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Synopsis
This paper deals with the number of eigenvalues which appear in the gaps of the spectrum of a Dirac
system with real and periodic coefficients when the coefficients are perturbed. The main results
provide an upper bound and a condition under which exactly one eigenvalue appears in a given gap.

Introduction

Let us consider the differential expression

= -y"(x) + q(x)y(x),

where y is a complex valued function denned on IR and q: U —> U is periodic with
period a > 0 and locally absolutely integrable.

The maximal operator 5 generated by o on U [7] is self-adjoint and is called the
Hill's operator. Its spectrum o(S) c U is purely continuous, bounded from below
but unbounded from above, and it is a locally finite union of closed intervals of
positive length. In the following, we shall suppose that o(S) has an infinity of
gaps; this is so, for example, if q e Lfoc(IR) and is not analytic [5].

Rofe-Beketov [3,4] studied the perturbed Hill's operator 5, which is the
maximal operator generated on IR by the differential expression

dy(x) = -y"(x) + {q(x) + ^q(x)}y(x),

where A^: IR —* M is such that |A^(x)| (1 + 1*1) is integrable on U. This is a
self-adjoint operator with the same essential spectrum oe(S) as 5. He proved that
there is only a finite number of eigenvalues of S in each gap an at most two
eigenvalues in each sufficiently remote gap; moreover, there is exactly one
eigenvalue in each sufficiently remote gap if the following additional condition is
satisfied: J Aq(x) dx^=0.

The purpose of this paper is to prove analogous results for Dirac systems. Let r
be the differential expression

TU(X) = ^(^)"1{(_J 1)W(X) + P(X)U(X)

where u is a C2-valued function defined on U; P and R are symmetric 2 x 2
matrices, with locally absolutely integrable real entries which are periodic with
period a > 0 ; R is positive definite almost everywhere; and let L2(]c, d[, R) be
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338 Boris Buffoni

the Hilbert space defined by

rd

L2(]c, d[, R) = \u: ]c, d[-+ C2 | (R(x)u(x), u{x)),

and

(u,v)=j (R(x)u(x),v(x))dx,

where (. , .) denotes the usual scalar product in C2 and — ° ° ^ c < d ^ + ° ° (we do
not distinguish between two functions which are equal almost everywhere). The
maximal operator T generated by r and defined in L2(U, R) is self-adjoint, its
spectrum o(T) is purely continuous, unbounded from above and below, and it is
a locally finite union of closed intervals of positive length [7, theorem 12.5]. In
the following, we shall suppose that o(T) has at least one gap; for example, if

a = 2, R =

there is an infinity of gaps [7, chap. 17.G].
We shall examine the perturbed operator T, which is the maximal operator

generated on IR by the differential expression

,17 0 1\ 1
TMirl = B l r l I l/y'lr I •+- (P(r\ 4- A P(r\\u(y\ V
iwyA j — l\ \A f | I r\ I V / \ v / L \ I \A j j W\A /fj

where AP(x) is a symmetric 2 x 2 matrix, with absolutely integrable real entries,
and whose support satisfies supp (AP) <= [A, B](-oo < A ^ B < +<*>). The operator
f is self-adjoint and oe(t) = oe(T); this can be proved by the method of
decomposition [1].

Let ]n, v[ be a gap of oe(f), let r2(x), p2(x), 8p2(x) be the largest eigenvalues
of respectively R(x), P(x), AP{x), and let rx(x), px(x), dpx(x) be the cor-
responding lowest eigenvalues. We shall show that if for N e î J,

i {{\fi\ + \v\)(r2(x) - ri(x)) + 2{p2(x) -Pl(x)) + (6p2(x) - 8Pl(x))} dx ̂  Nn,

then there are at most N + 1 eigenvalues of T in ]ju, v[, and if

f {max (|JU|, |v|)(r2(jc) - rx(x)) + (p2(x) -px(x)) + \6p2(x)\} dx ^ Jt/2,
'A

dpx(x) = 6p2(x) almost everywhere on U,

5p2 is not equal almost everywhere to the null function,

6p2(*) = 0 almost everywhere or 6p2(x)^0 almost everywhere on U,
then there is exactly one eigenvalue in ]|U, v[.

