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ABSTRACT

Motivation: To obtain meaningful predictions from dynamic
computational models, their uncertain parameter values need to be
estimated from experimental data. Due to the usually large number
of parameters compared to the available measurement data, these
estimation problems are often underdetermined meaning that the
solution is a multidimensional space. In this case, the challenge is
yet to obtain a sound system understanding despite non-identifiable
parameter values, e.g. through identifying those parameters that
most sensitively determine the model’s behavior.
Results: Here, we present the so-called divide-and-conquer
approach—a strategy to analyze underdetermined biochemical
models. The approach draws on steady state omics measurement
data and exploits a decomposition of the global estimation problem
into independent subproblems. The solutions to these subproblems
are joined to the complete space of global optima, which can be
easily analyzed. We derive the conditions at which the decomposition
occurs, outline strategies to fulfill these conditions and—using an
example model—illustrate how the approach uncovers the most
important parameters and suggests targeted experiments without
knowing the exact parameter values.
Contact: heinemann@imsb.biol.ethz.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Mathematical models are capable to reproduce and predict complex
cellular responses, and are as such invaluable in advancing our
understanding of living cells (Kitano, 2002a). Differential equation
models are a common type of mathematical models that are
especially suited to investigate the dynamic behavior arising from
molecular interactions. Such models often contain many parameters
whose values are uncertain but affect the simulated responses
(Ingram et al., 2006). Therefore, these parameters are usually either
directly measured or collectively estimated from experimental data,
a process which most commonly involves the maximization of the
maximum likelihood, often in the form of the minimization of a
least squares distance between the simulation and the data, and the
proper pre- and post-estimation diagnostics (Jaqaman and Danuser,
2006).

∗To whom correspondence should be addressed.

Because differential equation models of biochemical systems
typically contain many uncertain parameters whereas the availability
of measurement data is often limited (van Riel, 2007), the parameter
estimation problem is often underdetermined and remains a major
bottleneck in the development of useful models. However, recent
research suggests that the knowledge of all parameter values may not
be necessary to obtain good predictions. First, the model structure
can tightly constrain the possible responses such that astonishingly
accurate predictions are possible even without estimating the
parameters (Brown et al., 2004). Second, ‘sloppiness’ seems to
be a universal property of systems biology models, meaning
that most parameter values are unimportant because the system
response is sensitively determined by the combination of only few
parameter values (Gutenkunst et al., 2007). These observations
lead to a question: ‘If I do not have enough measurement data
to identify my parameter values, can I still obtain a sound system
understanding and derive good predictions despite of my problem
being underdetermined?’

In this article, we present an approach that is capable to achieve
exactly this, given that certain conditions on the underdetermined
parameter estimation problem can be fulfilled. This so-called divide-
and-conquer approach exploits a division of the estimation problem
(not the model itself) into many independent subproblems of smaller
dimension. The decomposition yields the complete solution space of
the underdetermined estimation problem in a structured form, which
facilitates a subsequent, systematic analysis of that solution space.
The analysis can reveal the possible responses within the solution
space and identify which parameters most sensitively determine
these, and what effect a variation of these parameter values has
on the response.

This article is structured as follows. First, we derive the
necessary and sufficient conditions to trigger a decomposition
into subproblems. Next, we show how this decomposition can be
exploited through the divide-and-conquer approach, and discuss its
application to real-world problems in systems biology. Then, to
demonstrate the approach, we establish and analyze the complete
solution space of an underdetermined model that overarches the
metabolic and transcriptional regulation levels.

2 CONDITIONS FOR THE DECOMPOSITION
The divide-and-conquer approach exploits a decomposition of the
global parameter estimation problem into smaller subproblems.
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Fig. 1. Comparison of the divide-and-conquer approach with the
conventional parameter estimation strategy. (a) The conventional strategy.
The optimizer (dotted box) uses the output y of a model simulation to
optimize the parameters p with respect to the experimental data ymsd . (b)
The divide-and-conquer approach. Given certain conditions, the estimation
problem decomposes into multiple independent subproblems (dotted boxes),
for which the complete analytical solution spaces can be derived by solving
a system of algebraic equations.

