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Congenital myasthenic syndromes are inherited disorders of neuromuscular transmission characterized by
fatigablemuscle weakness. Autosomal recessive acetylcholine receptor (AChR) deficiency syndromes, in which
levels of this receptor at the neuromuscular junction are severely reduced, may be caused by mutations within
genes encoding the AChR or the AChR-clustering protein, rapsyn. Most patients have mutations within the
rapsyn coding region and are either homozygous for N88K or heteroallelic for N88K and a second mutation. In
some cases the second allele carries a null mutation but in many themutations aremissense, and are located in
different functional domains. Little is known about the functional effects of thesemutations, but we hypothesize
that they would have an effect on AChR clustering by a variety of mechanisms thatmight correlate with disease
severity. Here we expressed RAPSN mutations A25V, N88K, R91L, L361R and K373del in TE671 cells and in
rapsyn�/� myotubes to determine their pathogenic mechanisms. The A25Vmutation impaired colocalization
of rapsyn with AChR and prevented agrin-induced AChR clusters in rapsyn�/�myotubes. In TE671 cells, R91L
reduced the ability of rapsyn to self-associate, and K373del-rapsyn was significantly less stable than wild-type.
The effects of mutations L361R and N88K were more subtle: in TE671 cells, in comparison with wild-type
rapsyn, L361R-rapsyn showed reduced expression/stability, and both N88K-rapsyn and L361R-rapsyn showed
significantly reduced co-localization with AChR. N88K-rapsyn and L361R-rapsyn could effectively mediate
agrin-induced AChR clusters, but these were reduced in number and were less stable than with wild-type
rapsyn. The disease severity of patients harbouring the compound allelic mutations was greater than that of
patients with homozygous rapsyn mutation N88K, suggesting that the second mutant allele may largely
determine severity.
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Introduction
Synaptic transmission plays a pivotal role in controlling

the passage of information through the nervous system.

Synaptogenesis involves the juxtaposition of pre- and post-

synaptic structures and the generation of regions of densely

packed neurotransmitter receptors. At the neuromuscular

junction (NMJ) a core pathway involving agrin, muscle-

specific tyrosine kinase (MuSK), acetylcholine receptors

(AChRs) and the AChR-clustering protein rapsyn is thought

to be responsible for maintaining synaptic structure and

for the aggregation and localization of AChR on the post-

synaptic folds (Sanes and Lichtman, 2001). Although muta-

tions underlying congenital myasthenic syndromes (Engel

and Sine, 2005) have been identified in post-synaptically

expressed genes encoding MuSK (Chevessier et al., 2004)
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and the voltage-gated sodium channel, Nav1.4 (Tsujino et al.,

2003), the majority are located in the AChR or rapsyn genes

[a list of these mutations is given in Ohno and Engel (2004)].

AChR mutations have been well studied, but the functional

effects of rapsyn genes have not yet been characterized in

detail.

In early developmental stages the AChR is expressed

throughout muscle, with clusters or ‘hot-spots’ of AChR

forming independently of the nerve in the process of muscle

pre-patterning (Kummer et al., 2005). Motoneuron axons

then extend into the muscle and release agrin, which activates

MuSK through an as-yet undetermined mechanism. AChRs

are phosphorylated and their expression becomes restricted

to the synaptic and perisynaptic regions of the muscle. As the

junction matures, dense, stable clusters of AChR become

localized at the crests of the post-synaptic folds of the

NMJ. Rapsyn interacts directly with AChRs and is essential

for agrin-induced clustering of the AChR (Gautam et al.,

1995; Fuhrer et al., 1999). In rapsyn�/� mice AChR clusters

fail to form, the post-synaptic folds do not form properly,

nerve sprouting occurs and the mice die at birth without

functional synapses (Gautam et al., 1995, 1999). AChRs, in

turn, are required for synaptic clustering of rapsyn, revealing

an intimate functional interdependence of AChRs and rapsyn

(Marangi et al., 2001; Ono et al., 2004).

The effect of deletions and truncations of rapsyn on its

function in vitro have led to the proposal of four functional

domains: rapsyn is attached to the juxtaneural post-synaptic

membrane by a myristylation moiety; seven tetratricopeptide

repeat (TPR) domains are thought to mediate rapsyn self-

association (Ramarao et al., 2001; Eckler et al., 2005); a zinc

finger/coiled-coil domain has been implicated in interaction

of rapsyn with the AChR (Bezakova and Bloch, 1998;

Ramarao et al., 2001); and a RING-H2 domain is thought

to be involved in rapsyn binding to scaffolding proteins such

as dystroglycan (Bartoli et al., 2001).

