
Timely detection of bacterial meningitis epidemics at district level:
a study in three countries of the African Meningitis Belt

Lydiane Agiera,b,*, Hélène Broutinc,d, Eric Bertherata, Mamoudou H. Djingareye, Clement Linganie,
William Pereaa and Stéphane Hugonneta
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Background: Bacterial meningitis is a major public health problem in the African ‘Meningitis Belt’, where recur-
rent unpredictable epidemics occur. Despite the introduction in 2010 of the conjugate A vaccine, the reactive
strategy remains important for responding to epidemics caused by other bacteria and in areas not yet vacci-
nated. Review of weekly numbers of suspected cases in Niger, Mali and Burkina Faso identified spatial disparities
in the annual patterns of meningitis, which suggested a more local way of defining epidemics and initiating a
timely vaccination campaign.

Method: We defined an epidemic district-year as an excess of cases compared to the incidence previously
experienced in the given district. Groups of similar districts in terms of seasonal patterns were identified by
cluster analysis. We investigated a cluster-specific criterion of early epidemic onset to anticipate epidemic dis-
trict-years.

Results: These were encouraging, as epidemic district-years were fairly efficiently captured, with an average
time gained of 2.5 weeks over the current strategy.

Conclusion: This early-onset criterion could help ensure timely implementation of vaccination campaigns
without the need to modify the implemented surveillance system. The next step is to extend this study to
other countries of the Meningitis Belt, and to explain the differences in seasonal patterns in the different
clusters.
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Introduction
Bacterial meningitis (which we will subsequently refer to as
meningitis) is a major public health problem in the Meningitis
Belt, a region in Sub-Saharan Africa extending from Senegal to
Ethiopia with an estimated population of 400 million people.1,2

Meningitis, which is caused mainly by Neisseria meningitidis
but also by Streptococcus pneumoniae or Haemophilus influen-
zae type B, is a contagious disease transmitted
person-to-person via respiratory droplets. Incidence rates in
the Belt are among the highest in the world; they show a
marked seasonal increase during the dry season (December to
June),3,4 and there are recurrent pluriannual epidemic waves
on a larger regional scale.5 – 7 The mortality rate is about 10%

even with appropriate treatment, and 10–15% of survivors ex-
perience long-term neurological sequelae.8 Asymptomatic car-
riage is a notable feature of the disease; carriage rates vary
between 3% and 30% of the population across countries and
seasons.9,10 While Neisseria meningitidis serogroup A is the
main cause for large epidemics, serogroups W135, C and X
are also responsible for localised outbreaks;11 – 14 however a
lack of data makes it difficult to differentiate the dynamics of
the different strains.

Public health policies in countries of the Meningitis Belt are
based on a reactive vaccination strategy, mostly because menin-
gitis epidemics are unpredictable and the polysaccharide vaccine
is in short supply and induces only short-term immunity. The
WHO introduced two epidemiological thresholds to trigger
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implementation of this reactive strategy:15 when the ‘alert’
threshold (i.e. five cases per 100 000 population per week) is
reached, surveillance and epidemic preparedness measures are
enhanced. Once the ‘epidemic’ threshold (i.e. 10 cases per
100 000 population per week) is exceeded, a mass vaccination
campaign is launched in the affected district.16 Timely immunisa-
tion could avoid 60% of the cases.17 However, the efficacy of the
mass vaccination strategy is often reduced because of delays in
the surveillance process and in obtaining laboratory confirmation,
and then in finalising logistics before the launch of a vaccination
campaign.

In parallel to this reactive strategy a new conjugate vaccine,
MenAfriVac, was introduced in the Belt in 2010 as a potential pre-
vention tool to protect against Neisseria meningitidis serogroup
A. It is hoped to dramatically decrease the burden of the
disease in this region: unlike the polysaccharide vaccine, the con-
jugate vaccine is expected to have an impact on carriage (hence
providing herd immunity), and could induce long-term protec-
tion.9,18,19 However, the main reactive control strategy will
remain a priority at least for the next decade: vaccinating the
whole population at risk within the Belt with the conjugate
vaccine will take 5–10 years. During this period, outbreaks of
Neisseria meningitidis serogroup A are still anticipated in non-
vaccinated areas, and other bacteria will continue to circulate
in the whole population. Moreover, we cannot predict what the
dynamic of the other bacteria will be after immunisation of the
population with this new vaccine.

