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ABSTRACT

We report the results of experiments on two natural marine sediments with different carbonate

contents (calcareous clay: CO2¼ 6�1 wt %; marl: CO2¼ 16�2 wt %) at subduction-zone conditions
(3 GPa, 750–1200�C). Water (7–15 wt %) was added to the starting materials to simulate the effects

of external water addition from within the subducting slab. The onset of melting is at 760�C in

water-rich experiments; melt becomes abundant by 800�C. In contrast, the onset of melting in pub-

lished, water-poor experiments occurs at variable temperatures with the production of significant

melt fractions being restricted to more than 900�C (phengite-out). The different solidus tempera-

tures (Tsolidus) can be ascribed to variable fluid XH2O [H2O/(CO2þH2O)], which, in turn, depends on

bulk K2O, H2O and CO2. Partial melts in equilibrium with residual garnet, carbonate, quartz/coesite,
epidote, rutile, kyanite, phengite, and clinopyroxene are granitic in composition, with substantial

dissolved volatiles. Supersolidus runs always contain both silicate melt and solute-rich fluid, indi-

cating that experimental conditions lie below the second critical endpoint in the granite–H2O–CO2

system. Carbonatite melt coexists with silicate melt and solute-rich fluid above 1100�C in the marl.

The persistence of carbonate to high temperature, in equilibrium with CO2-rich hydrous melts, pro-

vides a mechanism to both supply CO2 to arc magmas and recycle carbon into the deep Earth. The
trace element compositions of the experimental glasses constrain the potential contribution of cal-

careous sediment to arc magmas. The presence of residual epidote and carbonate confers different

trace element characteristics when compared with the trace element signal of Ca-poor marine sedi-

ments (e.g. pelagic clays). Notably, epidote retains Th and light rare earth elements, such that

some melts derived from calcareous sediments have elevated Ba/Th and U/Th, and low La/SmPUM,

thereby resembling fluids conventionally ascribed to altered oceanic crust. Our results emphasize

the importance of residual mineralogy, rather than source lithology, in controlling the trace
element characteristics of slab-derived fluids.
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INTRODUCTION

The carbon cycle has important consequences for a
wide variety of geological processes, including planet-

ary accretion, climate change, diamond formation,

carbonatite volcanism and mantle metasomatism (e.g.

Javoy et al., 1982; Marty & Jambon, 1987; Caldeira,
1992; Franck et al., 1999; Sleep & Zahnle, 2001; Hayes &

Waldbauer, 2006; Dasgupta & Hisrchmann, 2010;
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Rohrbach & Schmidt, 2011; Walter et al., 2011; Hazen

et al., 2012; Dasgupta, 2013). Subduction zones provide

the major geotectonic settings in which crustal carbon

can penetrate deep into the Earth’s interior, or return to

the surface via arc volcanism. Carbon itself can occur in
several species and in various lithologies in the sub-

ducted crust; for example, organic matter and methane

in sediments (e.g. Suess & Whiticar, 1989; Nishio et al.,

1998), hydrothermal calcite in the upper oceanic crust

(e.g. Alt et al., 1986; Staudigel et al., 1989; Alt & Teagle,

1999), or biogenic carbonate-bearing sediments (e.g.

Rea & Ruff, 1996; Plank & Langmuir, 1998). At present,
subduction of substantial amounts of sedimentary car-

bonate is limited to relatively few convergent margins

(Vanuatu, Sunda, Central America, Lesser Antilles) and

therefore altered oceanic crust is considered the main

carrier for carbon in most subduction zones (e.g.

Dasgupta & Hisrchmann, 2010). Where carbonate sedi-
ments are known to subduct, they impart a distinct car-

bon isotopic signal (e.g. Sano & Marty, 1995; Sano &

Williams, 1996; Van Soest et al., 1998; Shaw et al., 2003;

de Leeuw et al., 2007).

Carbon-rich sediments undergo devolatilization and

melting during subduction, providing a mechanism for
returning some of their carbon inventory back to the

exosphere. A key question is what proportion of the car-

bon is released by such processes and returned to the

surface and what proportion is carried in the slab to

mantle depths. This question is ultimately linked to the

stability and solubility of the different carbon species

along subduction-zone geotherms. Because carbonates
are stable to high temperature and are relatively insol-

uble in aqueous fluids, carbon that is subducted in the

form of carbonate is likely to be largely retained in the

slab beyond sub-arc depths (e.g. Yaxley & Green, 1994;

Kerrick & Connolly, 1998; Molina & Poli, 2000; Kerrick &

Connolly, 2001a, 2001b; Poli et al., 2009). Likewise an
assemblage of pure carbonate minerals would be un-

likely to melt at sub-arc conditions, owing to their rela-

tively high solidus temperatures at these pressures

(1100–1300�C, Irving & Wyllie, 1975). Based on thermo-

dynamic models, Kerrick & Connolly (2001b) proposed

that the bulk of the subducted carbon inventory is trans-

ferred as solid carbonate to greater mantle depths and
plays a relatively minor role in arc magmatism. These

calculations were performed for a closed system; that

is, in the absence of externally derived H2O-rich fluids

and associated melting. Kerrick & Connolly acknowl-

edged that the infiltration of H2O-rich fluids would pro-

mote sub-arc decarbonation of marine sediments.
However, in subsequent open-system models of slab

decarbonation it was found that substantial amounts of

carbonate persisted beyond sub-arc depths despite in-

filtration (Connolly, 2005).

Other experimental studies on calcite solubility sug-

gest that carbon could potentially be mobilized in more

complex fluids that contain other elements, such as dis-
solved NaCl (e.g. Manning et al., 2013). Another route

for transporting CO2 back to the Earth’s surface is via

silicate partial melts from the subducted slab. These

could potentially dissolve much greater quantities of

CO2 (or other carbon species) compared with subsoli-

dus fluids. However, experimental phase equilibria

studies on hydrous calcareous sediment (e.g. Thomsen
& Schmidt, 2008a, 2008b; Tsuno & Dasgupta, 2012;

Tsuno et al., 2012) suggest that these lithologies are es-

sentially refractory under ‘normal’ subduction-zone

conditions, specifically slab-top temperatures of

800 6 50�C at 2�5–4�5 GPa (e.g. Van Keken et al., 2002;

Syracuse et al., 2010; Cooper et al., 2012). Thus, CO2 in

sediments is again surprisingly resistant to remobiliza-
tion during subduction at sub-arc and shallower depth.

The apparent resistance of carbonates to participation

in subduction-zone melt generation disagrees with the

observation that many arc magmas contain appreciable

CO2, possibly in quantities even higher than those re-

corded by melt inclusions in volcanic phenocrysts
(Blundy et al., 2010). The challenge is then to explain the

substantial CO2 flux from volcanic arcs (e.g. Burton et al.,

2013) in the light of the apparent refractory behaviour of

subducted carbonates. Following Kerrick & Connolly

(2001b) and Gorman et al. (2006) we venture that exter-

nally derived H2O plays a key role. Most previous experi-
ments on calcareous sediments were performed either

dry (Tsuno & Dasgupta, 2011) or by adding negligible

water in excess of that stored in hydrous minerals

(Thomsen & Schmidt, 2008a, 2008b; Tsuno & Dasgupta,

2012; Tsuno et al., 2012; Mann & Schmidt (in press)).

Here we test the hypothesis that the addition of appre-

ciable excess water (‘flush melting’; e.g. Poli & Schmidt,
2002) from underlying lithologies enhances melting of

subducted carbonate-bearing rocks, as suggested previ-

ously for carbon-free sediments (e.g. Hermann &

Spandler, 2008; Skora & Blundy, 2010). A good candidate

for providing such external water at sub-arc depths is

serpentine (Ulmer & Trommsdorff, 1995), although other
hydrous minerals may also contribute (e.g. lawsonite,

zoisite, etc.; e.g. Schmidt & Poli, 1998; Van Keken et al.,

2011; Spandler & Pirard, 2013).

METHODS

Starting materials
Samples were taken from the Lesser Antilles arc in the

West Indies because it is a subduction zone in which

the subducting sediments are a mixture of continental

detritus and marls with varying proportions of clay and

carbonate (e.g. Carpentier et al., 2008). We selected two

different sediments from Deep Sea Drilling Project

(DSDP) Leg 14 (Hayes et al. 1972), such that one (144A-
3-1W 79-80: referred to as 144-16 or ‘HC’ hereafter)

would be representative of the average of subducting

marls in terms of carbonate/clay (CaO/SiO2) ratio

(Fig. 1), whereas the other (144-8-3W 130-135: called

144-38 or ‘LC’ hereafter) would be chemically close to

some previously studied calcareous sediments. Sample
144-16 (HC) is from Unit 2, and consists of finely and

densely mottled marls with around 30–65% carbonate
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component (foraminifera, coccoliths, triturated frag-

ments). This unit is rich in zeolites (5–15%), and con-

tains trace radiolarians and some pyrite. Sample 144-38

(LC) is from Unit 5, the bottom part of core 8, described

as quartzose calcareous mudstone to calcareous clay,
comprising clay minerals and organic matter, signifi-

cant quantities of quartz and pyrite, �10% carbonate

(shell fragments, foraminifera) and trace mica.