This decomposition occurs only when certain conditions are
fulfilled. To derive these conditions, we successively specialize
the general formulation of the global estimation problem to a
formulation composed of independent subproblems. The conditions
imposed during this specialization are the necessary and sufficient
conditions to trigger the decomposition.

The general parameter estimation problem is stated as finding
the set of parameters p within upper and lower bounds, pU

and pL , that minimizes a scalar cost function J . The cost function
measures the goodness of the model prediction y(p,t) with respect
to an experimentally measured dataset ymsd (t), and may include
a diagonal scaling matrix W(t) with non-negative elements. The
model prediction y, which is calculated from the differential state
variables x with the predictor function k, is constrained by the system
dynamics f , which governs the time progression of x. The problem
can also include a set of parameters q that are not estimated. The
mathematical formulation of this problem is:

Find p to minimize the sum of squared errors

J =
∫ tf

t0

(ymsd (t)−y(p,t))T W(t)(ymsd (t)−y(p,t))dt (1)

subject to the constraints

dx
dt

−f
(
x,p,q,t

)=0 (2)

y−k
(
x,p,q,t

)=0 (3)

x(t0)=x0 (4)

pL ≤p≤pU . (5)

Mathematically, this is a nonlinear optimization problem with
differential–algebraic constraints, which is commonly solved using
a suitable optimizer (Fig. 1a).

Before we specialize Equations (1–5) to a formulation composed
of independent subproblems, we take all the summands appearing in
f and list them in a rate vector v. We define a stoichiometric matrix
S such that f =S·v, and rewrite Equation (2) to

dx
dt

−S·v(
x,p,q,t

)=0. (6)

As most biological measurements are taken at discrete time points,
we limit our investigation to cost functions of the form

J =
m∑

i=1

(ymsd (ti)−y(p,ti))
T W(ti)(ymsd (ti)−y(p,ti)) (7)

where ti is the i-th of m measurement time points.
Next, we specialize the general formulation given by

Equations (3–7) through imposing a condition on the measurement
dataset.
Condition 1. At all measurement time points ti, the measurement
dataset must consist of all differential state variables x and all rates
v, such that

yT
msd =

(
xT

msd vT
msd

)
, (8)

which implies

kT =
(

xT vT
)
. (9)

In a later section, we comment on how these conditions can
be fulfilled in real-world problems. We continue with including a
condition on the model structure.
Condition 2. The model structure must allow for an exact fit to all
measurement data points, such that

J =∑m
i=1

(
xmsd (ti)−x(p,ti)
vmsd (ti)−v(p,ti)

)T
W(ti)(

xmsd (ti)−x(p,ti)
vmsd (ti)−v(p,ti)

)
=0.

(10)

As the sum-of-squares J is strictly non-negative, a parameter set
leading to J =0 must be a global optimum. In practice, this condition
requires an underdetermined estimation problem.

With these conditions fulfilled, the global estimation problem
reduces to finding a solution p, pL ≤p≤pU , that satisfies

vj
(
xmsd (ti),p,q,ti

)−vmsd,j(ti)=0 (11)

for i=1...m and j=1...r, where r is the number of components
in v. Thus, Equation (11) comprises m ·r equations. As p is the
only unknown, this in practice underdetermined equation system
can be solved to derive the complete solution space of p. Because
these equations are coupled solely through p, this potentially very
large-dimensional solution space can be decomposed into many
smaller-dimensional subspaces by removing the coupling through
a further condition on the model structure.
Condition 3. The parameters to be estimated, p, consist of 1≤s≤r
disjunct sets

pT = (pT
1 pT

2 ... pT
s ) (12)

such that each set (pk,q) fully parameterizes a subset of the
rate equations. If disjunct subsets do not exist (s=1), then the
complete solution space can be derived through Equation (11) but not
decomposed into smaller-dimensional subspaces. If each pj appears
in only one rate equation (s=r), then the solution space can be
maximally decomposed into pairwise independent subspaces.