Therefore the epidemiology of the disease needs to be better
understood. If epidemics could be anticipated earlier than at
present, with an adequate degree of specificity, the reactive
strategy would be more effective; earlier introduction of vaccin-
ation in highly epidemic situations would allow more cases to

be prevented. Statistical modelling has not yet succeeded in
helping policy makers to forecast epidemics at the spatio-
temporal level they are dealing with, namely the district-level
weekly scale.

In this study, we aimed to explore the annual patterns of
meningitis at district level and thus identify new parameters to
anticipate epidemic years. We focused on three highly affected
countries: Mali, Niger and Burkina Faso. Using district-level sur-
veillance data collected over more than a decade, we performed
a cluster analysis and grouped similar districts in terms of annual
patterns. We then provided a new district-specific definition of an
epidemic year and compared the annual patterns between epi-
demic and non-epidemic years in the different clusters. Finally,
we defined a cluster-specific criterion that could help anticipate
an epidemic year, and tested its potential to do so.

Materials and methods

Data

Relying on the national enhanced health surveillance system
supported by WHO,15 epidemiological data were collected in
Niger (1986–2007, 38 districts), Mali (1994–2007, 52 districts)
and Burkina Faso (1997–2007, 55 districts). Suspected cases of
meningitis were identified by use of a standard clinical case def-
inition (laboratory confirmation is not mandatory), and were
reported as weekly aggregated numbers of cases per district. A
district-year (DY) refers to data for a given district in a given cal-
endar year. Over the study period, the epidemiology of meningi-
tis showed important seasonal fluctuations and regular major
epidemic waves (Figure 1A). Districts are heterogeneous both in

Figure 1. Meningitis time series and mean annual pattern of weekly incidence for Niger, Mali, and Burkina Faso. (A) Time series of weekly incidence
and (B) mean annual pattern of weekly incidence, in cases per 100 000 population, for Niger (grey line), Burkina Faso (black line) and Mali (dotted line).
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terms of areas covered and population size, and uneven levels of
incidence were recorded (Table 1).

We counted 33 instances of missing data (i.e. no declaration
during a week for a given district) in the Niger time series, three in
Mali and 2890 (9.7% of the country data) in Burkina Faso. These
gaps in the record mostly occurred in low-incidence periods, and
were corrected as follows. A linear smoothing was applied when
fewer than 4 consecutive weeks were missing (we do not expect
incidence to change dramatically over short periods). When data
remained missing for a given week w, we referred to incidence
for the given district in week w over the other years of the
study, and if it never exceeded 10 cases (in which case it could
be considered a low-incidence time of year), the mean number
of cases was imputed. Only one DY was noticed in Burkina Faso
for having data missing over most of the year: this DY was not
considered in our analysis.

Census-based estimates of district-level population denomi-
nators were available for Niger for 1977, 1988 and 2001; in
other years, denominators were estimated by linear interpol-
ation. Over the study period, one census was held in Mali
(1998), and one in Burkina Faso (1996). Population denominators
were extrapolated back and forth from these censuses by apply-
ing the national annual population growth rate provided by the
WHO Statistical Information System (now incorporated into
WHO Global Health Observatory www.who.int/gho).

Cluster analyses

We performed cluster analyses to identify groups of districts with
similar annual patterns. For each district we computed the
weekly annual incidence in number of cases per 100 000 popula-
tion. We then calculated the mean annual pattern by averaging
the incidence per calendar week across years (see Figure 1B for
an example at country level). For each curve, we extracted six
variables: the mean, the maximum, the standard deviation, the
week of maximum and the skewness and kurtosis indices of
the curve (i.e., respectively, the curves’ symmetry and ‘peaked-
ness’ coefficients). A principal component analysis20 was
performed on this set of six variables, to eliminate their redun-
dancy and detect outliers. The first three output variables,

which summarised more than 95% of the heterogeneity of the
original variables, were used as input for the cluster analysis.

The aim of the cluster analysis was to enhance similarities
between districts by grouping them according to a set of selected
characteristics. We used a hierarchical ascendant method
with Ward’s distance: it unifies districts step-by-step, by minimis-
ing the increase in intra-group heterogeneity.21 We arbitrarily
decided to stop the iteration process after obtaining three clusters.

We have analysed data separately for Niger, Burkina Faso and
Mali, as the incidence levels are very heterogeneous between coun-
tries. When the clustering method was applied to data of the
three countries together, low within-country heterogeneity was
observed, and the analysis was not discriminative at a national
level (Supplementary Figure S1). As a consequence, no sub-country
observation of epidemics was enabled, and no sub-country scale
strategy could be suggested for responding to epidemics.