Although it was not our intention to conduct experi-

ments on a global aggregate bulk composition (see

Hermann & Spandler, 2008) it is worth noting that for
major elements, except Na2O and FeOtot, LC lies within

2r of GLOSS (Plank & Langmuir, 1998) (Table 1).

The rock powders used for this study are splits from

the same samples as studied by Carpentier et al. (2008,

2009), who reported major (Table 1), and trace element

and isotopic compositions. In Table 2 the sediment

compositions are compared, on an anhydrous basis,

with the experimentally studied compositions of

Thomsen & Schmidt (2008a, 2008b), Tsuno & Dasgupta
(2011, 2012), Tsuno et al. (2012) and Mann & Schmidt

(in press). Additional experimental work on calcareous

sediments, but at higher pressures (�5 GPa: Domanik &

Holloway, 2000; Grassi & Schmidt, 2011a, 2011b; Tsuno

et al., 2012) will not be discussed here. To further verify

the chemistries of our starting materials we fused a

diluted version of both samples, consisting of 80 wt %
albite and 20 wt % calcareous sediment. Measured and

recalculated concentrations agree to within 62% for

major and 64% for minor elements compared with the

values of Carpentier et al. (2008).

Because Carpentier et al. (2008) reported only loss

on ignition values for the sediments, we measured the
bulk C contents and ferric/ferrous ratios of the sedi-

ments. The HC and LC lithologies have a total carbon

content of 16�2 and 6�1 wt % respectively. Assuming

that only H2O and CO2 are lost on ignition, initial H2O

contents are 6�5 and 7�8 wt % respectively. Sample HC

is unusually rich in ferric iron, with Fe3þ/Fetot¼ 0�97.
Sample LC has Fe3þ/Fetot of 0�46, which is comparable

with altered oceanic crust (e.g. Dungan et al., 1979). The

significance of the Fe3þ-rich bulk-rock compositions for

the experimental run products, as well as for extrapola-

tion of the results to nature, is discussed below. We

also tried to estimate the bulk sulphur contents by

quantifying SO3
2– in the diluted glasses by electron

microprobe analysis (EMPA). Unfortunately, concentra-

tions were below detection by EMPA, despite prolonged

counting times. A conservative estimate of the detec-

tion limit for sulphur is 300 ppm for our analytical condi-

tions, which suggests that the sulphur content of both

compositions did not exceed 1500 ppm if dilution is
taken into account, although it cannot be excluded that

some sulphur was lost during fusion. In any case,

Connolly & Cesare (1993) and Prouteau & Scaillet

(2013) suggested that sulphur would significantly alter

the phase relations only if it occurs in wt % quantities.

Lastly, we acknowledge that we have chosen to work

with real sediments, despite the knowledge that any
subducted lithology may be chemically modified during

prograde metamorphism and devolatilization.

Unfortunately, the magnitude of any such chemical

modification is poorly constrained, and can vary on a

local scale. Nevertheless, all subducted crustal litholo-

gies have in common that most of their structurally
bound water is lost during prograde metamorphism

(e.g. Schmidt & Poli, 1998; Van Keken et al., 2011).

Water may be reintroduced at sub-arc depths; for ex-

ample, by dehydration of underlying serpentinites

(Ulmer & Trommsdorff, 1995)—a scenario that is simu-

lated here. The loss of CO2 during initial subduction to

about 80 km should be insignificant for all but the hot-
test subduction-zone geotherms (Kerrick & Connolly,

2001a; Gorman et al., 2006). Elements that are most

SiO2 (wt%)
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Fig. 1. Variation of CaO vs SiO2 (wt %) for subducting sedi-
ments in the Lesser Antilles (circles) that are a mixture of con-
tinental detritus and marls with varying proportions of clay to
carbonate. Experimental starting materials (diamonds) were
selected such that one (HC) is representative of the average of
subducting marls, whereas the other (LC) is chemically close to
some previously studied compositions (see text). Sediment
data are from Carpentier et al. (2008); GLOSS (star) is from
Plank & Langmuir (1998). The box labelled ‘21 samples’ indi-
cates the number of natural samples that plot into that narrow
compositional range.

Table 1: Starting compositions

Sample: 144-16 144-38 GLOSS GLOSS 1r

wt %
SiO2 38�8 53�8 58�6 2�5
TiO2 0�38 0�81 0�62 0�04
Al2O3 9�64 13�8 11�9 0�9
Fe2O3 3�28 3�26 — —
FeO 0�10 3�76 5�21 0�42
MnO 0�07 0�10 0�32 0�13
MgO 1�33 2�26 2�48 0�16
CaO 20�8 5�62 5�95 1�75
Na2O 2�04 1�31 2�43 0�2
K2O 1�66 2�21 2�04 0�16
P2O5 0�09 0�14 0�19 0�05
H2O 6�5 7�8 7�29 0�41
CO2 16�2 6�1 3�01 1�44
Sum 100�8 100�9 100�0 3�6

XRF data for 144-16 and 144-38 are from Carpentier et al.
(2008). Fe2þ/Fe3þ, CO2 and H2O estimates are from this study.
GLOSS is from Plank & Langmuir (1998).
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susceptible to loss via fore-arc devolatilization, such as

N, B, Cs, As and Sb (e.g. Bebout et al., 1999), are not the

focus of this study. The behaviour of other trace elem-

ents [e.g. large ion lithophile elements, high field

strength elements, rare earth elements (REE)] is com-

plex, and it has been suggested that they may be lost
(e.g. John et al., 2004), redistributed (e.g. Spandler

et al., 2003), or enriched in newly crystallized accessory

phases (e.g. Sorensen et al., 1997) during metamorph-

ism and accompanying fluid–rock interactions. In the

absence of a consensus, our experiments provide first-

order estimates of the relative mobilities of trace elem-
ents. Most importantly, the natural starting materials

were used without any additional trace element inven-

tory. We have previously shown (Skora & Blundy, 2010,

2012) that doping starting materials with trace elements

can lead to results that are difficult to extrapolate to

nature.

Experimental and analytical methods
Bulk carbon analyses of the starting materials were ob-

tained using a LECO CHN-900 at the Mikrolabor,
Department for Organic Chemistry at ETH Zürich.

Duplicate analyses of c. 2 mg of both bulk compositions

indicate a precision better than 0�5 wt %. Ferric/ferrous

ratios were determined at the FRX laboratory at the

University of Lausanne. The chemical dissolution pro-

cedure largely follows the method detailed by Wilson

(1960), and the FeO (wt %) content is determined colori-
metrically. The concentration of ferric iron is calculated

from the measured FeO and the bulk-rock (X-ray fluor-

escence; XRF) total Fe data given by Carpentier et al.

(2008).

Powdered, hydrous starting material was loaded

together with c. 7–15 wt % distilled water into Au
(750–900�C) and Au80Pd20 (1000–1200�C) capsules,

which were then welded shut (final H2O content

�15–22 wt %, Table 3). Experimental procedures are

similar to those reported by Skora & Blundy (2010).

Experiments were carried out in a 1=2 inch, end-loaded

piston-cylinder at the University of Bristol at 3 GPa pres-

sure and temperatures from 800 to 1200�C.

Experiments were quenched by turning off the power;
cooling to below 100�C occurred in <10 s. The pressure

cell consisted of inner spacers of crushable alumina, a

graphite furnace, and an outer sleeve of salt and Pyrex,

requiring a friction correction of 3% (McDade et al.,

2002). Each experimental run contained one LC and one

HC charge, run on top of each other. Some repeat ex-
periments were run with a single charge. To keep tem-

perature gradients to a minimum we compressed each

of the capsules such that their combined lengths were

between 5 and 8 mm. We also produced glasses of the

bulk starting material from mixtures of 80% albite and

20% calcareous sediment melted at 1350�C and 1�5 GPa

for 2 h in Au80Pd20. The high dilution rates were neces-
sary so that the high volatile contents of the sediments

could be fully homogenized and quenched to vesicle-

free glass.