Mutations within the RAPSN gene have been shown to

underlie a high proportion of AChR deficiency syndromes

(Ohno et al., 2002; Burke et al., 2003; Dunne and Maselli,

2003; Ohno et al., 2003; Maselli et al., 2003; Muller et al.,

2003; Ioos et al., 2004), which can occur early in life or during

adulthood. The disease is recessive, and in most cases patients

are either homozygous for N88K or heteroallelic for N88K

and a second mutation. The severity of disease is variable,

ranging from little functional impairment to the patient

requiring assisted ventilation. In particular, the disorder in

childhood is frequently characterized by severe apnoeic

attacks. To date the precise mechanisms by which these

different RAPSN mutations lead to AChR deficiency have

not been thoroughly studied.

Here we investigated the functional effects of five RAPSN

gene mutations, including N88K, and asked whether these

correlated with the clinical phenotype. Our data show that

diverse molecular mechanisms disrupt rapsyn function, and

that the major effect of N88K-rapsyn is to reduce the stability

of AChR clusters. However, in compound heterozygotes of

N88K and a second mutation, the second mutant allele is

likely to play a role in determining disease severity.

Material and methods
Patients with AChR deficiency and the
identification of RAPSN mutations
Patients and DNA samples were recruited through the congenital

myasthenia service in Oxford, UK. All were negative for antibodies

against the AChR. Information was from family interviews, case

note review and clinical examination obtained by an assessor blinded

to the results of the genetic functional analysis. Assessment was

complemented by the myasthenia gravis activities of daily living

(MG-ADL) scoring system, an eight-question survey of symptom

severity, with each response graded from 0 (normal) to 3 (most

severe) (Wolfe et al., 1999). Mutations were identified by direct

sequencing of polymerase chain reaction (PCR) amplicons contain-

ing the eight RAPSN exons and their flanking non-coding regions

and confirmed by restriction endonuclease digestion as described

previously (Burke et al., 2004). Approval for this study was obtained

from the Central Oxford Research Ethics Committee.

Plasmids and constructs
Retroviral vector pBabe-PURO-sn was a kind gift from Dr Chris

Norbury, Cancer Research UK, WIMM, Oxford. It is adapted

from pBabe-PURO (Morgenstern and Land, 1990), such that the

multiple cloning site contains Xho I, Sal I, Not I and BamH I restric-

tion sites. pEGFP-N1 was purchased from Clontech. Restriction

enzymes were purchased from New England Biolabs. Human

rapsyn cDNA minus the stop codon was amplified using primers

50-TGCGAAGCTTGCCACCATGGGGCAGGACCAGACCAAG and

50-TCGTGGATCCCGTACAAAGCCAGGCTTCATGGA and was

cloned into pEGFP-N1 using Hind III and BamH I restriction

sites, such that EGFP and rapsyn were in the same reading frame.

Mutagenesis was carried out using the QuikChange mutagenesis kit

purchased from Stratagene. Mutations were confirmed by DNA

sequencing. EGFP-tagged rapsyn and mutants were excised from

pEGFP-N1 using Hind III (filled) and Not I, and were cloned

into Xho I (filled) and Not I digested pBabe-PURO-sn.

Cell lines
TE671, a rhabdomyosarcoma with muscle-like properties (Stratton

et al., 1989), COS-7 and C2C12 cells were purchased from ATCC

and GP + E86 (Markowitz et al., 1988) retroviral-producing cell line

was a kind gift from Professor Roy Bicknell, Cancer Research UK,

WIMM, Oxford. TE671, COS-7 and GP + E86 cell lines were main-

tained at 37�C in Dulbecco-modified essential medium (DMEM)

(Sigma–Aldrich) supplemented with 10% FCS (TCS Cellworks Ltd)

and 100 U/ml each of penicillin G and streptomycin (PS) purchased

from Invitrogen. C2C12 cells were maintained at 37�C in DMEM

supplemented with 20% FCS and PS, and were fused in DMEM

containing 2% FCS and PS. Rapsyn�/� (clone 11–7) myoblasts

(Fuhrer et al., 1999) were maintained at 33�C with 5% CO2 on

plates coated with matrigel matrix (BD Biosciences Discovery

Labware, San Jose, CA, USA). Growth medium was DMEM

supplemented with 0.5% chick embryo extract (United States

Biological, MA, USA), 4 U/ml mouse recombinant interferon-g

(Sigma–Aldrich), 20% FCS and PS. To induce fusion, myoblasts

were moved to 37�C with 5% CO2, and the medium was replaced
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with fusion medium [DMEM containing 10% horse serum (Sigma–

Aldrich) and PS]. Fusion medium was replaced every day until

myotubes formed.