Comparison of epidemic and non-epidemic years

The large heterogeneity of meningitis incidence between districts
pushed us to provide a district-specific definition of an epidemic
that might be more appropriate than the current definition,
which is unique for the whole belt. An epidemic DY was accord-
ingly defined as a DY for which the annual incidence is higher
than the mean annual incidence over the DYs of the given
district.

Within each group defined by the cluster analysis, we com-
pared meningitis annual patterns in epidemic and non-epidemic
DYs as follows. For each annual curve, we estimated the mean,
maximum, standard deviation, week of maximum, skewness
and kurtosis indices of the curve. For the WHO alert and epidemic
thresholds, we considered three additional variables: the first
week when the threshold was exceeded (as a proxy of epidemic
onset), the number of weeks between crossing the threshold and
reaching the incidence peak of the season (as a proxy of the rap-
idity of the seasonal increase), and the number of weeks above
the threshold (as a proxy of the length of the epidemic
season). A t-test at the 5% level was performed to compare
mean values, with a Welch modification in case of unequal vari-
ance (results are not shown).22

Table 1. General and epidemiological country-level characteristics for Niger, Burkina Faso and Mali

Niger Burkina Faso Mali

Study period 1986–2007 1997–2007 1994–2007
Number of districts 38 52 51
Country area (1000 km2) 1267 274 1267
Total populationa 13 330 14 074 12 654
Total number of cases 187 789 129 659 28 629
Annual number of casesb 5261 (1079; 43 200) 8724 (3585; 26 878) 1130 (454; 6429)
Annual incidenceb,c 52 (8; 478) 70 (27; 214) 10 (4; 69)
Population at district levela,b 339 (23; 922) 255 (58; 615) 215 (69; 674)
Annual incidence at district levelb,c 31 (0; 3278) 55 (3; 1004) 8 (0; 389)

ain 1000 population (2007 estimates); bgiven as median (minimum; maximum); cin cases per 100 000 population.
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Diagnostic test performance

Our aim was to anticipate epidemic DYs. We thus used the first
week that the WHO alert threshold was exceeded to define an
early epidemic onset, and tested how efficient this criterion
could be to predict an epidemic DY. To do so, we needed to
define an upper limit to characterise an early epidemic onset.
We compared at a DY-level the fact that the incidence rate
exceeded the WHO alert threshold earlier than week x (i.e. the
diagnostic test) to the fact that the DY was considered epidemic
(i.e. the gold standard).23 We retained the value of x maximising
altogether the resulting sensitivity, specificity and positive pre-
dicted value (PPV) (formulae provided in Supplementary
Figure S2) - more precisely, the one minimising the sum of
their squared distance to 100%. We further calculated the
number of weeks that would be gained (when applicable) if
the decision to launch a vaccination campaign depended on
the WHO alert threshold being exceeded before week x instead
of the WHO epidemic threshold being exceeded (i.e. the
current strategy), together with the proportion of DYs in which
vaccination would have been implemented. This upper limit for
an early epidemic onset was defined at a regional level (i.e. a
unique upper limit for all districts), at the country level (i.e. con-
sidering country-specific upper limits), and at the cluster level
(i.e. considering cluster-specific upper limits).

As the overall proportion of epidemic DYs is small, high sensi-
tivity and specificity can coincide with low PPV (for an example,
see Supplementary Figure S2), which reflects the potential loss
of vaccine resources distributed in non-epidemic DYs. Hence,
PPV is accounted for when defining x.

Statistical analyses were performed using the R software (R
Project for Statistical Computing, http://www.r-project.org).
Maps were drawn using the HealthMapper software (http://
www.who.int/health_mapping/tools/healthmapper/en/).

Results

Cluster analysis

We assembled districts within each country into three clusters,
Groups M1–3, N1–3 and B1–3 in decreasing order of averaged
weekly incidences. Groups were spatially clustered, mostly in
Niger and Burkina Faso (Figure 2). Three districts (two in Niger
and one in Mali) were considered as outliers: two notified

unusually high average weekly incidences and one reported
one high weekly incidence in a low-incidence period. These dis-
tricts were not included in the cluster analysis to avoid distorting
the results.