The LC 800�C experiment was repeated at ETH

Zürich after two Bristol runs seemed to have experi-

enced significant chemical zoning as a result of the
large water contents used. Details of these runs are

given in Supplementary Data file SD 1 (supplementary

data are available for downloading at http://www.

petrology.oxfordjournals.org). At ETH, the rocking

multi-anvil was used in piston cylinder mode. This ap-

paratus is designed to reduce chemical segregation in
fluid-rich high-pressure experiments (Schmidt & Ulmer,

2004). The piston cylinder was rocking continuously

during heating and pressurizing, and the rocking rate

was then changed to a 15 min cycle for the remaining

run time. Pressure cells consisted of MgO fillers, a

graphite furnace, and an outer sleeve of talc and Pyrex,

requiring a friction correction of 10% (McDade et al.,

Table 2: Starting compositions of this and other studies (volatile-free; normalized to 100%)

Study: TS TS T&S08a T&S08b T&D11 T&D12 Tetal12 M&Sp M&Sp
Sample: 144-16 144-38 AM Bulk MC HPLC1 HPLC2 HPLC3/4 MP3 MP3a

Majors (wt %)
SiO2 49�6 61�5 50�4 54�5 63�8 63�8 57�5 66�3 64�0
TiO2 0�48 0�93 — — 0�65 0�66 0�7 0�67 0�72
Al2O3 12�3 15�8 24�2 23�1 13�3 13�2 16�1 15 16�6
FeOtot 4�35 8�51 9�75 — 6�48 6�48 7�8 6�86 6�86
MnO 0�09 0�11 — — 0�18 0�18 0�2 — —
MgO 1�70 2�58 2�12 7�8 2�61 2�62 3�1 2�31 2�37
CaO 26�6 6�43 7�20 12�5 8�52 8�52 10�2 5�60 5�76
Na2O 2�61 1�50 2�54 — 2�38 2�37 2�3 1�25 1�49
K2O 2�12 2�53 3�81 2�06 2�10 2�10 2�1 2�02 2�26
P2O5 0�11 0�16 — — — — — — —
Sum 100 100 100 100 100 100 100 100 100
Mg# 0�41 0�35 0�28 — 0�42 0�42 0�42 0�38 0�38
CaO/SiO2 0�54 0�10 0�14 0�23 0�13 0�13 0�18 0�08 0�09
bulk CO2 16�2 6�1 4�8 2�1 5�0 5�0 5 4�0 4�0
bulk H2O 20–23 7�8–24 1�1 3�6 — 1�0 0�5/1�0 1�1 0�65
K2O/H2O 0�1 0�1–0�3 3�5 0�6 — 2�1 4�2/2�1 1�8 3�5
H2O/CO2 1�2–1�4 1�3–3�9 0�2 1�7 — 0�2 0�1/0�2 0�3 0�2

T&S08a,b, Thomsen & Schmidt (2008a, 2008b); T&D11, Tsuno & Dasgupta (2011); T&D12, Tsuno & Dasgupta (2012); Tetal12,
Tsuno et al. (2012); M&Sp = Mann & Schmidt (in press).
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2002). Two capsules with reduced water contents of

7�8 wt % (structurally bound water only) and 15 wt %

were run on top of each other for the 800�C experiment.

We also performed two single-charge experiments at
750�C (7�8 and 15 wt % H2O). Temperature gradients

were calculated for the ETH experiments using the ap-

proach detailed by Hernlund et al. (2006), as they are

critical to constraining the solidus temperature (Table

3). Results suggest that the two capsules run on top of

each other at 800�C experienced the largest tempera-
ture variation (800–822�C) because of their 9 mm total

length. The single-capsule, 750�C experiments with 7�8
and 15 wt % H2O, respectively, experienced lesser tem-

perature variation (749–758�C and 749–761�C,

respectively).

No attempt was made to control or monitor fO2 dur-

ing the experiments. Thus oxygen fugacity could be
controlled either by the initial bulk Fe2þ/Fe3þ (e.g. Kägi

et al., 2005), or by the intrinsic fO2 of the furnace assem-

bly (e.g. Truckenbrodt et al., 1997). Starting compos-

itions have moderate (LC) to high (HC) ferric/ferrous

ratios, as discussed above. Unpublished estimates of

the intrinsic fO2 of the Bristol piston cylinder apparatus,
using alumina–salt–Pyrex assemblies, lie 2 6 1 log units

above the nickel–nickel oxide (NNO) buffer. In either

case, the experimental run products should record rela-

tively oxidized conditions, which is consistent with ex-

perimental charges that contain rare quench anhydrite,

hematite-rich ilmenite, and epidote. The intrinsic fO2 of

the ETH piston cylinder apparatus, using magnesia–
talc–Pyrex assemblies, is unknown but the presence of

Fe-sulphide instead of quench anhydrite suggests

somewhat more reduced conditions below NNOþ 1

(e.g. Prouteau & Scaillet, 2013). In any case, the system-

atic variations imply that the furnace assembly does

exert a certain control on the fO2, although it is not clear

whether complete equilibration is always achieved. We
can further estimate a minimum Fe2þ content for all ex-

periments in which the majority of the bulk iron is con-

tained in silicates with known (calculated) Fe2þ/Fe3þ

contents, such as garnet, clinopyroxene, carbonate and

phengite (T¼ 750–900�C). At T>900�C more than 30%

of the bulk iron is contained in the melt phase, which
can have variable Fe2þ/Fe3þ (e.g. Stamper et al., 2014).

The calculations suggest that significant reduction has

occurred in LC experiments conducted at ETH (subsoli-

dus: 97%; suprasolidus: �92–95% Fe2þmin) as well as in

Bristol (�87–90% Fe2þmin). We show below that these

slight remaining differences in Fe2þ/Fe3þ result in insig-

nificant differences in the LC phase assemblages (pres-
ence or absence of some hematite-rich ilmenite, more

or less Fe2O3 in rutile). Calculated Fe2þmin values are

less precise owing to mass-balance problems for the

HC experiments, although they appear to be signifi-

cantly lower (�35–70% Fe2þmin). We argue below that

our HC phase relations are probably relevant only to
high fO2 conditions in natural environments.

Polished run products were investigated petrograph-

ically and geochemically using SEM (Universities of

Lausanne and Bristol), EMPA (University of Lausanne

and ETH Zürich), and the NERC ion-microprobe

(University of Edinburgh). Detailed analytical protocols

have been given by Skora & Blundy (2010). Silicate
glasses were analyzed for their trace element content

using a Cameca ims4f ion-microprobe using the analyt-

ical protocol of Skora & Blundy (2010, 2012); that is,

Table 3: Run conditions and phase proportions (P¼3 GPa)

Run Time T H2O Major phases (%) Fish Accessories, others

(�C) (wt %) cpx grt SiO2 phen ky carb ep glass* eggs

Carbonate-rich lithology
144-16-c1† 6 days 800 23 20 — 22 18 — 25 8 7 no rt
144-16-c3† 4 days 850 23 17 — 16 15 — 24 10 18 no rt
144-16-c6 3 days 900 25 ‡ — trace — — 25 17 58 no rt
144-16-c7 1�5 days 1000 23 — 6 — — — 19 — 75 yes
144-16-c14 1�5 days 1000 20 — 10 — — — 22 — 68 yes
144-16-c18 19 h 1100 23 — — — — — 6 — 94 yes carbonatite
144-16-c16 6 h 1200 23 — — — — — 0 — 100 yes carbonatite
Carbonate-poor lithology
144-38-c35$ 8 days 750 7�8 15 23 31 27 trace 4 trace — yes rt, apa, Fe-s
144-38-c34†$ 10 days 750 16 — 31 29 23 1 3 trace 13 yes rt, apa, Fe-s
144-38-c28$ 6 days 800 7�8 — 28 15 6 3 4 trace 43 no rt, apa, Fe-s
144-38-c29$ 6 days 800 15 — 30 7 — 2 3 trace 57 no rt, apa, Fe-s
144-38-c4 4 days 850 21 — 31 trace trace 1 2 trace 66 yes ilm, rt
144-38-c15 4 days 850 23 — 32 trace trace 1 2 trace 65 yes ilm, rt
144-38-c11 3 days 900 22 — 34 trace — 1 trace — 65 yes ilm, rt
144-38-c13 1�5 days 1000 22 — 23 — — — — — 77 yes rt
144-38-c19 19 h 1100 24 — — — — — — — 100 yes

Mass balances (MB) were performed using anhydrous compositions. cpx, clinoyproxene; grt, garnet; SiO2, quartz/coesite; phen,
phengite; ky, kyanite; carb, carbonate; ep, epidote; rt, rutile; ilm, hematite-rich ilmenite; apa, apatite; Fe-s, Fe-sulphide.

*Individual proportions of carbonatite and silicate glass could not be estimated by mass balance because silicate glass pools
where never sufficiently large to be free of contamination by tiny carbonatite spherules.