The parameter estimation problem is thus reduced to finding pk
such that

vj
(
xmsd (ti),pk,q,ti

)−vmsd,j(ti)=0 (13)

for i=1...m, j=1...r and k =1...s.
As Equation (13) comprises m ·r algebraic equations in s

decoupled sets, the global problem has been successfully
decomposed into independent subproblems of smaller dimension.
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Equation (13) states that a parameter set p is a global optimum if all
its subsets pk parameterize the rate equations vj in which they appear
such that the measured rates are reproduced exactly for the measured
states, as illustrated in Figure 1b. Note that a verbose description of
this section can be found in the Supplementary Material.

3 THE DIVIDE-AND-CONQUER APPROACH
The divide-and-conquer approach is the consistent exploitation of
the decomposition of the global estimation problem into independent
subproblems. This approach encompasses both the derivation of the
complete solution space of an underdetermined problem, and the
efficient analysis of that space.

The derivation of the complete solution space can be structured
into three steps. In the first step, complete sets of state and rate data
are obtained to fulfill Condition 1. In the second step, the degree
of decomposition is chosen according to Condition 3. In the third
step, the complete solution space of the underdetermined problem is
derived by fulfilling Condition 2. Here, it is important to understand
that the divide-and-conquer approach does not give the solution
to the estimation problem as upper and lower bounds on single
parameters values, but as an analytic description of the parameter
subspaces that together form the complete solution space.

Once the complete solution space is analytically known, it can be
quickly and systematically analyzed to obtain a sound understanding
of the possible system responses within this parameter space.
It is also important to note that the divide-and-conquer approach
first neglects the noisy nature of biochemical measurements, then
derives insights based on the assumed ‘perfect’ dataset, and finally
assesses the robustness of the derived insights with respect to data
noise.

The following three sections discuss the derivation of the
complete solution space in detail. After that, we illustrate the
systematic analysis of that solution space with an example model,
and show how the robustness of the obtained insights with respect
to data noise can be assessed.

3.1 Step 1: obtaining complete steady state datasets
Recent developments in high-throughput experimental methods
provide us with ever more comprehensive measurement datasets in
steady state conditions, e.g. of the cell’s proteome and metabolome
[as presented e.g. by Ishii et al. (2007)]. However, such datasets,
whether assembled from literature and/or own measurements, are
to date often incomplete. To fulfill Condition 1, which requires
complete datasets, we therefore propose to extend incomplete
measurement datasets to larger sets of observed data. Depending
on the problem, these datasets of observables can be complete and
therefore applicable for the subsequent parameter estimation [as
suggested by Gadkar et al. (2005)].

To obtain a complete set of observables, the unmeasured data can
be inferred from the measured data with the help of models, simple or
sophisticated, that are based on biological knowledge. For instance,
a computational model can be used to observe metabolic reaction
rates from measured 13C-labeling patterns of amino acids. Similarly,
an incomplete set of measured metabolite concentrations can be
extended to a complete set of observed metabolite concentrations by
using network-embedded thermodynamic (NET) analysis (Kümmel
et al., 2006), which is capable to infer unmeasured metabolite
concentrations within certain limits.

To observe missing rates, the consistency condition

dx

dt
=v+− v− =0, (14)

can be exploited, which states that in steady state, the sum of all
compound production rates v+ must equal the sum of all compound
consumption, dilution and degradation rates, v−. If one of the rates in
v− or v+ is unknown, then Equation (14) can be applied to determine
the missing rate from the known rates. This equation underlies flux
balance analysis, which is capable to observe metabolic reaction
rates from physiological data using a stoichiometric metabolic
network model. On a smaller scale, Equation (14) can be used to, for
instance, observe a steady state protein production rate from known
protein degradation and dilution rates.