Cluster comparisons

Supplementary Table S1 summarises the clusters’ profiles in both
epidemic and non-epidemic DYs. In the following, the epidemic
onset, length of epidemic season and rapidity of the seasonal in-
crease refer to both the WHO alert and epidemic threshold, when
applicable. In all clusters, the average mean and the maximum
weekly incidence was significantly greater in epidemic than in
non-epidemic DYs, the epidemic onset occurred significantly
earlier (except Group B2), and the length of the epidemic
season was significantly longer. When comparing epidemic DYs
across clusters, a significantly higher mean and maximum
weekly incidence was observed for Group 1 vs Group 2 and for
Group 1 vs Group 3, together with a significantly earlier epidemic
onset and longer length of epidemic seasons. When observing
Group 2 vs Group 3, the same pattern was observed for Niger;
in Burkina Faso, Group 2 experienced shorter epidemic seasons
than Group B3 yet with higher peaks of weekly incidences.

Overall, in a given DY, the higher the annual weekly incidence,
the earlier the WHO epidemic threshold is exceeded (Pearson
correlation coefficient of –0.48/–0.55 considering the WHO
alert/epidemic thresholds, respectively) and the longer the epi-
demic season (Pearson correlation coefficient of 0.77/0.82 con-
sidering the alert/epidemic thresholds, respectively).

Among the epidemic DYs, the WHO alert and epidemic thresh-
olds were exceeded in 90% and 72% of the cases, respectively;
and in 24% and 8% respectively for non-epidemic DYs (Supple-
mentary Table S2). The WHO epidemic threshold was never
exceeded in non-epidemic DYs in Mali, and in Group M3 the
WHO alert threshold was exceeded in only one DY.

Comparison between countries

Supplementary Table S1 displays the characteristics of the
groups’ seasonal patterns. The highest annual weekly incidences
at national and district levels were recorded in Niger (Table 1),
whereas districts were affected in a more homogeneous
manner in Burkina Faso (standard deviation of annual incidence:

Figure 2. Mapping of groups obtained by cluster methods, by country. Maps of clusters for (A) Mali, (B) Burkina Faso, and (C) Niger. Outliers are
depicted in white (two districts in Niger, one in Mali).
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121 vs 195 for Niger). Overall similar incidences were recorded
for these two countries over the study period (Table 1). During
epidemic DYs, the WHO alert threshold was first exceeded on
average at the same time in Niger and Burkina Faso (mean
week number of 7.9 and 7.7, respectively), whereas the WHO epi-
demic threshold was first exceeded earlier in Burkina Faso (mean
week number of 9.2 vs 10.1 in Niger). The averaged weekly inci-
dence peak was significantly higher in Burkina Faso than in Niger
(46.5 vs 35.2, respectively), was reached earlier (mean week
number of 12.5 vs 14.2), and the epidemic seasons were
shorter (on average 8.6 vs 10.6 weeks above WHO alert thresh-
old). In Mali, meningitis seasons were of lower magnitude.
When the WHO alert threshold was exceeded, it happened on
average more than 3 weeks later than it did in Niger or Burkina
Faso, and the epidemic seasons were significantly shorter.

Epidemic onset criterion

As a consequence of early epidemic onset being concomitant
with high incidences, we focused on the WHO alert threshold
being exceeded early as a marker to anticipate epidemics; a
diagnostic test performance was carried out (Table 2). At all re-
gional, country and cluster levels, the overall sensitivity, specifi-
city, positive predictive value (PPV) and negative predictive
value (NPV) remained greater than 65%. Defining an early epi-
demic onset at a country level slightly improved all criteria
values as compared to the regional level; while the cluster level
gave higher specificity and PPV, together with a small decrease

in sensitivity, and fewer DYs targeted for vaccination. The mean
time gained (by switching from the WHO epidemic threshold to
the WHO alert threshold) was similar regardless of the definition
level that was considered: between 2.47 and 2.58 weeks. For
28% of the epidemic DYs, no time could be gained as the WHO
alert and epidemic thresholds were first exceeded in the same
week. Highest incidence DYs were better identified when defining
a unique criterion for all countries: annual incidence and cumu-
lative incidence after the WHO alert threshold was exceeded
were on average the highest when defining the criterion at the
regional level and the lowest when defining the criterion at the
cluster level.