†MB adjusted based on visual estimates.
‡MB suggests that some cpx should still be present in this run, providing a host for missing Na2O, FeO, MgO, etc.
$Experiments repeated at ETH Zürich using the rocking piston cylinder; less water was used in these.
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negative 16O– ions, 14�5 kV primary beam, 4�5 kV sec-

ondary beam, 3–5 nA sample current, �15–20mm spot

size and 75 6 20 eV energy filter. For reasons given by

Skora & Blundy (2012), we constructed working curves

for all trace elements, based on a range of MPI-DING
(ATHO, STH5, T1, Jochum et al. 2000) and USGS glass

standards (GSD, BCR), and ratioed against 30Si

(Supplementary Data file SD 2). It should be noted that

all experimental glasses were microvesicular in nature

owing to loss of volatiles upon quench. If the vesicles

contained only exsolved volatiles and/or quench car-

bonate, their presence will lead to a reduction in the
trace element and Si signal alike, and should thus not

affect trace element quantification. Subsurface inclu-

sions and contamination were monitored in a count-

rate versus time plot and excluded from the averaging

procedure. Molecular interferences were corrected for

using conventional peak stripping, which meant that
certain REE could not be constrained (e.g. low Eu con-

centrations are compromised by BaO interference). We

additionally analysed experimental carbonates, using

the same instrument conditions with a calcite standard

from the Oka carbonatite complex (Quebec) for calibra-

tion, and 42Ca as internal standard. Secondary stand-
ards were not available, but no major matrix effects are

expected between a carbonatitic matrix and a carbonate

mineral (see Blundy & Dalton, 2000). We observe a

slight negative Gd anomaly in our dataset, which we

suspect is due to problems in overcorrecting

interferences.

Raman spectra were collected to distinguish be-
tween the expected polymorphs of CaCO3 and SiO2 in

run products. We used a ThermoScientific DXR Raman

Microscope at University of Bristol with a 532 nm laser

at 5 cm–1 resolution over the spectral range 50–

3500 cm–1. The power was adjusted between 2 and 10

mW depending on sample fluorescence. Ten scans of
10 s each were collected and averaged, sometimes fol-

lowing 1 min of photobleaching.

RESULTS

General observations
Phase proportions in all experiments were obtained by
unweighted least-squares regression, using anhydrous

compositions and a reduced dataset. Phases that occur

in trace amounts were excluded (Table 3, Fig. 2).

Because of the presence of a hydrous silicic melt and a

second, CO2–H2O-bearing fluid phase of unknown pro-

portion and composition, mass balances could not be

corrected for exsolved volatiles, as done by Klimm et al.
(2008). (For the same reasons, mass balances cannot be

made using hydrous compositions, because the amount

of H2O dissolved in the melt at run conditions cannot be

constrained in the presence of a second fluid phase of

unknown quantity and composition.) Mass-balance re-

sults are nevertheless in reasonable agreement with vis-
ual estimates obtained by SEM, especially for higher

temperature runs containing few phases, or in the

subsolidus runs. Problems in the mass-balance calcula-

tions for certain runs with large numbers of phases are

probably due to degeneracy that results when one or

more components can be expressed as linear functions

of others (e.g. at a reaction). Mass balances for the prob-

lematic runs are replaced by visual estimates.
Representative SEM images of run products are

given in Figs 3 (HC) and 4 (LC). Major element compos-

itions of minerals are given in Supplementary Data file

SD 3, and glasses in Tables 4 and 5. Figures 5 and 6

illustrate the systematic changes in the major element
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Fig. 2. Phase proportions in the experiments as a function of
temperature and H2O content. Data and mineral abbreviations
are as in Table 3, in which trace and accessory phases are also
indicated.
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compositions of garnet, carbonate and glass as a func-

tion of temperature. We duplicated certain experiments
to verify some of the results. All repeated supersolidus

experiments agree well with each other, in terms of

mass balance as well as mineral and glass chemistries

(Figs 5 and 6; Tables 4 and 5). In addition, phase

relations and chemistries generally agree with previous
experiments on hydrated, calcareous sediments

(Thomsen & Schmidt, 2008a; Tsuno & Dasgupta, 2012;

Tsuno et al., 2012, Mann & Schmidt (in press), as
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Fig. 3. Selected back-scattered electron (BSE) images of experimental run products at different temperatures in the HC experimen-
tal sequence (800–1200�C). Run numbers and mineral abbreviations are as in Table 3. Partial melts are always microvesicular, con-
taining a Ca-rich quench phase. Clear evidence for an additional fluid phase, in the form of quenched solute spherules (‘fish eggs’),
is present in almost all experiments. Carbonates appear as prismatic crystals when surrounded by other silicates or carbonates;
rounded crystals are more common when enclosed by melt only (see 1000�C experiment).
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discussed below). The experiments performed at Bristol

and at ETH are in good agreement in terms of phase

petrology and the chemical compositions of glasses

and silicates (Figs 5 and 6). Chemical homogeneity, re-

producibility, and comparability within experimental

limits with other studies suggest that the experiments

reached near-equilibrium conditions, with the excep-

tions of the static LC 800�C run products

(Supplementary Data file SD 1).

All supersolidus experiments exhibit well-

crystallized and relatively coarse-grained (c. 5–60 mm

diameter) silicate and/or carbonate minerals, coexisting
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Fig. 4. Selected BSE images of experimental run products at different temperatures in the LC experimental sequence. Run numbers
and mineral abbreviations are as in Table 3. As in Fig. 3, partial melts are always microvesicular and there is abundant evidence for
an additional vapour phase. A carbonate-rich quench phase is always present in silicate glasses.
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with abundant microvesicular glass (¼quenched melt).

Most runs show clear evidence for a coexisting fluid

phase that often contains ‘fish egg’ textured spherules

<2–5mm in diameter (Figs 3 and 4) that are thought to rep-

resent the quenched silicate fraction of a solute-rich fluid

phase (see Adam et al., 1997). Residual silicate phases
disappear progressively up to temperatures of 1000�C

(Fig. 2). An immiscible carbonatite liquid appears at tem-

peratures of 1000–1100�C in HC, and crystalline carbonate

persists to between 1100 and 1200�C. Carbonate in LC

disappears from the solid assemblage at 900�C.

Subsolidus and near-solidus experiments tend to con-
tain crystal-rich ‘islands’, separated by large vesicles that

are now filled by epoxy. Within these vesicles ‘fish egg’

textured spherules, as well as other silicates and carbon-

ates, are often preserved, suggesting that they represent

space that was formerly occupied by a fluid. Another

characteristic of the subsolidus experiments is the gener-

ally smaller grain sizes of all phases apart from SiO2, as
well as less well-developed crystal faces.

Mineral chemistry
Ferric iron contents were computed by the method of

Droop (1987) for garnet and clinopyroxene. For other

minerals, such as epidote, stoichiometric considerations

were used for estimation of Fe3þ. Garnets occur in LC ex-

periments from subsolidus (750�C) to liquidus (�1100�C)

conditions. They appear as (sub-)idiomorphic, coarse-

grained (10–40mm diameter) crystals, which may contain

inclusions. LC garnets are rich in almandine (47–56%),
grossular (19–30%) and pyrope (14–29%), but poor in

spessartine (�1%) and andradite (0–3%) (Fig. 5). With

increasing temperature pyrope contents increase, mostly

at the expense of almandine, such that Mg# [defined as

molar Mg/(Mgþ Fe2þ)] increases from 0�19 to 0�37. This

pattern is consistent with experimental, eclogitic garnets
in both calcareous (e.g. Thomsen & Schmidt, 2008a;

Tsuno & Dasgupta, 2012) and carbon-free sediments

(e.g. Hermann & Spandler, 2008; Skora & Blundy, 2010),

as well as exhumed high-pressure metamorphic terrains

that contain pyrope-rich garnets (e.g. Chopin, 1984; Terry

et al., 2000; Wei et al., 2009). In HC experiments garnets

appear only at 1000�C. They are significantly richer in
grossular (43–47%) and andradite (3–5%) than in LC

charges owing to the high bulk CaO and Fe2O3 of the HC

compositions, and poorer in almandine (31–35%) and

pyrope (16–17%) (Fig. 5). Despite the differences, these

garnets have Mg# of 0�33 at 1000�C, comparable with

those in LC experiments (Fig. 5).

