and it is clear that the above theorem

on small rational zeros is equivalent to the following estimate for integral zeros.

P. Suppose that F(X
!
,…,X

n
) is a classically integral quadratic form. If

it has an integral zero (x
!
,…,x

n
) with x

!
1 0, then it has one with

max ²rx
!
r,…, rx

n
r´% (3L)(n+")/#,

where L¯L(F ).

As we said above, the exponent (n1)}2 is best possible. It may be found slightly

surprising that the weak condition x
!
1 0 pushes up the ‘Cassels exponent’ (in this

case n}2) by a positive amount.

We prove the Proposition by induction on n. We start with n¯ 1 and

F(X
!
,X

"
)¯ aX #

!
2bX

!
X

"
cX#

"

for integers a, b, c with

L¯ rar2rbrrcr.

If c¯ 0, then b1 0 and now X
!
¯ 2b,X

"
¯®a is the required small zero. Otherwise,

if c1 0, then the discriminant b#®ac must be the square of an integer d, and

X
!
¯x

!
¯ c, X

"
¯x

"
¯®bd

is a zero. Further,

4d #% 4rbr#(rarrcr)#%L#,

and therefore

rx
!
r%L, rx

"
r%L,

as required.

Now assume that n& 2 and that the Proposition has been proved for forms in

fewer than n1 variables. To prove it for F(X
!
,…,X

n
), we first apply Cassels’s result

to find a small integral zero (x
!
,…,x

n
), with x

!
,…,x

n
not all zero, satisfying

max ²rx
!
r,…, rx

n
r´% (3L)n/#.

If x
!
1 0, then we are finished.

Otherwise, if x
!
¯ 0, then we can find an even smaller zero. For then the form

F(0,X
"
,…,X

n
) has a non-trivial integral zero, and now Cassels’s result with one

fewer variable supplies integers x!

"
,…,x!

n
, not all zero, with

F(0,x!

"
,…,x!

n
)¯ 0, M% (3L)(n−")/# (5)

for

M¯max ²rx!

"
r,…, rx!

n
r´.

Assume now that the point x«¯ (x!

!
,x!

"
,…,x!

n
) (with x!

!
¯ 0) is non-singular on the

variety V defined by F(X )¯ 0 for X¯ (X
!
,…,X

n
). This point is ‘at infinity’, and we

attempt to shift away from infinity by drawing chords. Take a generic point t, and let

the chord joining x« to t cut V in a new point. This new point is easily calculated

(compare [2, p. 88]) to be proportional to

x§¯F(t, t)x«®2F(t,x «) t, (6)

where F(X,X «) is the bilinear form attached to F, with F(X,X )¯F(X ).



        27

In other words, x§ is a zero of F for every t. We can now choose t¯ (t
!
,…, t

n
) so

that the coordinate x"

!
of x§¯ (x"

!
,…,x"

n
) is non-zero. Indeed,

x"

!
¯®2F(t,x«) t

!

has the shape t
!
(f
!
t
!
…f

n
t
n
) for f

!
,…, f

n
independent of t ; and x« being non-

singular means that f
!
,…, f

n
are not all zero. Now it is easy to find t

!
,…, t

n
, each either

0 or 1, such that x"

!
1 0 as desired. (For example, we should take t

!
¯ 1; this suffices

if f
"
¯…¯ f

n
¯ 0, and otherwise, if say f

"
1 0, then either t

"
¯ 0 or t

"
¯ 1 will do.)

Next, the definitions of L and M lead to

rF(t, t)r%L, rF(t,x«)r%LM,

so (6) gives

rx"
i
r%Lrx!

i
r2LM rt

i
r% 3LM (0% i% n).

Thus (5) yields

max ²rx"

!
r,…, rx"

n
r´% 3L(3L)(n−")/#¯ (3L)(n+")/#,

and therefore our desired small zero of F, at least if x« is non-singular.