Transfections
TE671 cells were seeded at 2 · 105 cells per well in 6-well plates and

the following day were transfected with a total of 3 mg DNA per well

using calcium phosphate precipitation. Amounts of DNA used per

well were 1 mg AChR a-subunit DNA, 0.5 mg each of AChR b-, d-

and «-subunit cDNA and 0.5 mg of rapsyn cDNA or pcDNA3.1-

hygro for ‘no rapsyn’ control transfections. Transfections with only

rapsyn and no AChR were carried out using 3 mg/well of rapsyn

expression plasmids. GP + E86 cells were transfected with the pBabe-

PURO-rapsyn constructs using Fugene (Roche Diagnostics), using

2.5 mg DNA and 7.5 ml Fugene in a 25 cm2 flask. Three days

following transfection cells were selected using 8 mg/ml puromycin

(Sigma–Aldrich), and 2 weeks later were cell-sorted to obtain the top

5% fluorescent cells.

Retroviral production and infection
For retroviral production transfected GP + E86 cells were incu-

bated for 3 days in the minimal volume of growth medium

without puromycin. The medium was harvested and centrifuged

to remove cell debris, aliquoted and snap frozen on dry ice.

Retrovirus was stored at �80�C. Retrovirus was used neat and

was incubated with myoblasts overnight at 33�C after which the

medium was replaced with growth medium. Puromycin was

added 3 days after infection.

Western blots
TE671 cells were removed from 6-well plates using trypsin/EDTA in

phosphate-buffered saline (PBS) and centrifuged, and the pellets

were resuspended in 5· protein loading buffer. The cell extract

was incubated at 95�C for 1 h and then subjected to sodium dodecyl

sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) using

Novex precast 4–20% NuPage gels. Protein was transferred to

nitrocellulose and rapsyn was detected using anti-rapsyn mAb

1234 (Abcam) followed by anti-mouse-HRP and ECL (Amersham).

a-Tubulin was detected on the same western blots using an mAb

(Sigma–Aldrich) followed by anti-mouse-HRP and ECL.

Production of agrin and generation of AChR
clusters on myotubes
To generate soluble rat agrin, COS cells were transiently transfected

with construct S-agrin-(4,19), kindly given by Werner Hoch (Hopf

and Hoch, 1997), using PEI. On the following day the medium was

replaced with fresh medium. Conditioned medium was harvested

2 days later, aliquoted and snap frozen. AChR clustering activity of

the agrin was titrated by incubation overnight with C2C12

myotubes. Clusters were labelled at 37�C for 1 h with tetramethyl-

rhodamine a-bungarotoxin (a-BuTx) (Molecular Probes) diluted

1 : 1000 in fusion medium and washed three times with fusion

medium. Cells were fixed with 3% paraformaldehyde and cluster

number and length were counted using an Axion 200 inverted Zeiss

fluorescence microscope. AChR clustering on rapsyn�/� myotubes

was carried out by incubation overnight at 37�C with the optimal

dilution of agrin in fusion medium. Labelling of clusters was as

described for C2C12 cells.

Fluorescence/confocal microscopy
Microscopy was performed on an Axion 200 inverted Zeiss fluores-

cence microscope, an Olympus BX60 wide-field fluorescence micro-

scope or on a Bio-Rad Radiance 2000 confocal microscope. Some

intracellular aggregates of EGFP-tagged rapsyn were observed in a

sub-population of cells transfected with all rapsyn-EGFP constructs,

including wild-type rapsyn-EGFP. AChR on TE671 cells was detected

by incubation for 1 h at room temperature with the B3 mAb, which

binds the extracellular domain of the AChR b-subunit (Jacobson

et al., 1999), 1 : 500 in DMEM containing 20 mM HEPES and 1%

bovine serum albumin (BSA), before being washed three times with

PBS. Cells were fixed with 3% paraformaldeyde at room temperature

for 20 min, washed three times with PBS and incubated with sec-

ondary antibody Alexa Fluor� 594 goat anti-mouse IgG (H+L)

(Molecular Probes) diluted 1 : 1000 in PBS containing 1% BSA.

Cells were washed 3· in PBS and mounted in fluorescence mounting

medium (Dako Cytomation). AChR on myotubes were labelled at

37�C with tetramethylrhodamine a-BuTx (Molecular Probes)

diluted 1 : 1000 in fusion medium. Cells were washed 3· in fusion

medium, fixed in fusionmedium containing 3% formaldehyde for 20

min at room temperature, washed 1· in PBS and mounted in fluor-

escence mounting medium. Images were captured by using Openlab

software (Improvision) or LaserSharp 2000 software (Bio-Rad).

Analysis of colocalization and clustering
Sixteen-bit depth images from a radiance 2000 confocal microscope

were analysed blinded using MetaMorph, Universal Imaging

Corporation. For the analysis, background noise was reduced.