If more than one of the rates in v− or v+ is unknown, then some
of the missing rates can be observed with simple linear models.
For instance, a compound dilution rate can be observed through
vdil,x =µ·x with x and the growth rate µ known, or a compound
degradation rate through vdegr,x =kdegr ·x with x and the degradation
rate constant kdegr known. Note that if these simple linear models
contain parameters of the dynamic computational model (e.g. µ and
kdegr), then these parameter values are already fixed and may
not appear in the estimation problem of the divide-and-conquer
approach (i.e. these parameters are included in q, not p).

In the unlikely case that all of the rates in Equation (14)
are measured, then these measurements will most likely not add
up to 0 due to measurement errors, implying that the model
cannot reproduce the steady state exactly (Condition 2 is violated).
Therefore, these measurement errors must be ‘corrected’, e.g. by
minimally adjusting the data to fulfill Equation (14). Note that at
a later stage, it can be assessed if such data ‘correction’ and the
neglected measurement noise sensitively affect the insights obtained
with the assumed ‘perfect’ dataset.

Lastly, datasets such as transcriptome data are often acquired
only as relative measures. Fortunately, relative data of a compound
concentration x is sufficient if in the model x appears always paired
with a multiplicative parameter p. Then, rate equations of x are of
the form r = f (p·x), and the parameter estimation of p can correct
for an arbitrarily chosen absolute concentration of x. Such situations
occur, for instance, with x as an enzyme or mRNA concentration, p
as the respective rate constants and r as metabolic reaction rate or
translation rate, respectively.

3.2 Step 2: choosing the degree of decomposition
To increase the degree of decomposition, and thereby the trans-
parency of the later solution space to the modeler, the parameters are
divided into three disjunct sets, pA, pB and q, such that pA contains
those parameters that appear in only one equation vj , pB contains
those that appear in more than one equation vj and q contains the
parameters that are not subject to the estimation. In biochemical
models, parameters typically have a specific mechanistic meaning
and as such tend to appear in only one equation vj . Therefore,
pB usually contains only few parameters but is not necessarily
empty.

The maximal degree of decomposition (s=r) is reached when
pB =∅. If pB �=∅, then the degree of decomposition can be increased
by excluding a parameter p∈pB from the estimation, which moves
this parameter from pB into q. For instance, if p is known to
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be poorly identifiable, which is probable as p appears in multiple
underdetermined equations, then assuming a literature value for p
may be the better alternative anyway. If this is not justified, then all
equations containing p form one subproblem.

3.3 Step 3: determining the complete solution space
To obtain the complete parameter space that reproduces the data
exactly, the complete datasets from step 1 are plugged into the
kinetic model equations. These equations thus become algebraic
functions of the parameters. Due to the decomposition of the
parameter space performed in step 2, this set of functions consists of
independent subsets. Each of these independent subsets comprises
a system of equations with αj unknowns (the number of parameters
to be estimated in the subset) and βj constraints (the number of
equations derived from plugging the data into the subset’s kinetic
model equations). The estimation problem is thus decomposed
into independent subproblems, which correspond to solving each
subset’s system of algebraic equations. These subproblems can be
either overdetermined, exactly determined, or underdetermined:

• If βj >αj , then the j-th subproblem is overdetermined, which
prohibits an exact fit to the data and therefore the application
of the divide-and-conquer approach. However, this case is
unlikely to occur, as complete steady state datasets are usually
obtained for only few conditions, whereas rate equations
typically contain multiple uncertain parameters. An exception
to this rule is first-order kinetics, which usually either
approximate higher-dimensional kinetics and can be substituted
by those, or do not contain any parameters to be estimated, such
as a linear dilution rate equation with known growth rate µ.