Table 4: Major and minor element composition of experimental glasses in 144-16 (HC)

Exp.: 144-16- c1 c1 c3 c3 c6 c6 c7 c7 c1 c3 c6 c7
Type: meas SD meas SD meas SD meas SD anhydr anhydr anhydr anhydr
T (�C): 800 800 850 850 900 900 1000 1000 800 850 900 1000
n: 10 10 9 9 14 14 20 20 10 9 14 20

SiO2 64 2 65 1 64 2 51 2 76 77 76 63
TiO2 0�12 0�02 0�17 0�02 0�25 0�02 0�49 0�03 0�14 0�20 0�30 0�61
Al2O3 13�2 0�6 12�3 0�2 11�5 0�4 13�0 0�4 15�6 14�5 13�7 16�2
FeO 0�8 0�3 0�9 0�2 1�3 0�2 2�2 0�3 1�0 1�0 1�6 2�7
MnO 0�01 0�01 0�01 0�02 0�02 0�03 0�05 0�04 0�01 0�01 0�02 0�06
MgO 0�13 0�09 0�12 0�04 0�19 0�05 0�8 0�2 0�15 0�14 0�23 1�0
CaO 1�7 0�6 1�6 0�6 2�2 0�5 9 2 2�1 1�8 2�6 11
Na2O 2�3 0�5 1�6 0�3 1�2 0�2 1�6 0�2 2�8 1�9 1�4 1�9
K2O 1�9 0�2 3�2 0�2 3�1 0�3 2�1 0�1 2�3 3�7 3�7 2�6
P2O5 0�08 0�02 0�13 0�03 0�14 0�06 0�13 0�04 0�09 0�15 0�17 0�16
Sum 85 2 85 1 84 2 80 2 100 100 100 100
Al/(KþNaþ2Ca) 1�5 0�2 1�4 0�2 1�2 0�1 0�61 0�07 1�5 1�4 1�2 0�61
(NaþK)/Al 0�45 0�06 0�49 0�05 0�46 0�05 0�37 0�03 0�45 0�49 0�46 0�37
Mg# 0�2 0�2 0�19 0�07 0�21 0�07 0�4 0�1 0�2 0�19 0�21 0�4

Exp.: 144-16- c14 c14 c18 c18 c16 c16 c16* c16* c14 c18 c16
Type: meas SD meas SD meas SD meas SD anhydr anhydr anhydr
T (�C): 1000 1000 1100 1100 1200 1200 1200 1200 1000 1100 1200
n: 22 22 46 46 33 33 5 5 22 46 33

SiO2 57 1 40 2 38 2 6 2 69 54 50
TiO2 0�50 0�03 0�43 0�05 0�37 0�05 0�3 0�2 0�61 0�57 0�49
Al2O3 13�0 0�4 10�3 0�6 9�6 0�4 1�5 0�5 15�7 13�7 12�6
FeO 1�94 0�09 3�1 0�5 2�8 0�7 3�4 0�5 2�34 4�1 3�7
MnO 0�04 0�03 0�06 0�04 0�07 0�04 0�10 0�05 0�05 0�09 0�09
MgO 0�64 0�04 1�4 0�2 1�3 0�3 1�8 0�3 0�78 1�8 1�7
CaO 6 1 17 1 21 1 45 1 8 22 27
Na2O 1�13 0�08 0�8 0�1 1�1 0�2 0�20 0�03 1�36 1�1 1�4
K2O 2�13 0�09 1�7 0�2 1�8 0�2 0�5 0�2 2�58 2�2 2�4
P2O5 0�14 0�04 0�13 0�04 0�12 0�03 0�15 0�03 0�17 0�17 0�15
Sum 83 1 75 2 76 1 59 2 100 100 100
Al/(KþNaþ2Ca) 0�84 0�07 0�31 0�02 0�23 0�01 0�02 0�01 0�84 0�31 0�23
(NaþK)/Al 0�32 0�02 0�31 0�03 0�39 0�05 0�6 0�3 0�32 0�31 0�39
Mg# 0�37 0�03 0�44 0�09 0�4 0�1 0�5 0�1 0�37 0�44 0�4

*carbonatitic liquid.
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Omphacitic clinopyroxenes occur in 800–850�C HC

runs. They tend to form small (�5–10mm diameter),

tabular to prismatic crystals with a significant jadeite

component (�60–70%), and a smaller quadrilateral

(QUAD) Ca–Mg–Fe component (�30–40%). The LC

clinopyroxene at 750�C has a different composition,

being richer in QUAD (56%) and poorer in jadeite (34%).
Carbonates in the HC experiments were calcium car-

bonate solid solutions (ss) with 0�6–3�2 wt % MgO and

0�5–3�9 wt % FeO. Molar Ca fractions [XCa¼Ca/

(CaþMgþFe)] vary systematically with temperature

from 0�91–0�88 at 800–900�C to 0�93–0�98 at 1000–

1100�C. Texturally, carbonates appear as prismatic or
rounded crystals 10–40mm in size (40–80mm at 1000�C).

Rounded crystals are more common when enclosed by

melt, whereas prisms are more common when sur-

rounded by other silicates or carbonates. It was initially

expected that aragonite would be stable at our chosen

P–T conditions, based on data for both the pure CaCO3

system and the addition of minor MgCO3 (Hacker et al.,
2005). However, Raman spectra of our run products over

the whole carbonate stability range indicate that only cal-

cite is present. It appears that the high Mg and Fe content

lowered the 3 GPa calcite–aragonite transition tempera-

ture. Carbonates in the LC experiments also form sub-

idiomorphic to prismatic crystals, but they tend to be

finer grained than their HC counterparts and are much

richer in MgO (9�8–15�8 wt %) and FeO (4�9–13�5 wt %),

exhibiting Fe-rich, near-dolomitic compositions. Despite

major differences in XCa (0�55–0�60), Mg# values are simi-

lar in both experimental sequences (0�57–0�85) and are

comparable with those of Thomsen & Schmidt (2008a).
Epidote–clinozoisitess (‘epidote’ hereafter) occurs in

750–850�C LC experiments, as well as in 800–900�C HC

experiments. In both bulk compositions epidotes ex-

hibit almost equal proportions of the end-members epi-

dote [Ca2Al2(Fe3þ;Al)(Si3O12)(OH)] and clinozoisite

[Ca2Al2(Al)(Si3O12)(OH)]: for HC, Xep� 0�4–0�5, and for
LC, Xep� 0�4–0�7. Epidotes were not reported by

Thomsen & Schmidt (2008a), Tsuno & Dasgupta (2012),

Tsuno et al. (2012) or Mann & Schmidt (in press), but

zoisite is present in the KCMASH experiments of

Thomsen & Schmidt (2008b). The presence or absence

of either of these phases is a complex function of P, T

and bulk-rock chemistry (e.g. Fe3þ, Fetot, Ca and fO2;
e.g. Holdaway, 1972; Liou, 1973; Liou et al., 1983).

An SiO2 phase is present in appreciable quantities

at low temperatures in both lithologies. For two of

the 800�C runs (144-16-c1 and 144-38-c12) the

Raman spectra show this phase to be quartz, but for

Table 5: Major and minor element composition of experimental glasses in 144-38 (LC)

Exp.: 144-38- c34 c34 c28 c28 c29 c29 c4 c4 c34 c28 c29 c4
Type: meas SD meas SD meas SD meas SD anhydr anhydr anhydr anhydr
T (�C): 750 750 800 800 800 800 850 850 750 800 800 850
n: 10 10 23 23 22 22 39 39 10 23 22 39

SiO2 58 2 67 1 67 1 60 4 75 74 74 75
TiO2 0�14 0�04 0�19 0�02 0�19 0�03 0�18 0�02 0�18 0�21 0�21 0�23
Al2O3 10�5 0�4 13�2 0�3 12�8 0�1 10�5 0�7 13�6 14�7 14�2 13�2
FeO 0�4 0�3 0�9 0�2 0�8 0�1 1�2 0�2 0�6 1�0 0�9 1�5
MnO 0�01 0�02 0�02 0�03 0�02 0�02 0�02 0�02 0�02 0�02 0�02 0�03
MgO 0�20 0�04 0�33 0�07 0�49 0�05 0�53 0�06 0�25 0�36 0�54 0�67
CaO 1�5 0�3 1�8 0�3 2�6 0�4 2�0 0�3 1�9 2�1 2�8 2�5
Na2O 3�2 0�7 2�8 0�3 2�0 0�2 1�4 0�3 4�1 3�1 2�2 1�7
K2O 3�3 0�2 4�1 0�2 4�2 0�1 3�5 0�2 4�2 4�6 4�6 4�4
P2O5 0�15 0�04 0�11 0�03 0�13 0�03 0�20 0�07 0�19 0�12 0�14 0�25
Sum 78 3 90 1 91 1 79 4 100 100 100 100
Al/(KþNaþ2Ca) 0�9 0�1 1�07 0�06 1�02 0�05 1�1 0�1 0�9 1�07 1�02 1�1
(NaþK)/Al 0�8 0�1 0�68 0�04 0�62 0�02 0�58 0�06 0�8 0�68 0�62 0�58
Mg# 0�4 0�3 0�4 0�1 0�52 0�09 0�45 0�08 0�4 0�4 0�52 0�45