But first we shall present an important tool, which is an adaptation of the
oscillation theory for Dirac systems developed by Weidmann [7, chap. 16].
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Discrete spectrum of perturbed Dirac systems 339

1. Oscillation theory for Dirac systems defined on IR and which are in the
limit point case at — °° and +00

Let T be the differential expression

where u is a C2-valued function defined on IR; P and R are symmetric 2 x 2
matrices, with locally absolutely integrable real entries; R is positive definite
almost everywhere; q is a locally absolutely continuous real valued function and
for all values of x e IR: q(x) > 0. If u is a non-trivial real solution of TM = AM, we
introduce the transformation

where p and 0 are continuous and 9 is defined up to 2kn. If 0 is completely
defined (for instance, if we know its value at a given x0), we shall call it a
determination of the angular part of u.

It is easy to check that

^sin0(*)/' Vsin0(x)
with

We write 6(X, a, c, x){X, a, c in IR) for the angular part which
(i) corresponds to the solution v{x) = {vx{x), v2{x)) of TM = AM, satisfying

Ui(c) = cos (or) and v2(c) = sin (a);
(ii) is such that 0(A, a, c, c) = a.

PROPOSITION 1.1. If the maximal operator T generated by r on U is self-adjoint
and -oo < JU < A < +°o, then

^n, cn, dn) -
* Urn inf

71

where (an)cU, cn—>—<*>, dn—>+°°, ET(.) is the right continuous spectral
resolution of T and [x] = max {k € Z | k ^x}.

Proof. Let <5 > 0 be such that fi + d and A — 6 are not eigenvalues of T and
H + d < A - 8, let fin be defined by /3n = 0(;U + 8, an, cn, dn) and let us define the
self-adjoint operators Bn, On and Tn as follows:

(D(Bn) cz L2Qcn, dn[, R)-+ L\]cn, dn[, R),

"• \Bnu = TM,
with

D{Bn) = {ue L2(]cn, dn[, R) | u is loc. abs. cont., TM e L2Qcn, dn[, R) and

sin (a^u^c,,) - cos (an)u2(cn) = sin (P^u^d,,) - cos (Pn)u2(dn) = 0},

On is the null operator on L2(] -oo, cB[, i?) © L2(]dn, +<»[, i?) and Tn = Bn® On.
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340 Boris Buffoni

The sequence (7 ,̂) converges to T in the sense of the strong resolvent
convergence and therefore

dim R(ET(k -8)- ET{n + 8)) ^ lim inf dim R(ETn(X -8)- ETn{n + 8))
n—*°o

= lim inf dim R{EBn{k -8)- EBn(fi + 8))

(see [6, theorems 9.16.(i) and 9.19]). We have

dim R(EBn{X -8)- £BB(JU + 8))

= card ({t e ]/x + 8, A - 8] \ 6{t, an, cn, dn) = £„ mod it}),

= f 6{X - 8, an, cn, dn) - 6(/z + 8, an, cn, dn)
L K

*[ , an, cn, dn) - 6{n, an, cn, dn)*l
because 6(t, an, cn, dn) is increasing in / [7, theorem 16.1]. Therefore,

dim R(ET(X-) - ET(n)) ^ lim inf dim R(ET(X -8)- Er(n + 8))
606->0

^ lim inf —"' — —"' —— . O
n—»oo L It J

PROPOSITION 1.2. / / T is any self-adjoint operator generated by r on U and
—oo < fj, < A < +oo, then

•6(X,a,c,d)-e(p,a,c,dy
dimR(ET(X)-ET(n-))^ sup [-

c<d,aeU L It

Proof. Let us choose c, d, a in IR, and let us suppose that c <d and

'0(A, or, c, d)-6(p, a, c, d)'
" - [ • it

We introduce the operator

(D(B) c L2(]c,
B:

L2(]c,

iBu = xu,

with

ID{B) = {w e L\]c, d[, R) \ u is loc. abs. cont., TM e L2(]c, d[, R) and

sin (ar)M!(c) - cos (a)u2(c) = sin (^u^d) - cos (P)u2(d) = 0},

where /3 = 0(jU, a, c, d). Since dim tf (£B(A) - EB(fi-)) = card ({f e [ft, A] |
0(f, a, c, d) = ft mod ;r}) = n + 1, there exists a subspace Af c R(EB(k) - EB{\i-)\
such that (i) dim (M) Sra - 1, (ii) for all values of u in M: «(c) = u(d) = (0, 0)
and \\{B - (A + ^)/2}M|| < {(A - fi)/2} \\u\\. We can consider M as a subspace of
D{T) and so we have dim R(ET{X) - ET{y.-)) ^ n - 1 (if we had dim R{ET{K) -
ET(!*-)) < « - 1, then there would exist / e M such that / # 0, / 1 R(ET(X) -
ET(ii-)) and ||{T - (A + ̂ )/2}/ | | > {(A - p)/2} | | / | | ) . D
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Discrete spectrum of perturbed Dirac systems 341

PROPOSITION 1.3. Let u and u be two non-trivial real solutions of ru = AM (A in
IR) and let 6 and 6 be any two determinations of the corresponding angular parts.
If there exists x0 in U and k in Z such that 8(x0) — 6(x0) e [kn, (k + l)n[, then for
all values ofxeU: B(x) - 6(x) e [kn, (k + \)n[.

Proof. We have

a'(x) = 8>(x) - 6'(x) = gll(x) cos2 6{x) + g22(x) sin2 8{x)

+ 2g12(x) sin 6{x) cos 8{x)

- gn(x) cos2 9(x) - g22(x) sin2 d(x) - 2g12(x) sin 6(x) cos d(x)

= {g22(x) - gn(^)}{sin2 B(x) - sin2
 0(JC)} + g12(x){sin 26{x) - sin 20(x)}

= {g2i(x) ~gu(x)} sin {6{x) + 0(x)} sin o(x)

+ 2g12(x) cos {d(x) + d(x)} sin o(x),

where o(x) = 6{x) — 6{x). This differential equation verifies the local existence
and uniqueness theorem. Since o = kn and a = (k + \)n are solutions and
o(x0) e [kn, (k + l)n[, we have o{x) e [kn, (k + l)n[ for all x in R. D

2. Dirac systems with periodic and real coefficients

We suppose that q = \ and that P and R have the period a > 0; r becomes

ru(x) = ^(^"'{(.J J)«'(*) + P(x)u(x)}.
For A in R, let us introduce the fundamental system of solutions of ru(x) = Xu{x):
<p(x, A), xp(x, A), satisfying

and

We have

2(x, A) I/;2(A:, A)

We introduce the discriminant, which is the real valued function defined by
D(A) = (p^a, A) + tp2(a, A)(A e R).

For AeR such that |D(A)|^2, let Pi(A) and p2(A) in R be the two roots of
p2 - D{X)p + 1 with |p!(A)| ̂  1 ^ |p2(A)|, and let fc(A) in C satisfy exp {a)fc(A)} =
p2(A). For i = 1, 2, there exists a real solution e,(jc, A) of TM(X) = ku(x) such that

e,-(jc + a, A) = p,(A)e,(x, A),

and if we define zx and z2 by

c^x, A) = exp {—k(h)x}zl(x, A) and e2(x, A) = exp {/:(A)x}z2(^, A),

then zt{x + a, A) = z,(;c A) for all x in IR and i - 1, 2.
If Pi(A) =̂  p2(A), then e^x, A) and e2(x, A) can be chosen linearly independent;

the same is possible if Pi(A) = p2(A)(= ±1) and cp2{a, k) = ty^a, k) = Q. If
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342 Boris Buffoni

pt(X) = p2W(= ±1) ar»d \q>2(a, A)| + |t/>i(a, A)| >0, then we can choose et(x, A)
such that ex{x, A) = e2(x, A) # (0, 0) (for all values of jtelR), and there exists
a solution y{x) of xu = AM, linearly independent of e^*, A), such that
lim sup \y(x)\ = lim sup |_y(JC)| = +°°.