Discussion

Main findings

By observing the meningitis seasonal patterns at a district level in
Mali, Burkina Faso and Niger over more than a decade, significant
differences were highlighted across districts and regions in terms
of levels of incidence reached and timing of epidemic onset. This
suggested that we should investigate epidemics at a more local
level, by formulating a district-level definition of an epidemic and
by investigating local criteria to anticipate them. Accordingly, we
have defined an epidemic as a local excess of cases compared to
an average annual incidence in the given district. This definition
gives more emphasis to the unusual character of a situation
compared to the local history, rather than compared to other

Table 2. Diagnostic test performance, using as a gold standard the definition of an epidemic DY, and comparing it to the diagnostic test of
an early epidemic onset (defined as a DY for which the WHO alert threshold is exceeded before week x). The upper limit x for defining an
early epidemic onset was defined at cluster, country and regional levels. Epidemic DY: an excess of cases compared to the incidence
previously experienced in the given district

Group Limit week x Sensitivity (%) Specificity (%) Positive predictive
value (%)

Negative predictive
value (%)

Proportion of DYs with an
early epidemic onset (%)

N1 8 84.2 87.0 66.7 94.7 29.8
N2 11 66.4 93.0 77.3 88.5 22.7
N3 25 79.0 95.7 88.2 91.8 25.8
B1 8 50.0 84.2 58.1 79.3 26.2
B2 8 41.5 87.3 56.7 78.8 21.0
B3 10 53.4 88.1 69.1 79.1 25.8
M1 15 84.5 94.7 86.0 94.1 27.1
M2 22 69.4 97.1 91.3 87.7 23.5
M3 21 80.0 98.5 96.0 91.8 25.5
Cluster levela – 66.6 91.8 76.7 87.2 24.9
Niger 11 70.6 87.8 66.7 89.6 27.3
Burkina Faso 10 57.5 83.4 61.3 81.1 29.4
Mali 22 76.1 95.7 88.3 90.4 25.7
Country levelb – 68.6 89.3 72.0 87.6 27.3
Regional level 12 65.2 87.6 68.0 86.2 27.5

a Aggregation of individual results at the cluster level (N1-N3, B1-B3, M1-M3).
b Aggregation of individual results at the country level (Niger, Burkina Faso and Mali).
Outlier districts were not taken into account in the analyses, in order to allow comparing results from different levels of criterion’s definition.
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geographic areas. Considering this definition, we suggested the
criterion of an early epidemic onset to anticipate an epidemic.
An early onset was defined from the WHO alert threshold. If ap-
propriate, this criterion would represent an improvement, as time
would be gained over the current strategy. We tested defining
this criterion at regional (i.e. over the three countries), country
and cluster level (defined through the cluster analysis). Retro-
spectively, when defined at cluster level, this criterion had en-
couraging properties: an epidemic DY could be anticipated with
sensitivity 67%, specificity 92%, PPV 77% and NPV 87%; for an
average time gained of 2.5 weeks over the current strategy. Al-
though defining this criterion at a regional level better captures
the high-incidence DYs, a cluster-level definition gave compar-
able results in terms of capturing epidemic DYs and better high-
lights the locally extreme situation compared to what the
population has previously experienced. This definition of an epi-
demic DY would avoid the phenomenon of vaccination cam-
paigns being launched in the same district 2 years in a row, as
has happened in recent years with the current strategy. Finally,
this criterion could be used to anticipate epidemic DYs, and
could trigger the preparation of materials in readiness for, if
not the launching of, vaccination campaigns.

Early epidemic onset concurring with high annual incidence
has been noted previously in several publications.16,24 – 27 De Cha-
balier et al.24 defined an early epidemic onset as a DY for which
the WHO alert threshold was exceeded before week 10. In our
study, we have extended the analysis to three countries over
longer study periods. As spatial disparities were highlighted, we
have investigated which scale was most appropriate to define
an early epidemic onset. Paireau et al.27 and Tall et al.26 recently
investigated defining an epidemic at a sub-district level in Niger
and Burkina Faso, respectively. Despite encouraging results,
turning the resulting recommendations into public health
action requires a modification of the surveillance protocol,
which might be politically problematic. In comparison, our
results are easy to use and directly applicable without any modi-
fication of the surveillance system.

Spatial disparities

We noticed differences between countries in the incidence levels
and in the timing of seasonal patterns (which could be partly
attributed to differences in the reporting systems and in the im-
plementation of public health policies) and between groups
defined in the cluster analyses. The lower within-country hetero-
geneity in Burkina Faso could be a result of population density
being more homogeneous in this country than in Mali or Niger.
Higher risk could be attributed to an increased person-to-person
contact rate: the highest-incidence regions are located in the
south of the studied area, where the population movements
and axes of communications are dense. In particular, the loca-
tion of high-risk districts in Niger along the Nigerian border
could mirror specific exchange routes between the two coun-
tries, including health-seeking behaviours.