• If βj =αj , then the j-th subproblem is exactly determined.
If a solution exists, it is unique—the data constrains the
αj-dimensional parameter space to a single point.

• If βj <αj , then the j-th subproblem is underdetermined. If a
solution exists, the data reduce the αj-dimensional parameter
space to a solution space of dimension αj −βj .

If for any subproblem j, an exact fit to the data cannot be achieved
and the subproblem is not overdetermined, then a discrepancy
between the model structure and the available data has been
identified and localized. The discrepancy can be removed either by
changing the model structure, e.g. to a rate law that reproduces the
data, or, if there is reason to doubt the quality of the data, by resorting
to another set of measurements.

When all discrepancies between the model structure and the
data are removed, then Condition 2 is fulfilled. The solutions to
the subproblems are then joined to the global solution � of the
parent parameter estimation problem. If all subproblems are exactly
determined, the solution is a single point. In most cases, however, at
least one of the subproblems is underdetermined, and the solution is
therefore a multidimensional space. A significant advantage of the
divide-and-conquer approach is that it yields the complete solution
space of the parameters in the form of analytically known manifolds
on which all global solutions are located. Using an example, we
next illustrate how this analytically known solution space can
be efficiently and thoroughly analyzed to derive a sound system
understanding.
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Fig. 2. The example model. (a) The topology of the example model.
Metabolites and metabolic reactions are black; genes (ei), proteins (Cra,Ei)
and protein production and degradation rates are gray; regulatory interactions
are dotted. (b) Decomposition of the kinetic equations into six independent
subproblems. Subproblem 1 (according to Table 1); regular black lines; 2,
dotted black lines; 3, dashed black lines; 4, regular gray lines; 5, dotted gray
lines; and 6, dashed gray line.

4 EXAMPLE
We illustrate the application of the divide-and-conquer approach
by deriving and analyzing the complete solution space of the
small model system depicted in Figure 2a. This model describes
a core section of Escherichia coli’s central metabolism and covers
allosteric and transcriptional regulation. It simulates the reversal
of carbon flow through the Embden–Meyerhoff-Pathway, which is
required to switch between growth on glycolytic and gluconeogenic
substrates, e.g. glucose and acetate.

The model consists of five enzymes (Ei), one transcription factor
(Cra), four genes (ei) and two metabolites (phosphoenolpyruvate,
PEP, and fructose bisphosphate, FBP). It contains 16 rates: 4 enzyme
production rates, 6 compound dilution and degradation rates,
5 metabolic reaction rates and 1 transcription factor–metabolite
binding rate (of Cra to FBP). It further includes a simplified
representation of the phosphotransferase system (PTS), which
couples the uptake and phosphorylation of extracellular glucose
to the conversion of PEP to pyruvate. The model is centered on
the transcription factor Cra, whose activity controls the expression
of four of the modeled enzymes and is itself controlled by the
metabolite FBP. For the model equations, refer to the Supplementary
Material.

4.1 Derivation of the complete solution space
To estimate the parameters of the kinetic equations and to analyze
the complete solution space with the divide-and-conquer approach,
we apply the steps presented in the previous section.

Step 1 is fulfilled with the complete state and rate measurement
datasets listed in Supplementary Table S1, which were obtained
from literature for balanced growth on either the glucolytic substrate
glucose or the gluconeogenic substrate acetate.

In step 2, the degree of decomposition is chosen. Overall,
the system comprises 39 parameters. Of these, the growth rate
µ and the concentrations of the carbon sources Glucose and
Acetate are directly measured, literature values are assumed for
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Table 1. Decomposition of the global estimation problem into six
independent subproblems, and the division of the parameters into free and
dependent parameters

Sub- α β α−β Free Dependent
problem parameters parameters

1 10 8 2 KCra,FBP ve1,max ve3,max

nCra ve4,max ve5,max

Ke1,CraA Ke3,CraA

Ke4,CraA Ke5,CraA

2 4 1 3 LE1 KE1,PEP kcat,E1

KE1,Acetate

3 4 1 3 LE5 KE5,FBP kcat,E5

KE5,Glucose

4 4 2 2 LE3 KE3,FBP kcat,E3 KE3,PEP

5 4 2 2 LE4 KE4,PEP kcat,E4 KE4,FBP

6 4 2 2 KE2,PEP vE2,f

KE2,FBP vE2,r

α: Number of parameters; β: number of constraints; α−β: degrees of freedom.