We can take for example

e,(*, A) = Vi(«, A)<p(*, A) + {p,(A) - (^(a, A)}^(x, A), or

e,(x, A) = {p,(A) - i/>2(a, A)}<p(x, A) + <p2(a, X)xi>(x, A),

but these functions can be null (i = 1, 2). Note that they are analytic in A on
{A e R | |D(A)| > 2} for every x e U. The reader is referred to [2] and [7] for more
information.

The maximal operator defined on U by x is self-adjoint and its spectrum is
equal to {A e U | \D(X)\ ^ 2}. Let ]ju, v[ be a gap of its spectrum and let e^ and ev

be two non-trivial, real and periodic solutions of, respectively, xu = \iu and
xu = vu. We shall denote any two determinations of the corresponding angular
parts by 6, and dv. Let c < d be in U such that d — c is in a Z.

PROPOSITION 2.1. (1) 0v(rf) - 0M(d) = 0v(c) - 0^(c);
(2) if 6 is the determination of the angular part of a non-trivial real solution of

xu = vu such that 6(c) = d^c), then d(d) - d^d) e ]0, n[.

Proof. (1) Since O^x) and 6v(x) are the angular parts of periodic or
semi-periodic functions of period or semi-period a, there exists k in Z such that
{6v(d) - O^d)} - {0v(c) - 8,(0)} = kjz.

Case (i). Let us suppose that k>0. For n e N, set cn = c — (d — c)n and
dn = d + (d - c)n. Then {6v(dn) - d^dj} - {6v(cn) - 0^(cn)} = (In + \)kn. Let
6n be the determination of the angular part of a non-trivial real solution of
xu = vu such that 8n(cn) = d^c,,). We have

on(dn) - W ) = ({en(dn) - ev(dn)} - {en(cn) - ev(cn)})

+ ({6v(dn) ~ W ) } - {6v(cn) - 0,(cn)}).

By Proposition 1.3, the first term belongs to ] —n,n\ and therefore

Bn(dn) - d^(dn) e ](2n + l)kn - n, (In + l)kn + n[.

By Proposition 1.2, there is an infinity of eigenvalues of Tin [n, v]. This assertion
being false, we have proved that k ^ 0.

Case (ii). Let us suppose that &<0. Then 0n(dn)- dll(dn)<0 for neN.
Hence we have a contradiction with [7, theorem 16.1].

(2) There exists k in Z such that 6(c) - 6v(c) = d^c) - dv(c) = d^d) -
dv(d) e [kjr, (k + 1)JI[. By Proposition 1.3, d(d) - dv(d) e [kn, (k + l)n[. Thus

e(d) - e^d) = {d(d) - ev(d)} - {e^d) - ev(d)} e ] -*,«[.

By [7, theorem 16.1], d(d) > d^d) and therefore 6(d) - d^d) e ]0, n[.
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Discrete spectrum of perturbed Dirac systems 343

3. The main results

Let T and f be as in the Introduction and let ]/x, v[ be a gap of oe(T) (we
suppose that there is at least one gap).

PROPOSITION 3.1. If for N e N,

1{(M + M)(r2(*) - ri(x)) + 2(p2(x)-Pl(x)) + (6p2(x) - &Pl(x))} dx g NJV,
'A

then there are at most (N + 1) eigenvalues of f in ][i, v[.

Proof. Let e^ be a non-trivial, real and periodic solution of TM = fiu, and let 6^
be any determination of its angular part. For n e N, we introduce the following
notation: 6 is the determination of the angular part of a real non-trivial solution
of TM = vu such that 6{—na) = 0M(—«a); 0^ is the determination of the angular
part of a real non-trivial solution of xu = \iu such that 8ll(—na)= 6^—na); 6 is
the determination of the angular part of a real non-trivial solution of f M = vu such
that 6{-na) = d^-na).

We have

and thus

^ (W + |v|)(r2(x) - /-,(*)) + 2(p2(*) - P l ( * ) ) + (6p2(x) - 6Pl(x)).