After consultation with Universal Imaging Corporation the follow-

ing method was chosen because it gave the best reduction in back-

ground with minimal change to the fluorescence of the cell. First a

morphological H-Dome, threshold set to 36 000 grey levels, was

run. A binarize operation was performed with manual thresholding,

and then single pixels were removed. A logical AND was performed

between the resulting image and the original image, so that

maximum intensity values were identical to those in the original

image. Individual cells were selected as regions of interest and all

pixels therein were selected by thresholding, including any large

aggregates within the cell. Colocalization of rapsyn with AChR

was quantified as per cent of green pixels colocalizing with red pixels,

and, conversely, colocalization of AChR with rapsyn was quantified

as per cent of red pixels colocalizing with green pixels. Densitometry

of rapsyn and AChR and area of clusters was also analysed using

MetaMorph.

Results
Patients
Eighteen different mutations within or affecting the RAPSN

coding region were identified in patients referred to the

congenital myasthenia service in Oxford, UK, with CMS

associated with AChR deficiency (Fig. 1). We chose five of

these mutations, A25V, N88K, R91L, L361R and K373del, for

functional studies to determine the underlying basis for the

end-plate AChR deficiency. These included four missense

mutations and one single amino acid deletion within rapsyn.

The patients with these mutations are described in Table 1

and include two pairs of siblings, Patients 4 and 5, and 12 and

14. The age at onset varied from birth (10 patients) to later
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childhood (1 patient) or adult life. In affected individuals

each of these mutations was found to be heteroallelic with

mutation N88K or homozygous for N88K.

Four of nine homozygous for N88K had arthrogryposis

multiplex congenita (AMC) but congenital joint contractures

were also evident in two other patients with compound het-

eroallelic mutations. Six of the patients with symptoms from

birth had at least one exacerbation during childhood that

required hospital admission, often with assisted ventilation

during the attacks. Apnoea attacks occurred in four of the six

patients with heteroallelic mutations (three patients with the

rapsyn mutation K373del, and in Patient 6 with mutations

L361R and N88K), but only in 2/9 rapsyn patients homo-

zygous for N88K, although this difference did not reach sig-

nificance. Patient 1 (rapsyn mutations A25V and N88K) and

the siblings with rapsyn mutations K373del and N88K had

older brothers with a similar phenotype to them, but who had

died in infancy from respiratory failure.

All but Patient 1 has been examined, usually on treatment,

within the last 2 years. At his last examination, Patient 1

(rapsyn mutations A25V and N88K) had some mild weakness

of his neck and upper limbs and mild bulbar and ocular

symptoms. Patient 2 (rapsyn mutations R91L and N88K)

continues to have severe weakness despite treatment with

pyridostigmine. Patient 3 (rapsyn mutations K373del and

N88K) has mild limb weakness but significant bulbar diffi-

culties on neostigmine. She also requires assisted ventilation

at night for nocturnal hypoventilation. Patients 4 and 5 have

mild weakness on examination but moderate impairment of

activities of daily living, and require treatment with both

pyridostigmine and 3,4-diaminopyridine. Patient 6 (rapsyn

mutations L361R and N88K) and the patients homozygous

for N88K have little or no weakness with pyridostigmine

treatment, and this is generally reflected in their low MG-

ADL scores (Table 1), which differ significantly between those

homozygous for N88K and those with compound heteroal-

lelic mutations (Mann–Whitney P = 0.029). No clear rela-

tionship between the location of the identified mutations and

the disease severity was apparent.

Functional analysis of RAPSN mutations
To examine whether the clinical phenotype reflected the func-

tional effects of the mutations on AChR clustering in vitro,

Fig. 1 Schematic diagram of rapsyn protein showing mutations that have been identified in congenital myasthenic patients
referred to the Congenital Myasthenia Service in Oxford, UK. The functional domains of rapsyn are also shown.

Table 1 Patient data

Patient no. Age of onset/sex/
current age (years)

AMC Assisted
ventilation

Apnoeas Treatment MG-ADL (/24) Mutation

1 Birth/M/55 � + � P ND A25V, N88K
2 10/M/17 � � � P 7 R91L, N88K
3 Birth/F/1 + + + N 10 K373del, N88K
4 Birth/M/11 � � + P+D 5 K373del, N88K
5 Birth/M/13 � + + P+D 5 K373del, N88K
6 Birth/F/10 + + + P 4 L361R, N88K
7 Birth/F/4 + + � P 4 N88K, N88K
8 Birth/M/7 + � + P 2 N88K, N88K
9 Birth/F/23 + + � P 1 N88K, N88K
10 Birth/M/26 + � + P 2 N88K, N88K
11 Birth/M/30 � � � P 6 N88K, N88K
12 26/F/52 � � � P 6 N88K, N88K
13 48/M/53 � � � P 1 N88K, N88K
14 21/M/54 � � � P 0 N88K, N88K
15 41/F/76 � � � P 0 N88K, N88K