If x« is singular, then we reduce to fewer variables and use induction. But the

coefficients must stay under control. To ensure this, we can assume without loss of

generality that x!
n
1 0. Now x« is independent of the first n standard unit vectors

u
!
,…, u

n−"
, so we can define new variables Y

!
,…,Y

n
by

X¯ (X
!
,…,X

n
)¯Y

!
u
!
…Y

n−"
u
n−"

Y
n
x«. (7)

In particular, X
!
¯Y

!
. Because x« is singular, it follows that

F(X
!
,…,X

n
)¯F(Y

!
u
!
…Y

n−"
u
n−"

)¯G(Y
!
,…,Y

n−"
)

is a form G in the fewer variables Y
!
,…,Y

n−"
. Furthermore, its coefficients constitute

a subset of the coefficients of F. The given integral zero of F with X
!
1 0 supplies

an integral zero of G with Y
!
1 0. So the induction hypothesis provides integers

y
!
,…, y

n−"
, with y

!
1 0, such that G(y

!
,…, y

n−"
)¯ 0 and

max ²ry
!
r,…, ry

n−"
r´% (3L)n/#.

Now the values Y
!
¯ y

!
, …, Y

n−"
¯ y

n−"
, Y

n
¯ 0 in (7) lead to X

!
¯ y

!
, …, X

n−"
¯ y

n−"
,

X
n
¯ 0, so that (y

!
,…, y

n−"
, 0) is our required small integral zero of F. This

completes the proof of the Proposition.

To see that the exponent (n1)}2 is best possible, it is more convenient to return

to inhomogeneous polynomials as in the Theorem. Fix an integer q& 2, and consider

P(X
"
,…,X

n
)¯ 2X

"
®2q#®(X

#
®qX

"
)#®…®(X

n
®qX

n−"
)#,

where the squared linear terms are absent if n¯ 1. This has rational and even integral

zeros, for example

X
"
¯ q#, X

#
¯ q$, …, X

n
¯ qn+".

We proceed to show that any rational or even real zero X
"
¯ ξ

"
,…,X

n
¯ ξ

n
is almost

as big, and in fact

ξ
n
& "

#
qn+". (8)
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It is certainly clear that ξ
"
& q#, so (8) is true if n¯ 1. If n& 2, then with

η
i
¯ ξ

i+"
®qξ

i
, we have

ξ
n
®qn−"ξ

"
¯ 3

n−"

i="

qn−"−iη
i
,

so the Cauchy–Schwarz inequality leads to

(ξ
n
®qn−"ξ

"
)#%Q 3

n−"

i="

η#
i
,

with

Q¯ 3
n−"

i="

q#(n−"−i) % 2q#(n−#).

Because P(ξ
"
,…, ξ

n
)¯ 0, the right-hand side of the above is exactly

2Q(ξ
"
®q#)% 2Qξ

"
.

It follows that

ξ
n
& qn−"ξ

"
®2qn−#oξ

"
¯ qn−#oξ

"
(qoξ

"
®2),

which is at least qn−"(q#®2)& "

#
qn+", as asserted in (8).

In particular, H(ξ )& "

#
qn+" for any rational zero ξ. But we see easily that

L¯ 22q#(n®1) (12qq#)% 4nq#.

Therefore H(ξ )& cL(n+")/# for some c" 0 independent of q, and the exponent

(n1)}2 is best possible, as claimed.

Finally, the strategy used in the proof of our Theorem leads to a quick proof of

the Hasse–Minkowski Theorem for quadratic polynomials ; again it is more

convenient to consider the equivalent version for forms F with zeros away from

infinity X
!
¯ 0, as in the Proposition. If F has everywhere non-trivial local zeros, then

the classical Hasse–Minkowski Theorem provides a non-trivial global zero x«. If x« is

not at infinity, then we are finished. If x« is at infinity, then we attempt to shift away

to x§, as in (6). We succeed if x« is non-singular ; otherwise, if x« is singular, we reduce

to fewer variables and use induction. The induction start, n¯ 1, is also easy, because

if the discriminant is a square in R and each Q
p
, then it is a square in Q (see, for

example, [2, Lemma 3.1, p. 78]).
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