ρ and kdegr, and nEi
(the number of subunits in the quaternary

structure of an enzyme) is set to four for all tetrameric enzymes.
Therefore, q=[µ,Glucose,Acetate,ρ,kdegr,nE1

,nE3
,nE4

,nE5
]. Of

the 30 parameters in p, only KCra,FBP and nCra, which describe
the binding of FBP to Cra, appear in more than one rate equation.
Therefore, all rate equations containing these two parameters
are merged to a composite subproblem. Table 1 and Figure 2b
summarize the resulting six independent subproblems into which
the global estimation problem decomposes.

In step 3, the parameters of the six subproblems are constrained
by a system of algebraic equations. Each of these equations reduces
a subproblem’s degree of freedom by one, and can be rearranged
such that one of the subproblem’s parameters becomes dependent on
the others. This process is described in detail in the Supplementary
Material, with Table 1 summarizing the resulting (arbitrary) division
into free and dependent parameters. The complete space of global
solutions � comprises all parameter vectors within admissible
bounds pL ≤p≤pU that solve the obtained system of algebraic
equations [Equations (S11–S17) in Supplementary Material], i.e.
are located on the solution manifolds. Because of the division into
free and dependent parameters, a global solution can be easily
generated by choosing a combination of free parameter values and
calculating the dependent parameters with Equations (S11–S17)
of Supplementary Material. Note that the identification of these
parameter dependencies is an active research area by itself (Hengl
et al., 2007; Liebermeister and Klipp, 2005).

4.2 Analysis of the model behavior
To analyze the model behavior, we exploit the decomposition of the
solution space into independent and analytically known manifolds.

First, we verify that the solution space was correctly determined
and that the two measured steady states exist and are stable. To do
so, we randomly generated 1000 global solutions within admissible
parameter bounds (0.1 ≤ nCra ≤ 4, 0.1 ≤ Ki ≤ 10, 1 ≤ Li ≤ 107) by
assigning random values to the free parameters and calculating the
dependent parameters with Equations (S11–S17) of Supplementary
Material. We then simulated the model with initial conditions equal

to the two measured conditions. As expected, we obtained perfectly
level lines for both conditions and all compound concentrations
(data not shown). Therefore, as all of the sampled parameter vectors
reproduce the steady state measurement data exactly, the solution
space has been correctly determined. Furthermore, because the
simulations remain in the steady states indefinitely, we can conclude
that both steady states exist and are stable (at least for these 1000
samples).

Next, we obtain a general overview of the possible system
responses to a sequence of perturbations. This is necessary because
although all global solutions reproduce the stationary measurement
data exactly, different parameter combinations may lead to very
distinct dynamic responses. As our example model describes the
reversal of carbon flow through a metabolic pathway, we are
interested in a complete picture of the possible dynamics during
such flux reversals. Therefore, we chose to perturb the system by
switching the carbon source from acetate to glucose at t =0 h, and
back to acetate at t =35 h.

Figure 3a shows the simulated responses of the FBP concentration
to these perturbations (with the previously sampled parameters).
While all simulations successfully adapt from glucose to acetate, the
dynamic behavior of the adaptation from acetate to glucose varies
widely and can be categorized into two response families: responses
of Family A converge to the measured steady state on glucose at
6.6 µmol/gDW, and responses of Family B converge to a second
steady state on glucose with a parameter-dependent concentration
below 4.5 µmol/gDW. Therefore, when adapting from the measured
steady state on acetate, the measured steady state on glucose—
although it has been verified to exist and be stable—is only attractive
for the parameter subset belonging to Family A. In this context, note
that the existence of the second steady state on glucose was identified
by a sampling strategy and could have remained unnoticed if merely
a point solution had been determined.