M, male; F, female; AMC, arthrogryposis multiplex congenita; MG-ADL, myasthenia gravis activities of daily living score; ND, not done;
P, pyridostigmine; N, neostigmine; D, 3,4-diaminopyridine.
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cDNA encoding human rapsyn (Buckel et al., 1996) was

cloned into mammalian expression vector pcDNA3.1 or

given a C-terminal EGFP tag using pEGFP-N1. Preliminary

experiments showed that inclusion of the C-terminal EGFP

tag did not affect rapsyn-induced clustering of the AChR in

the TE671 muscle cell line (data not shown). Subsequently,

respective mutations A25V, N88K, R91L, L361R and K373del

were introduced into the rapsyn-EGFP expression plasmid

for the functional studies.

R91L inhibits rapsyn self-clustering
We first studied the effect of the mutations on rapsyn self-

association, which is a critical process in the clustering of the

AChR. To do this, plasmids constructed to express wild-type

or mutant rapsyn-EGFP were transfected into TE671 cells,

images were captured on a confocal microscope (Fig. 2A–F)

and the per cent of fluorescent cells that contained clusters

was counted. Western blots showed that R91L-rapsyn-EGFP

shows equivalent expression and stability to wild-type

rapsyn-EGFP and that the diffuse cellular EGFP signal was

not due to protein degradation or EGFP clipping (data not

shown). R91L-rapsyn showed a significant reduction in self-

association, with only 48% of fluorescent cells containing

clusters compared with 70% for wild-type (Fig. 2G; repeated-

measures ANOVA, P = 0.006, with post-test for rapsyn R91L,

P < 0.05). Much of the fluorescent signal was from large

intracellular aggregates (Fig. 2D). In contrast, self-clustering

in all the other rapsyn constructs was similar to the wild-type.

Since rapsyn self-association is crucial for AChR clustering,

it is likely that this is the pathogenic mechanism for this

mutation, and it was not examined further.

Mutation K373del reduces the
stability of rapsyn
We next analysed the expression levels of the remaining four

rapsyn mutants by western blotting. Wild-type or mutant

rapsyn-EGFP was transfected on Day 0 (with or without

the AChR subunits) into TE671 cells, and a time course

for levels of rapsyn and a-tubulin (control) was carried

out. An example of TE671 cells transfected with rapsyn

alone is shown in Fig. 3A, and similar results were obtained

when cells were co-transfected with AChR (data not shown).

Densitometry was performed to obtain a ratio of rapsyn :a-

tubulin and the results were normalized to levels of wild-type

rapsyn-EGFP (Fig. 3B). K373del-rapsyn-EGFP expression

drastically decreased to �10% of that of wild-type rapsyn

by Day 4 and was undetectable by Day 5. This initial robust

expression of K373del followed by rapid loss strongly

suggests that deletion of K373 reduces the stability of rapsyn

to a much greater extent than the other mutations. The

same results were obtained with a second set of DNA

preparations. A25V and L361R also reduced rapsyn levels

to�30%, with a more rapid decline than wild-type in expres-

sion between Days 4 and 5, suggesting that the stability of

these mutants might also be impaired, albeit to a lesser

Fig. 2 Mutation R91L abrogated clustering of rapsyn in TE671 cells.
(A–F) Confocal images of wild-type and mutant rapsyn-EGFP in
TE671 cells 2 days following transfection, with each column
representing a different cell. Rapsyn R91L (D) showed reduced
self-clustering, but the other mutants (B, C, E and F) were similar
to wild-type (A). Magnification: 60·. Bar = 10 mm (G)
Quantification of rapsyn clustering using wide-field fluorescence
microscopy. Number of green fluorescent cells containing rapsyn
clusters was expressed as a percentage of total number of green
fluorescent cells in 40 fields. Results are the average of four
experiments.
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degree than K373del. Interestingly, N88K had no effect on

rapsyn expression.

Analysis by flow cytometry of the co-transfected TE671

cells confirmed the results from western blots and also

showed that the overall level of cell surface expression of

AChR (cells immunolabelled with AChR b-subunit-specific

MAb B3) was unaffected by the rapsyn mutations studied

here (data not shown). The dramatic effect of K373del on

rapsyn stability is likely to be the major molecular mechanism

underlying rapsyn dysfunction for this mutation.

A25V-rapsyn does not associate with the
AChR and abrogates AChR clustering
Next we investigated the effect of the remaining three

mutations, A25V, N88K and L361R, on the interactions

between rapsyn and AChR by looking at colocalization of

the two proteins. First, in a blinded experiment, TE671

cells were co-transfected with wild-type or mutant rapsyn-

EGFP constructs and the AChR cDNAs. Two days following

transfection the AChR was immunolabelled and the cells were

fixed and mounted. Photographs were taken using a confocal

microscope, and colocalization of rapsyn with AChR (per

cent of green pixels that are also red) and AChR with

rapsyn (per cent of red pixels that are also green) was analysed

using MetaMorph. Figure 4A–D show examples of confocal

images of the green fluorescent rapsyn constructs, AChR

labelled with MAb B3 fluorescing red and merged images.