Exp.: 144-38- c15 c15 c11 c11 c13 c13 c19 c19 c15 c11 c13 c19
Type: meas SD meas SD meas SD meas SD anhydr anhydr anhydr anhydr
T (�C): 850 850 900 900 1000 1000 1100 1100 850 900 1000 1100
n: 15 15 20 20 24 24 29 29 15 20 24 29

SiO2 63 3 63�4 0�5 56�3 0�8 50 1 76 73�7 67�9 62
TiO2 0�19 0�02 0�29 0�02 0�71 0�03 0�71 0�03 0�23 0�33 0�85 0�87
Al2O3 11�1 0�5 11�5 0�1 12�8 0�2 12�8 0�3 13�4 13�4 15�5 15�6
FeO 1�2 0�1 1�7 0�1 2�5 0�2 3�7 0�3 1�4 2�0 3�1 4�6
MnO 0�02 0�02 0�04 0�03 0�04 0�03 0�09 0�04 0�02 0�05 0�05 0�10
MgO 0�42 0�02 0�66 0�05 1�09 0�07 2�0 0�2 0�51 0�76 1�32 2�4
CaO 1�9 0�2 3�0 0�3 5�8 0�5 8�8 0�9 2�3 3�5 6�9 10�7
Na2O 1�5 0�2 1�3 0�1 1�13 0�08 1�1 0�1 1�8 1�5 1�36 1�3
K2O 3�6 0�2 3�9 0�1 2�38 0�08 2�2 0�1 4�3 4�6 2�86 2�6
P2O5 0�21 0�02 0�17 0�03 0�17 0�04 0�13 0�03 0�26 0�19 0�20 0�16
Sum 83 4 86�0 0�5 83�0 0�9 82 1 100 100 100 100
Al/(KþNaþ2Ca) 1�13 0�08 0�96 0�04 0�86 0�04 0�63 0�04 1�13 0�96 0�86 0�63
(NaþK)/Al 0�58 0�05 0�56 0�02 0�34 0�01 0�32 0�02 0�58 0�56 0�34 0�32
Mg# 0�39 0�04 0�41 0�05 0�43 0�04 0�48 0�06 0�39 0�41 0�43 0�48
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the other static 800�C run (144-38-c20) and all runs
at 850�C, it is coesite. Coesite is the expected phase at

a nominal pressure of 3 GPa for both temperatures,

suggesting that the two 800�C runs with quartz were per-

haps conducted at only 2�95 GPa (Bose & Ganguly,

1995), which is within the expected pressure uncertainty

of the Bristol piston cylinder (McDade et al., 2002).
Rectangular phengite (�5–10mm diameter; Si atoms

per formula unit¼ 3�3–3�5) is the main host for K2O at

temperatures up to 850�C. Other minor phases include

Fe-bearing (Fe2O3� 0�5–1 wt %) kyanite (LC only) at

800–900�C, rutile at T� 1000�C (in both lithologies),

and hematite–ilmenite (800–900�C, LC only).

Hematite–ilmenite is absent in the repeated LC experi-
ments that appear to have experienced slightly lower

fO2 conditions (see below).

Melting temperatures, reactions and textures of
quenched glasses
The solidus temperature was bracketed for LC only. At

750�C and 7�8 wt % H2O, glass pools that could repre-
sent a melt phase are absent. Texturally, this run is

characterized by large voids, with some ‘fish eggs’, sug-

gesting the presence of a solute-rich fluid. Crystal-rich

parts of the run product contain abundant phengite, car-

bonate, SiO2, and clinopyroxene as well as other trace

and accessory phases (Table 3). The coexistence of

abundant phengite with substantial excess water (�7%)
is additional evidence that this run did indeed experi-

ence subsolidus conditions [see, e.g. figure 18 of Skora

& Blundy (2010)], even in the hot centre, which was at

around 760�C. The fact that melt is clearly present at

800�C suggests that 760�C<Tsolidus<800�C. The 750�C
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run that contained 15 wt % H2O exhibits a comparable

phase assemblage, albeit with more voids and ‘fish

eggs’, and no clinopyroxene. Interestingly, this run ex-
hibits some vesicular melt pools (Fig. 4) alongside

abundant ‘fish eggs’. The melt pools can be found only

in the central part of the run product, which represents

the hottest part of the capsule with a modelled peak

temperature of around 760�C. This observation further
refines the solidus temperature given that this is the

only point where phengite, fluid and melt can coexist.
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The elevated garnet fraction, as well as the absence of

clinopyroxene, is taken as additional evidence that melt-

ing had commenced in this run, given that clinoyprox-

ene is typically consumed and garnet produced during

melting (e.g. Thomsen & Schmidt, 2008a; discussed fur-
ther below). The apparent difference in melting tem-

perature between these two runs is unlikely to be

related only to temperature as the modelled peak

temperatures are almost identical (758 and 761�C). The

reason for this difference is discussed below.

At 800�C melt (glass) is produced at the expense of

phengite, SiO2 and clinopyroxene and minor carbonate
(LC only). The melting reaction appears to produce gar-

net (LC only), which at T> 900�C dissolves congruently

into the melt until the liquidus is crossed at 1000–

1100�C. Epidote is produced alongside melt in HC in

place of garnet. At higher temperatures (900–1000�C)

garnet appears in HC runs and melt fraction increases
at the expense of epidote and carbonate. Garnet ap-

pears at similar temperatures in the KCMASH experi-

ments of Thomsen & Schmidt (2008b). Garnet and

carbonate then dissolve congruently into the melt at

temperatures over 1000�C until the liquidus is crossed

between 1000 and 1100�C. A carbonatitic melt appears
at 1100�C in HC runs, consistent with carbonatite-in as

determined by Thomsen & Schmidt (2008a). This is sug-

gested by the coexistence of carbonate, fluid, carbona-

tite melt and silicate melt at 1100�C and fluid,

carbonatite melt and silicate melt at 1200�C (Fig. 3).

All supersolidus experiments contain quenched sili-

cate glasses that exhibit (1) microvesicles, (2) large ves-
icles or voids that may or may not contain additional

‘fish eggs’, and (3) microvesicles that are filled with a

Ca-rich phase (Figs 3 and 4). Similar textures were

described by Thomsen & Schmidt (2008a; see their

figure 2I). Microvesicles (1) are common in quenched

glasses in water-rich experiments and are ascribed to
the fact that the maximum amount of water that can be

quenched into glasses produced in piston cylinder ap-

paratus (�8–10 wt %, Kadik & Lebedev, 1968; McMillan

& Holloway, 1987; Paillat et al., 1992) is much less than

the equilibrium amount dissolved at high P–T run

conditions (20–35 wt %, Kessel et al., 2005).

The walls of the set of larger vesicles (2) are often
decorated with ‘fish eggs’, suggesting that these repre-

sent a fluid phase formerly rich in dissolved silicates

(‘siliceous fluid’), which coexisted with melt at run con-

ditions. Hence, the melt is demonstrably subcritical at

3 GPa and 800–1200�C (see, e.g. Manning, 2004), in

broad agreement with experimental studies on other
hydrated, calcareous sediments (Thomsen & Schmidt,

2008a, 2008b; Tsuno & Dasgupta, 2012; Mann &

Schmidt (in press)), which all show evidence of a se-

cond fluid phase coexisting with silicate glass.

However, this contrasts with observations on melting of

carbon-free sediments that apparently lack evidence for

a coexisting fluid phase at similar conditions (Hermann
& Spandler, 2008), suggesting that these partial melts

represented supercritical fluids (e.g. Hermann et al.,

2006). Given that both CO2-free and CO2-bearing pelites

produce broadly similar (granitic) melts at near-solidus

temperatures, it would appear that the presence of CO2

affects the stability field of fluidþmelt and, in conse-

quence, the location of the second critical endpoint in
the system granite–H2O–CO2.

Microvesicles filled with a Ca-rich phase (3) are diffi-

cult to interpret. They are too small to be measured by

EMPA, but visual inspection of SEM spectra suggests

that these have a large carbonate component. The fact

that they fill microvesicles suggests that this is a quench

product. Hence, we interpret the Ca-rich phase to repre-
sent some of the carbonate component once dissolved

in the silicate melt. True carbonatite immiscible liquids

are present in HC at temperatures over 1100�C. They

form subspherical features in the silicate glasses

(Fig. 3), exhibiting internal dendritic or amoeboidal

quench textures [see also Thomsen & Schmidt (2008a)
and review by Brooker & Kjarsgaard (2011)].