Next, we exploit the division into two response families to
identify those parameters that most sensitively shape the dynamic
response. If a parameter sensitively shapes the response, its value
should determine the response family. We therefore compared the
parameters’ distributions in the two response families using the
Student’s t-test. The parameters’P-values (Supplementary Table S2)
span many orders of magnitude, with KE2,FBP and vE2,f exhibiting
extremely low P-values. Therefore, the distribution of these two
parameters is significantly different between the two response
families. Using the derived solution manifolds, this result can be
graphically illustrated. In most cases, as in Figure 3b, the parameter
values of either response family are evenly distributed across the
manifold. However, in the case of KE2,FBP and vE2,f (Fig. 3c and
Supplementary Fig. S1), the parameter values of response Family B
are clustered in a particular region of the manifold. We therefore
suspect that these two parameters dominantly shape the response.

To test if KE2,FBP and vE2,f indeed sensitively determine the
system response, we first set the free parameter KE2,FBP to its
maximal admissible value and randomized all other free parameters
as before. By fixing only this free parameter, we were able to
constrain the possible responses tightly: all trajectories rapidly
converge to the measured steady state on glucose, i.e. belong
to Family A (Fig. 3d). We then arbitrarily selected one of these
trajectories and kept its parameters constant with the exception of
KE2,FBP, which we decreased stepwise across its entire admissible
range. By varying only this free parameter (and the two dependent
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Fig. 3. Analysis of the solution space. (a) Simulated responses of the FBP concentration to carbon source shifts from acetate to glucose (at 0 h) and back to
acetate (at 35 h). A random sampling of 1000 parameter vectors ∈� reveals that the possible system responses vary widely. The responses can be classified
into two response families: 63% of the simulations converge (on different trajectories) to the measured steady state on glucose at 6.6 µmol/gDW (black
lines, Family A). The remaining 37% converge (on different trajectories) to a second steady state at a parameter-dependent concentration <4.5 µmol/gDW
(gray lines, Family B). (b) This manifold from subproblem 1 shows a dependent parameter as a function of the two free parameters. Black dots denote
the sampled parameters that lead to responses in Family A, whereas gray dots denote those that belong to Family B. The locations of both the black
and gray dots are evenly distributed across the entire manifold. (c) On this manifold from subproblem 6, the gray dots cluster in a region with low
values of both KE2,FBP and vE2,f . (d) The system response is sensitively determined by the value of a single free parameter, KE2,FBP. A randomization of
all free parameters except KE2,FBP =10 only marginally affects the trajectories (1000 purple lines), whereas a stepwise reduction of only this parameter
(KE2,FBP =10;4;3;2;1.5;1.4;1.3;1.2;1.1;1.0;0.9;0.8;0.7;0.5;0.3;0.1) with all other free parameters constant sensitively shapes the response. (e) The value
of the free parameter KE2,FBP remains the decisive factor in determining the shape of the trajectories even in the presence of 10% measurement noise
(KE2,FBP = 10; 3; 1; 0.1 for the purple, black, green and blue curve sets, respectively).

parameters vE2,f and vE2,r with it), i.e. by moving the parameter
vector in the direction of the negative KE2,FBP-axis of the solution
manifold shown in Fig. 3c, we were able to move the trajectory
across the entire range of the possible responses (Fig. 3d). Thus, in
addition to having identified the two most important parameters, we
also understand how their variation affects the system response.