Wild-type rapsyn-EGFP showed the best colocalization with

62% colocalizing with the AChR and 52% of AChR coloca-

lizing with rapsyn-EGFP (Fig. 4E). A25V-rapsyn-EGFP

showed the least colocalization, with only 10% of rapsyn

colocalizing with the AChR and 17% of AChR colocalizing

with rapsyn (Fig. 4E). A25V-rapsyn did not localize at the cell

surface; rather A25V-rapsyn-GFP clusters were bigger and

appeared intracellularly, in the middle of the cell soma.

The AChR signal at the cell surface, in the A25V-rapsyn-

EGFP/AChR co-transfections, showed minimal clustering

(Fig. 4B) as would be expected in the absence of functional

rapsyn. Rapsyn harbouring mutations N88K and L361R

showed �50% reduction in levels of colocalization of both

rapsyn with AChR and AChR with rapsyn compared with

wild-type in TE671 cells (Fig. 4E).

To further understand the effect of the A25V mutation on

co-localization we studied agrin-induced AChR clusters.

Wild-type or A25V-rapsyn-EGFP were introduced into

mouse rapsyn�/� myoblasts using retroviruses, myoblasts

were fused and incubated with agrin overnight and AChR

clusters were visualized using a-BuTx-TRITC. Many clusters

were induced, as expected, in myotubes expressing wild-type

rapsyn-EGFP (Fig. 5A), but clusters in A25V-rapsyn-EGFP

myotubes were virtually undetectable (Fig. 5B), whereas they

were present with N88K and L361R (Fig. 5C and D). The

number of clusters longer than 3 mm was counted in each

field. The A25V mutation reduced the number of clusters by

97.5% compared with that of wild-type rapsyn-EGFP

(Fig. 5E). As expected, no clusters were observed in

agrin-treated rapsyn�/� myotubes (data not shown).

Fig. 3 K373del reduced the stability of rapsyn. (A) Wild-type and mutant rapsyn-EGFP were transfected into TE671 cells and
analysed by western blotting. Rapsyn was detected by mAb clone 1234 and a-tubulin was labelled as a control. (B) The ratio of
rapsyn :a-tubulin was obtained by carrying out densitometry using LabWorks. Expression of K373del-rapsyn-EGFP decreased
rapidly compared with wild-type rapsyn, indicating that it is unstable. A25V and L361R were also unstable but to a lesser degree,
and N88K-rapsyn-EGFP was as stable as wild-type rapsyn (n = 2).
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Confocal images showed that the AChR was located along

the cell surface of myotubes. In merged confocal images

of agrin-treated myotubes expressing A25V-rapsyn-EGFP,

the AChR appeared as red lines along the edge of the

myotubes, whereas A25V-rapsyn-EGFP was green inside

the myotubes, indicating that rapsyn was not located at

the cell surface and did not colocalize with the AChR

(Fig. 5G), confirming the results shown in TE671 cells

(Fig. 4B). In contrast, in merged images of myotubes expres-

sing wild-type rapsyn-EGFP, in addition to the presence of

clusters, the edges of the myotubes were yellow, indicating

that rapsyn reached the cell surface and colocalized precisely

with unclustered AChR (Fig. 5F).

N88K- and L361R-rapsyn-EGFP form
agrin-induced clusters that are unstable
Despite the reduction in colocalization of N88K- and L361R-

rapsyn-EGFP with AChR in TE671 cells (Fig. 4E), they were

still able to effectively mediate agrin-induced AChR clusters

in rapsyn�/� myotubes (Fig. 5C and D). However, the

number of AChR clusters was reduced by 30% for N88K

and by as much as 60% for L361R (Fig. 5E). The clusters

that did form were similar to those formed by wild-type

rapsyn-EGFP with respect to average area, density of rapsyn-

EGFP, density of AChR and colocalization of rapsyn with

AChR (data not shown).

The reduction in number of clusters could be due to less

efficient cluster formation or to clusters being unstable once

formed. To test this myotubes were incubated overnight with

agrin, washed three times to remove the agrin and incubated

in differentiation medium for 5 hours before labelling with a-

BuTx-TRITC (Fig. 6A–F). Over the 5 hour incubation period

the number of AChR clusters per field with wild-type rapsyn-

EGFP decreased by only 10% (Fig. 6G), indicating that the

clusters are relatively stable. In contrast, with N88K- or

L361R-rapsyn-EGFP the AChR clusters were disassembled

as reflected by the 85% reduction in the number of clusters

per field (Fig. 6G).