Limitations

Although meningitis symptoms are well known in susceptible
populations under-reporting can easily occur, particularly in
remote districts where patients may not be able to reach the

health centres where incidence is recorded. Nevertheless, popu-
lation concern is high, and health professionals are trained to
report suspected cases according to a consistent WHO case def-
inition.15 Any bias in reported incidence is therefore likely to be
consistent in time and space. Moreover, the definition of inter-
vention thresholds resulted from analyses of cases data that
were collected according to the same guidelines, i.e. that suf-
fered similar bias.

Applying a national annual population rate could be unrealis-
tic, given the uneven population distribution in Mali and Burkina
Faso. However, population size should not change dramatically
from one year to the next in the absence of a major climatic
or political event. The potential impact of our estimation bias is
therefore not considered to be of any consequence.

We disregarded vaccination history. Although its impact on
meningitis is expected to be substantial, no reliable data were
systematically collected over our study period. However, vaccin-
ation campaigns affect the end of the epidemic season and the
3 years following vaccination during which the population is
believed to be protected. Immunity should impact the epidemic
onset (which we mostly focus on in this study) to a small extent,
with an homogeneous effect across countries as the vaccination
strategy is implemented following WHO recommendations.15

Conclusion

To conclude, a cluster-specific criterion of early epidemic onset
could facilitate the anticipation of epidemic DYs. Specifying a
local definition of an epidemic DY and characterising relevant cri-
teria for epidemic anticipation could be an important step
forward because, as we showed, the seasonal patterns differ
fairly substantially between countries and even within countries.
This easy-to-use criterion could help trigger more timely
responses to epidemics, and improve the effectiveness of the re-
active vaccination strategy, without any modification of the sur-
veillance protocol. It could be further investigated, especially for
other countries (applicable when at least 15 years of data are
available) to confirm its value as a new parameter in the reactive
vaccination decision process. Other follow-up research should
explore the determinants of the differences of epidemiological
patterns between clusters, including environment, population
immunity and dynamics, societal organisation, and ecology of
pathogens. Finally, a better understanding of the epidemiological
process and its determinants will help improve integrative math-
ematical modelling to inform the long-term preventive strategy.

Supplementary data
Supplementary data are available at Transactions Online (http://
trstmh.oxfordjournals.org/).

Authors’ statement: LA, EB, MHD, CL, WP and SH are staff members of
the WHO. The authors alone are responsible for the views expressed in
this publication and they do not necessarily represent the decisions,
policy or views of the WHO.

Authors’ contributions: LA, HB, SH, EB and WP conceived the study and
designed the study protocol. MHD and CL were responsible for data

Transactions of the Royal Society of Tropical Medicine and Hygiene

35

http://trstmh.oxfordjournals.org/lookup/suppl/doi:10.1093/trstmh/trs010/-/DC1
http://trstmh.oxfordjournals.org/
http://trstmh.oxfordjournals.org/
http://trstmh.oxfordjournals.org/


collection. LA and HB conducted all data analyses. LA, HB and SH
interpreted the results and drafted the manuscript. SH, EB, MHD, CL
and WP critically revised the manuscript for intellectual content. All
authors read and approved the final manuscript. LA and HB are
guarantors of the paper.

Acknowledgement: Grateful thanks to Emily Firth, who kindly accepted
the task of reviewing the language.

Funding: LA was funded by WHO, Geneva, Switzerland and the Health
and Climate Foundation, Washington DC, USA. HB was supported by
the intramural research group of Fogarty International Center, US
National Institutes of Health, Bethesda, MD, USA. No funding bodies
had any role in the study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing interests: None declared.

Ethical approval: Not required.

References
1 Molesworth AM, Thomson MC, Connor SJ et al. Where is the

meningitis belt? Defining an area at risk of epidemic meningitis in
Africa. Trans R Soc Trop Med Hyg 2002;96:242–9.

2 Lapeyssonnie L. La méningite cérébro-spinale en Afrique. Bull World
Health Org 1963;28(Suppl.1):3–114.

3 Greenwood BM, Bradley AK, Wall RA. Meningococcal disease and
season in sub-Saharan Africa. Lancet 1985;2:829–30.
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