Next, we assessed if these two important parameters retain their
dominant role in determining the response in the presence of
10% measurement noise. We generated four sets of trajectories
with KE2,FBP (and thereby vE2,f ) at different levels and all other
free parameters and the measurement data randomized. Figure 3e
shows that despite of these sources of variation, KE2,FBP still
largely determines the response: only for the green curve set
with KE2,FBP = 1, which is in the transition region between the
response families A and B (Fig. 3d), do these sources of variation
have a considerable impact on the trajectories. Therefore, the
obtained understanding of how the system response is dominantly

shaped by KE2,FBP (and vE2,f ) is reasonably robust with respect
to measurement noise. Note that instead of assuming a flat noise
magnitude of e.g. 10%, more detailed information about the
uncertainties of individual data points can be used, if available.

To conclude, by exploiting the solution manifolds derived with the
divide-and-conquer approach, we were capable to obtain a profound
system understanding even though the parameter values were not
identifiable due to limited and noisy measurement data. In general,
the discovery of the most important parameter values suggests
targeted experiments to measure these values and may already
provide a valuable insight by itself. Before drawing biological
conclusions from this particular example system, however, its
predictive power should be tested, or alternatively, it should be
ensured that the observed effect extends to other model variants
and is thus not specific to the chosen model structure, which is
merely one among many possible mathematical representations of
the available biochemical knowledge. During this process, which
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is demonstrated e.g. by Kuepfer et al. (2007) and Kremling et al.
(2008), the divide-and-conquer approach can be repeatedly applied.

5 DISCUSSION
In this article, we presented the divide-and-conquer approach
for the analysis of underdetermined biochemical models. This
approach exploits a ‘trivial point’ at which the complete solution
space of the global parameter estimation problem can be derived
analytically. Using an example system, we have demonstrated
how the complete solution space can be derived and subsequently
analyzed. This strategy resulted in a sound system understanding
and the identification of targeted experiments.

The main difficulty in applying this approach is to move a real-
world estimation problem onto that ‘trivial point’, i.e. to fulfill
Conditions 1 and 2. This can be achieved by various means. First, an
incomplete measurement dataset can be extended to a complete set
of observables by incorporating additional biological knowledge.
Second, the measurement noise can be initially neglected and the
robustness of the derived insights with respect to measurement
noise assessed at a later stage. Third, additional, possibly time-
course measurement data that does not belong to a complete
steady state dataset can also be included in the divide-and-
conquer approach. This can be achieved by providing a global
optimizer with the derived equality and inequality constraints on
the parameters [Equations (S11–S17) of Supplementary Material].
Then, the optimizer can determine that parameter combination
on the solution manifolds which best reproduces the additional
measurements in addition to exactly reproducing the complete
steady state datasets.

To enable analytical solution spaces of large-dimensional
parameter estimation problems, the divide-and-conquer approach
decomposes the whole solution space via Condition 3 into
independent subspaces, for which analytical solutions are feasible.
This decomposition occurs automatically when few parameters,
whose number in our experience increases only slightly with model
size, are fixed at literature values and thereby excluded from
the anyway underdetermined parameter estimation problem. The
proposed analytical approach is thus well scalable to the often large
sizes of realistic models.

Although this approach is not confined to any specific type of
model, it is best suited for application areas where models are
typically underdetermined, yet omics datasets are available. Due
to the many parameters of enzyme kinetics and the availability of
metabolomics and fluxomics data, this approach is especially suited
for models of metabolism.

The key advantage of the divide-and-conquer approach is that
the global solution space of the parameters can be structured
in manageable subspaces, which are known completely and
analytically. This greatly facilitates the analysis of the possible
system responses within the solution space. Of particular interest is
the identification of those few (Gutenkunst et al., 2007) parameter
combinations that most sensitively shape the system response—
in fact, this task is one of the major problems raised in systems
biology (Kitano, 2002b). Therefore, by focusing directly on the
system responses and not on the parameter values, the divide-and-
conquer approach is a practical strategy to extract valuable insights
from underdetermined biochemical models.
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