Discussion
We studied four missense mutations and one single amino

acid deletion within rapsyn that are present in patients with

congenital myasthenia owing to end-plate AChR deficiency.

They were found to disrupt rapsyn function via different

intracellular molecular mechanisms. R91L significantly

reduces rapsyn self-clustering, K373del leads to rapid degra-

dation compared with wild-type rapsyn and A25V annuls the

association of rapsyn and AChR. The pathogenic mechanisms

of N88K and L361R appear to be more subtle. Mutation

L361R reduces the level of rapsyn either through lower

expression or increased turnover. Both L361R and N88K

affect the association of rapsyn with AChR, reduce the num-

ber of agrin-induced AChR clusters in rapsyn�/� myotubes

and dramatically reduce the stability of AChR clusters. A

summary of the results is shown in Table 2.

The functional effects of our mutations do not obviously

correlate with the previously proposed functional domains of

rapsyn derived from deletion experiments, for instance

mutations N88K and R91L are both within TPR2 but have

Fig. 4 Mutation A25V reduced colocalization of rapsyn with
the AChR. TE671 cells were co-transfected with wild-type,
A25V-, N88K- or L361R-rapsyn-EGFP and the AChR subunits.
AChR was detected using mAb B3 and images were taken
using a confocal microscope. (A) Confocal images showing
rapsyn (green), AChR (red) and merged images (yellow where
rapsyn and AChR colocalize) in TE671 cells, 2 days following
transfection. Wild-type, N88K- and L361R-rapsyn-EGFP all
showed good colocalization (A, C and D). Very little colocalization
of rapsyn and AChR was observed with A25V-rapsyn-EGFP
(B) and AChR was only minimally clustered but was evenly
distributed on the cell surface. Magnification: 60·. Bar = 10 mm.
(E) MetaMorph was used to calculate colocalization of rapsyn
with AChR (per cent green pixels that are red) and AChR with
rapsyn (per cent red pixels that are green).
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Fig. 5 A25V-rapsyn-EGFP did not form agrin-induced clusters in rapsyn�/� myotubes. Myotubes expressing wild-type, A25V-,
N88K- or L361R-rapsyn-EGFP were treated with rat-soluble agrin overnight and AChR was labelled with BuTx-TRITC. Images of
40 fields per construct were taken using a wide-field inverted fluorescence microscope, and example images of AChR clusters are
shown (A–D). Magnification: 32·. Bar = 40 mm. The number of clusters longer than 3 mm were counted and the average number of
clusters per field was calculated (E). Mutant A25V inhibited the formation of AChR clusters. Confocal images of rapsyn�/� myotubes
expressing wild-type rapsyn-EGFP (F) or A25V-rapsyn-EGFP (G) indicated that A25V-rapsyn-EGFP did not reach the cell surface.
Magnification: 60·. Bar = 10 mm.
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very different effects. TPR domains mediate protein–protein

interaction (Blatch and Lassle, 1999). Rapsyn has a central

region made up of multiple TPR domains, and deletion map-

ping identified TPR1 and TPR2 (domains as shown in Fig. 1)

as the most important for rapsyn self-clustering. In addition,

deletion mutants of these domains were found to have a

dominant negative effect on rapsyn self-clustering when

co-expressed with wild-type rapsyn (Eckler et al., 2005).

R91L, located in TPR2, was the only one of the mutations

we analysed that had an affect, as predicted (Ramarao et al.,

2001; Eckler et al. 2005), on rapsyn self-association. This

single missense substitution dramatically inhibited rapsyn–

rapsyn oligomerization, which, theoretically, should still be

able to occur via any of the other six TPR domains. However,

in contrast with the deletion experiments (Eckler et al., 2005),

we did not obviously detect a dominant negative effect

of R91L-rapsyn when co-expressed with wild-type rapsyn-

DsRed monomer (data not shown); moreover, in patients

reviewed at the Oxford Myasthenia Clinic we have not

identified a pedigree with rapsyn mutations in which there

is a dominant inheritance pattern. However, the possibility of

dominant rapsyn mutations should not be ruled out.

Deletion of lysine at position 373 reduces the levels of

rapsyn in cell culture. Reporter gene assays indicate that

mutations in the RAPSN promoter may cause congenital

myasthenic syndromes through reduced expression of rapsyn

mRNA (Ohno et al., 2003), and consequently reduced rapsyn

expression. The association of rapsyn with AChR leads to

metabolic stabilization of AChR in the post-synaptic mem-

brane (Wang et al., 1999), and an increased ratio of rapsyn to

AChR is thought to enhance AChR stability (Gervasio and

Phillips, 2005; Losen et al., 2005). It is not clear whether

reduced K373del-rapsyn causes AChR deficiency through

an effect on the clustering process itself or through instability

of formed or partially formed clusters.