Let us suppose that n is such that [A, B] c ] —«a, na[ and let A: be in Z such that
%{B) - O^B) e [kn, (k + 1)JI[. We have

\{d(B)-d(B)}-{%(B)-dIJ(B)}\

f \{d'(x) - 6'(x)} - {6'^x) - e;(*)}| rfx;^ f
•>A

and therefore 0(B) - 6(B) e [(A: - N)w, (k + N + \)n[. By Proposition 1.3,
d^na) - d^na) e [kn, (k + l)n[ and d(na) - 6(na) e [(k - N)n, (k + N + l)n[.
Using 6{na) - d^na) e ]0, n[ (Proposition 2.1 (2)), we get

6(na) - d^na) = {d(na) - 6(na)} - {^(na) - d^na)}

+ {d(na) - d^na)} < (k + N + 1 - k + \)n = (N + 2)n.
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344 Boris Buffoni

Letting n tend to +°°, the result now follows from Proposition 1.1 and the fact
that the eigenvalues are of multiplicty one (for A € ]//, v[, a solution in L2(U, R)
of f« = AM is a multiple of e^., A) on [B, °°[ and a multiple of e2(., A) on

PROPOSITION 3.2. / /

f {max (|p|, |v|)(r2(*) - r^x)) + (p2(*) -px(*)) + |6p2(*)|} ^

dpiOt) = 6p2(x) almost everywhere on U,

dp2 is not equal almost everywhere to the null function,

<5p2(*) = 0 almost everywhere or <5p2(*) = 0 almost everywhere on U,

then there is exactly one eigenvalue of f in ]fi, v[.

Proof. We shall adapt a method of Rofe-Beketov [4]. Let y{x, A) and %p(x, A)
be as in Section 2 and let ip(x, A) and i}>(x, A) be two solutions of fu(x) = Xu(x)
satisfying

and , A) =

Let us introduce the two regular matrices

L(x, A) = (<p(x, A) xp(x, A)) and L(x, A) = (q>(x, A) $(x, A)),

let v and w be two real solutions of xu = AM (A € U is fixed) and let v and H> be
two real solutions of xu = AM, such that v and v are equal on [B, +«[, and w and
vv are equal on ] — °°, .A].

Using the method of variation of constants, we get

0 1
- 1 0w(x) = w(x) + L(x, -

«,W = 0(x)-£(x,A)jT{£-(U)(_J J)
and using

and

we obtain

- f (0)
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Discrete spectrum of perturbed Dirac systems 345

Now let us consider the case v = ex(x, A) and w = e2(x, A), where e^x, A) and
e2(x, A) are defined by one of the formulae (2.1) and A e [ju, v]. We shall use u for
the derivation in A, u' for the derivation in x, and Et(x, A) for et{x, A). Since
d/dx(E12E2l - EUE22) = d/dx(E22En - E21E12) = -(RE^ E2), we have

-^ W[£lf £2](A) = {(E22En - £21£12) - (E12E21 - EuE22)}(0, A)
dk

if for all values of t eR: E^t, A) = E2(t, A) ¥=(0,0), i.e. if A e ] ^ v [ is an
eigenvalue of f such that W(eu e2)(A) =£0.
Set e,(jc> A) = ip^a, A)(p(*, A) + {p,(A) - <pt(a, A)}i//(x, A). We have

W[eu eJ(A) = Vx(«, A){p2(A) - Pl(A)} ̂ 0

if A e ]n, v[ and 1/̂ (0, A) ¥=0.
As for Sturm-Liouville operators with Dirichlet and Neumann boundary

conditions [7, chap. 13], the spectrum of the operator generated by r on ]0, a[
with boundary conditions «2(0) = u2(a) = 0 (respectively «i(0) = «i(a) = 0) is
equal to {A | q>2(a, A) = 0} (respectively {A | i/»i(a, A) = 0}). We can also prove
that in each maximal interval included in {A | |£>(A)| ^ 2 } , (p2(a, A) and \l>x{a, A)
have exactly one zero. In particular, there exists an unique JC e [ju, v] such that
V>i(a, K) = 0.

Case (i). *: is not an eigenvalue of f and *: e ]jU, v[. If A e {ft, v}, we have

W[EU £2](A) = - f (AP(t)e2(t, A), E2(t, A)) dt.