Glass compositions
Experimental silicate glasses are relatively homoge-

neous in major elements (1r of around 6 3–10% rela-

tive, minor elements up to 6 20% relative; Table 4 (HC);
Table 5 (LC)] apart from CaO (around 6 20%), which is

attributed to an irregular distribution of voids that are

filled with the quench carbon phase (Figs 3 and 4). The

only exception is the 750�C experiments where vari-

ations are larger. This is probably related to the fact that

full equilibration is hampered when melt pools are not
interconnected through a coexisting fluid phase, but ra-

ther occur as ‘islands’. Near-solidus silicate melts are

rich in SiO2, Al2O3, CaO, K2O and Na2O, and can be clas-

sified as peraluminous to metaluminous granitic melts.

The ASI index [molar Al/(NaþKþ2Ca)] is 0�9–1�1 at

750–900�C in LC experiments and 1�2–1�5 in HC experi-

ments. Glass compositions from experiments at 1000�C
are metaluminous, subalkaline granodioritic in compos-

ition [LC ASI�0�9 and molar (NaþK)/Al� 0�3; HC

ASI� 0�6–0�8 and (NaþK)/Al� 0�3–0�4]. ASI values in-

crease from 750 to 800�C then decrease systematically

with increasing temperatures (Fig. 6). Eventually, the

increasing CaO content, concomitant with the decrease
of CaCO3 as a residual phase, forces the melt into a sili-

cate–carbonate two-liquid immiscible field (see Brooker

& Kjarsgaard, 2011). These compositions and chemical

trends are consistent with other published studies on

partial melting in calcareous systems and show some

similarity to carbon-free sediments at similar P–T condi-

tions (e.g. Nichols et al., 1994; Johnson & Plank, 1999;
Schmidt et al., 2004; Hermann & Spandler, 2008;

Thomsen & Schmidt, 2008a; Skora & Blundy, 2010;

Tsuno & Dasgupta, 2012).

Single melt components show good correlation with

phase stabilities as a function of increasing temperature

(Fig. 6). The peak in SiO2 around 850�C and its subse-
quent decline reflects exhaustion of SiO2 during melt-

ing. CaO, FeO and MgO increase steadily, reflecting
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progressive dissolution of carbonate, epidote and gar-

net. The Mg# of melts coexisting with garnet (LC: 750–

1000�C; HC: 1000�C) is around 0�37–0�52, whereas the

Mg# of garnets is lower (0�23–0�37). Garnet–melt Fe–Mg

partition coefficients are consistent with the study of
Ellis (1986) in that Mg#melt>Mg#grt at 750–900�C and

Mg#melt�Mg#grt at 1000�C at 3 GPa. Melts in equilib-

rium with epidote 6 clinopyroxene (HC: 800–900�C)

have Mg# of around 0�2. Potassium contents are high in

the presence of phengite; upon its exhaustion at around

850�C K2O decreases through dilution. Sodium system-

atically decreases as a result of dilution, consistent with
the absence of clinopyroxene in the presence of melt.

All these geochemical characteristics are consistent

with those reported in previous studies, summarized in

figure 5 of Tsuno & Dasgupta (2012). The only real dif-

ference in our study is that certain changes in melt

chemistry (e.g. increase in CaO, MgO and FeO; de-
crease in SiO2), occur at lower temperatures reflecting

earlier exhaustion of certain minerals as a response to

increased melting owing to elevated initial H2O.

Carbonatitic liquids exhibit typical immiscible tex-

tures (e.g. Kjarsgaard, 1998; Martin et al., 2013).

Measurements with a defocused beam suggest that
these liquids have significant SiO2 (6�3 6 1�7 wt %), FeO

(3�4 6 0�6 wt %), MgO (1�8 6 0�3 wt %) and Al2O3

(1�5 6 0�5 wt %), with alkalis only in minor quantities

(Na2O: 0�20 6 0�03 wt %; K2O: 0�49 6 0�25 wt %). We

would view the alkali contents of the carbonatitic liquid

as uncertain, because the sample preparation tech-

nique, involving water, was not optimized to prevent
alkali loss (e.g. Martin et al., 2013).

Trace element concentrations
Trace elements concentrations in the experimental

glasses are given in Table 6 and are plotted in Fig. 7a and

b. Trace elements can be roughly classified as
incompatible, partitioning-controlled, or solubility-

controlled. Incompatible elements follow a simple dilu-

tion trend as melt fraction increases with temperature. A

partitioning-controlled element is redistributed between

solid and melt as a function of the weighted sum of min-

eral–melt partition coefficients (D values). In practice,
bulk D values for single trace elements are often domi-

nated by the D values of just one or two minerals [e.g.

Yþheavy REE (HREE) in garnet; NbþTa in rutile; Hf in

zircon; Ba in phengite; Sr in carbonate]. For a given trace

element the concentration in the melt is a function of the

initial concentration, the melt fraction and the proportion

of the key residual mineral(s). Solubility-controlled elem-
ents are those that constitute an essential (or dominant)

structural component in a particular, usually accessory

phase. A straightforward example is TiO2, whose con-

centration in the melt is entirely controlled by rutile solu-

bility. Zirconium is controlled by zircon solubility, at least

in SiO2-saturated systems. Light REE (LREE) can be re-
garded as controlled by monazite/allanite solubility, al-

though their solubility behaviour can become more

complicated (e.g. Skora & Blundy, 2012). The main differ-

ence from partitioning-controlled elements is that the ab-

solute concentration of a solubility-controlled element is

limited only by its solubility in the host mineral at the P–T

of interest, regardless of the initial concentration. An im-

portant feature of both partitioning-controlled and solu-
bility-controlled elements is that their concentrations in

melts reach a maximum at the point when the relevant

host phase is exhausted from the residue (e.g. Klemme

et al., 2002).

Caesium behaves almost perfectly incompatibly in

the experimental partial melts, reflecting the lack of a

Table 6: Trace element composition of silicate glasses

144-38- c15 c15 c11 c11 c13 c13 c19 c19
Type: bulk* meas SD meas SD meas SD meas SD
T (�C): 850 850 900 900 1000 1000 1100 1100
n: 5 5 5 5 5 5 4 4

Rb 93�3 219 7 217 9 135 4 108 8
Sr 349 425 41 536 34 556 5 464 10
Y 25�4 9 2 12 2 15�2 0�7 20�7 0�2
Zr 167 115 9 221 11 308 2 233 2
Nb 12�8 12 1 13�9 0�8 18�4 0�8 15�5 0�5
Cs 4�64 11�7 0�7 7�8 0�6 5�5 0�2 4�4 0�2
Ba 228 337 21 446 27 610 8 390 14
La 29�4 1�3 0�3 40 1 40�6 0�7 27�0 0�4
Ce 61�9 2�1 0�3 83 4 76 2 54�1 0�9
Pr 7�12 0�2 0�1 8�3 0�4 7�5 0�2 5�6 0�2
Nd 26�9 1�3 0�5 31 1 32 2 24�4 0�4
Sm 5�5 0�8 0�4 4�4 0�7 5�3 0�4 4�4 0�3
Gd 4�83 1�4 0�9 2�8 0�6 4 1 3�8 0�6
Dy 4�57 1�4 0�4 2�3 0�5 2�9 0�2 4�0 0�5
Ho 0�912 0�3 0�1 0�4 0�1 0�57 0�04 0�74 0�03
Lu 0�37 0�14 0�03 0�19 0�05 0�17 0�02 0�31 0�02
Hf 4�21 4�0 0�5 6�8 0�5 8�2 0�5 5�6 0�7
Ta 0�886 0�9 0�1 0�9 0�1 1�35 0�08 0�90 0�09
Th 8�19 0�8 0�2 19 2 13�7 0�6 7�5 0�3
U 1�61 2�0 0�3 3�6 0�3 2�9 0�2 1�3 0�1

RLREE 131 5�7 0�8 166 5 161 3 115 1
Ba/Th 28 416 85 24 3 44 2 52 3
(La/Sm)PUM 3�6 1�2 0�6 6 1 5�1 0�4 4�1 0�3
(U/Th)bulk 1 13 3 1�0 0�1 1�1 0�1 0�9 0�1

144-16- c6 c6 c14 c14 c18 c18
Type: bulk* meas SD meas SD meas SD
T (�C): 900 900 1000 1000 1100 1100
n: 5 5 5 5 4 4