The A25V-rapsyn mutation has a profound effect on AChR

clustering. In TE671 cells and rapsyn�/� myotubes, the

mutant rapsyn was not present at the membrane and rarely

colocalized with the AChR. When A25V-rapsyn-EGFP was

expressed in rapsyn�/� myotubes agrin-induced clustering

was almost completely abrogated. Another rapsyn mutation

close to the N-terminus, L14P, reported previously (Ohno

et al., 2002), gave a similar expression pattern (data not

shown). A possible explanation for the action of these muta-

tions is an effect on myristylation and thereby binding to the

plasma membrane. Alternatively, the rapsyn N-terminal

region may be crucial for trafficking to the cell surface, or

L14P and A25V may disrupt rapsyn–AChR interactions.

However, previous reports have postulated that the coiled-

coil domain (residues 298–331) is the major region res-

ponsible for these interactions (Bezakova and Bloch, 1998;

Ramarao et al., 2001).

Studies of mutations N88K and L361R suggest that they

affect several aspects of rapsyn function. Both N88K-rapsyn

and L361R-rapsyn showed similar functional characteristics

in our expression systems, although lower levels of L361R-

rapsyn were observed following transfection into TE671 cells

due to either reduced L361R-rapsyn expression or stability. In

TE671 cells both mutations led to an �50% reduction in

rapsyn colocalization with AChR, and both formed reduced

numbers of large aggregates of clusters. A decrease in colocal-

ization of N88K-rapsyn-EGFP and AChR in HEK 293 cells

was observed previously (Ohno et al., 2002). In rapsyn�/�
myotubes the number of agrin-induced AChR clusters, com-

pared with wild-type, was decreased by �30% (N88K) or

Fig. 6 Agrin-induced AChR clusters that formed with N88K- or
L361R-rapsyn-EGFP were unstable. Rapsyn�/� myotubes
expressing wild-type rapsyn-EGFP (A and B), N88K-rapsyn-EGFP
(C and D) or L361R-rapsyn-EGFP (E and F) were treated with
agrin overnight and then either labelled with a-BuTx-TRITC (A, C
and E) or washed for 5 h to remove the agrin before labelling (B,D
and F). Magnification: 40·, bar = 20 mm. (G) Myotubes were
visualized and the number of clusters in 40 fields were counted and
expressed as average number of clusters/field.
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60% (L361R). However, when agrin was withdrawn, a

dramatic decrease in the number of clusters compared

with wild-type was observed, indicating that clusters

incorporating these two mutations are unstable.

A significant association with truncating mutations in

the second allele and arthrogryposis has been noted (Beeson

et al., 2005), suggesting that the lack of function of the

second allele may influence disease phenotype. Many factors,

including age and the fluctuating course of the disorder,

make it very difficult to obtain an objective measure of disease

severity. We applied the MG-ADL score to children as well as

adults as a simple symptom-based questionnaire as a means

of assessing disability when the patient is in a stable phase

(Table 1). In our cases we found significantly higher

MG-ADL scores in the patients with the functionally more

disruptive mutations A25V, R91L and K373del (P = 0.024,

Mann–Whitney), even when including N88K homozygous

Patients 11 and 12 where MG-ADL scores were likely to

be increased by co-morbid conditions (Patient 11 also has

Perthe’s disease and both Patients 11 and 12 had a body mass

index of �40).

Other anecdotal evidence suggesting an involvement of the

second mutation with disease severity is that we have not

identified deaths in siblings in kinships where the affected

child is homozygous for N88K; none of the patients

homozygous for N88K have required 3,4-diaminopyridine

in addition to their anticholinesterase treatment, implying

either that their disease may be less severe or that they

respond better to anticholinesterase medication; and four

out five of our late-onset cases of AChR deficiency due to

rapsyn mutations are homozygous for N88K.

We dissected the pathogenic mechanisms of five naturally

occurring rapsyn mutations. The data support the hypothesis

that dysfunction in the second mutation of a heteroallelic

N88K-rapsyn patient is an important determinant of

disease severity. It is tempting to speculate that the underlying

cause of the fever-induced severe apnoeic attacks associated

with rapsyn mutations is increased N88K-rapsyn-AChR-

cluster instability. A raised body temperature might lead to

an increase in both protein metabolism and membrane

fluidity, thus compromising the structural integrity of the

already unstable AChR clusters. Finally, the similarity in

functional characteristics of N88K-rapsyn and L361R-rapsyn

revealed in this study suggests that there are likely to be

patients with AChR deficiency that are either homozygous

or heteroallelic for non-N88K mutations within the RAPSN

coding region.
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