The hypothesis

I {max (|At|, |v|)(r2(*) - r^x)) + (p2(x) -pi(*)) + |5p2(*)|} dx ^

implies that there are at most two eigenvalues in \\i, v[ (Proposition 3.1) and,
with the fact that e2 and E2 are not trivial, that the cosine of the angle between e2

and E2 is not negative on [A, B]. Indeed,

and

thus

\6'(x) - 6'(x)\ =i max (|/*|, |v|)(r2(*) - rx(

and, for all x in [A, B],

\6(x)-9(x)\

^ {max i
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346 Boris Buffoni

where 6 and 6 are any two determinations of the angular parts of e2 and E2

respectively, such that 6(A) = 6{A), and A € {ft, v}. Since 6pt = dp2 has a
constant sign and is not equal almost everywhere to the null function,

and

W[EU E2](fi) = - I (AP(t)e2(t, M), E2(t, M)) dt

W[EU E2](v) = - f (AP(t)e2(t, v), E2(t, v)) dt
JA

are not null and have the opposite sign of 8p2. Moreover, the function
W[Elt E2](k) crosses the A-axis at A = JC and at every eigenvalue. Therefore,
there is exactly one eigenvalue in ]/i, v[.

In order to prove that W[Elt £2](A) crosses the A-axis at A = K, we introduce

fb(x, A) = Vi(a, k)<p(x, A) + {pb(k) - (px(a, X)}xl>{x, A)
and

fc(x, A) = {pc(A) - xp2(a, k)}(p(x, A) + cp2(a, k)y(x, A).

We suppose that {b, c) = {1, 2} and pc(ic) ^ xi>2{a, K). Let F^x, A) (i = 1,2) be
the corresponding perturbed functions such that F^., A) and/^., A) are equal on
[B, °o[, and F2{., A) and/2(., A) are equal on ] -°°, A]. It follows that

W[fb,fe](k) = {Pc(A) - ^2(fl, A)}{pc(A) -

and

^

Near K, W[fb,fc](k) and lV[Flf F2](A) are not null, and (3/3A)V»i(a, ^)¥=0 (see
below); therefore the function W^EL E2\(X) crosses the A-axis at A = K.

Case (ii). K is an eigenvalue. Then W[Fly F2](k) and ipi(a, A) cross the A-axis at
X = K and thus W[£i, E2\{k) is zero at A = JC without crossing the A-axis. The
result follows in the same way as in case (i).

Case (iii). K e {ju, v}. Let us introduce

gi(x, A) = {p,(A) - v»2(«, A)}V(JC, A) + (p2(a, k)y(x, A) (i = 1, 2),

and let G,(JC, A) be the corresponding perturbed functions such that d ( . , A) and
gj(., A) are equal on [B, <»[, and G2(., A) and g2(-» A) are equal on ] — <», A]. Since

= <p2(a, A){Pl(A) - p2(A)},

it follows that

1; £2](A) = - ^ 4 !cp(a, A)
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Discrete spectrum of perturbed Dirac systems 3A1

Moreover q>2(a, K)¥=Q and g,(., K) = g2{., K) is not trivial. Hence W[GX, G2](K) =£ 0
and W[Glt G2](K) has the opposite sign of dp2. Since

(a, A) = f° {- , A), t/>(f, A))Vl(fl, A)

and

d f
— <p2(a, A) = {(R(t)q)(t, A),
dX Jo

(fl, A)} dr

(see [2, lemma 2.1]), we have {dldk)q>2{a, 6) ¥=0, where 6 is the unique zero of
q>2(a, A) in [n, v], and sgn {(3/9A)Vi(a, Jf)} = -sgn {(p^a, «•)} = -sgn {£>(*)} =
-sgn {Z)(6)} = -sgn {^2(a, 6)} = -sgn {(d/dX)cp2(a, 6)}, and thus -(Vi(a> ^)/
<p2(a, A)) is negative between ic and A. The results follows as in case (i).

Remarks 3.3. If rx = r2 and 6/?! = dp2, then Proposition 3.2 provides sufficient
conditions for the perturbed operator to have exactly one eigenvalue in each
gap, and Proposition 3.1 provides a sufficient condition on supp(AF) for the
perturbed operator to have at most N + 1 eigenvalues in each gap (N e N).
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