Rb 56�2 146 4 96 6 90 3
Sr 986 524 26 746 22 826 22
Y 16�8 2�2 0�2 5�4 0�6 10�4 0�5
Zr 68�6 213 10 125 6 79 2
Nb 8�27 5�7 0�3 15�2 0�8 9�7 0�4
Cs 3�52 6�6 0�3 4�2 0�5 4�0 0�7
Ba 943 2054 87 1337 29 999 23
La 20�6 1�9 0�2 13�0 0�6 18�4 0�6
Ce 38�3 1�2 0�5 21 2 31 1
Pr 4�83 0�10 0�05 2�0 0�3 3�5 0�2
Nd 17�8 0�6 0�5 8�1 0�7 14�0 0�8
Sm 3�34 0�2 0�1 1�2 0�2 2�5 0�4
Gd 2�76 1�9 0�3 1�3 0�3 2�3 0�6
Dy 2�5 0�6 0�2 0�9 0�3 1�8 0�5
Ho 0�52 0�26 0�02 0�29 0�04 0�39 0�05
Lu 0�22 0�06 0�01 0�09 0�06 0�15 0�03
Hf 1�68 6�0 0�6 3�8 0�3 2�1 0�1
Ta 0�55 0�8 0�1 1�2 0�2 0�72 0�07
Th 7�11 0�38 0�06 13 2 6�0 0�9
U 0�97 0�92 0�09 2�2 0�4 0�7 0�2

RLREE 84�9 4�0 0�7 45 2 69 1
Ba/Th 133 5420 940 100 15 166 26
(La/Sm)PUM 4�1 6 4 7 1 4�9 0�8
(U/Th)bulk 1 18 3 1�2 0�3 0�9 0�2

*From Carpentier et al. (2008).
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Fig. 7. (a) Trace element contents of quenched experimental glasses as a function of temperature. Selected trace elements are rep-
resentative of classes of behaviour; for example, Cs representing incompatible elements; Ba being controlled by the presence
or absence of phengite; Sr by carbonate; Y by garnet and carbonate; Nb by rutile, Zr probably by zircon (LC only); LREEþTh by
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suitable residual host phase. Barium and Rb are also in-

compatible in the HC experiments at T� 900�C owing to

the absence of phengite. Strontium, partly hosted by

carbonate (Supplementary Data file SD 4), and poten-

tially by epidote at lower temperatures, steadily in-

creases with temperature in both lithologies. In LC Sr
then follows a dilution path at T> 900�C when carbon-

ate and epidote become exhausted. This is a very simi-

lar pattern to Ba and Rb (LC) and Nb and Ta (both

lithologies), where concentrations slightly increase until

their respective hosts phengite (LC) and rutile (both lith-

ologies) are exhausted at around 850–900 and 1000�C,

respectively. Zirconium is expected to be controlled by
zircon solubility in partial melts of subducted sediments

(e.g. Rubatto & Hermann, 2007). Although no zircon

was found in our run products the pattern of an in-

crease followed by a decrease at T>1000�C in LC is

consistent with the presence of trace amounts of zircon

that are melting out. The Zr pattern of HC is reminiscent
of dilution only, which would suggest that zircon is

absent above the solidus with essentially all of the Zr

contained in the melt. As expected, Hf mimics the

behaviour of Zr.

Thorium increases sharply above 850�C (LC) and

900�C (HC), before following a dilution path.

Concentrations jump from<1 ppm to around 15 ppm,
coinciding with the exhaustion of epidote in both lithol-

ogies. Epidote therefore appears to be the main host of

Th in our experiments. Uranium shows a similar pattern

to Th, but we note that there are other residual minerals

that could co-host U in addition to epidotes (e.g. carbon-

ate; Supplementary Data file SD 4).

The behaviour of the LREE in LC closely mimics Th,

suggesting that LREE are also hosted by epidote. This is

in accord with data on natural eclogites (e.g. El Korh

et al., 2009). There is an extreme increase in RLREE (La–

Sm) from 5 to 160 ppm at the point of epidote exhaus-

tion (850–900�C). At higher temperatures both epidote
and carbonate (the other potential host of LREE) are ab-

sent, so the LREE become entirely incompatible. In HC,

in contrast, RLREE steadily increases from�4 ppm in

the presence of epidote at 900�C to over 40 ppm at

higher temperatures. This pattern reflects exhaustion of

epidote followed by LREE control by carbonate at

1000�C (Supplementary Data file SD 4), and probably
carbonatite melt at 1100�C. YttriumþHREE show typ-

ical partitioning-controlled trends wherein concentra-

tions strongly increase with increasing temperature, but

absolute concentrations differ significantly depending

on the residual garnet fraction and initial concentration.

However, as only one HC experiment actually contains
garnet (900�C) it is suggested that carbonate co-hosts

the HREE and is additionally responsible for this pattern

(Supplementary Data file SD 4).

Certain trace element ratios such as U/Th, Ba/Th

and La/SmPUM (where PUM indicates primitive upper

mantle) are considered critical in the interpretation

of subduction-zone processes (Fig. 7b). Melts from
epidote-bearing experiments exhibit very high source-

normalized U/Th values, which fall to unity only after

epidote is exhausted. Barium/Th is extremely high

(>5000) in one phengite-absent/epidote-present experi-

ment (900�C, HC), and moderately high (�400) in a

phengite- and epidote-bearing experiment (850�C, LC).
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Epidote maintains low Th concentrations in coexisting

melts, whereas Ba is most enriched in run products

at the point of phengite exhaustion. High melt

fraction, phengite- and epidote-free experiments have

low Ba/Th (LC, 900–1100�C; Ba/Th� 20–50). Epidote also

maintains low LREE, whereas Sm is co-controlled
by garnet. Thus La/SmPUM (where PUM indicates primi-

tive upper mantle) is low (close to unity) when residual

epidote is present and highest (around 4–6) in epidote-

free, garnet-bearing experiments. It should be noted

that the HC, 900�C epidote-bearing experiment exhibits

an unusually high variability in La/SmPUM (5�9 6 3�7),
and is therefore ignored because it is not very

meaningful.

DISCUSSION

Melting of calcareous sediments
(CO2�5–6 wt %)
To explore the implications of our results for the fate of

subducted calcareous sediments it is instructive to

make comparisons with other experimental studies. In
experiments on carbon-free sediments, the early stages

of melting proceed through the breakdown of hydrous

phases, essentially phengite (e.g. Schmidt et al., 2004;

Hermann & Spandler, 2008; Skora & Blundy, 2010) and/

or biotite (e.g. Nichols et al., 1994, 1996; Martindale

et al., 2013) at 3 GPa. The fluid-absent phengite dehy-

dration reaction has been found to occur at 900–950�C
at 3 GPa (Schmidt et al., 2004), whereupon melting

begins via the reaction

PhengiteþQuartz=Coesiteþ Clinopyroxene
¼MeltþGarnet: (1)

In the fluid-present case, it has been shown that

melting starts at temperatures of around 730–750�C at

3 GPa (e.g. Nichols et al., 1994, 1996; Schmidt et al.,

2004; Hermann & Spandler, 2008; Skora & Blundy,

2010) through the reaction

PhengiteþQuartz=Coesiteþ Clinopyroxeneþ H2O
¼Melt 6 Garnet 6 Kyanite: (2)

Melt production thereafter depends on the bulk

water content. For low bulk water contents relatively lit-

tle melting is required at the solidus to consume the

fluid and large melt fractions are not reached until

phengite itself breaks down via reaction (1) at higher
temperatures. In contrast, at high water contents, a

larger amount of melting occurs at the solidus via reac-

tion (2), and phengite may disappear before the tem-

perature of the peritectic-like phengite-out reaction (1)

is reached (see figure 18 of Skora & Blundy, 2010). This

difference in melting behaviour is illustrated in Figure 8.

For calcareous sediments at around 3 GPa Thomsen
& Schmidt (2008a) located the fluid-absent solidus at

900–950�C, and indicated that phengite breakdown in

the presence of carbonate is again responsible for sig-

nificant production of potassium-rich granitic melt via

the reaction

PhengiteþQuartz=Coesiteþ Clinopyroxene
þ Carbonate
¼MeltþGarnetþ Kyanite: (3)

This is consistent with Mann & Schmidt (in press)

who bracketed the fluid-absent solidus at 3 GPa to lie

between 850–930�C. Thomsen & Schmidt (2008a) also

reported miniscule menisci in some lower temperature

runs, which were interpreted to represent silicate melt
at fractions of <1%. Tsuno & Dasgupta (2012) identified

a similar melting reaction, but K-feldspar also appeared

in their near-solidus assemblage. Small degrees of melt

were reported at 850�C in Tsuno & Dasgupta’s
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experiments, which had low bulk H2O contents (1 wt %),

but the production of significant amounts of melt was

again restricted to T> 900�C.

In our LC experiments, the onset of melting depends

on the bulk H2O content. Melting starts at 760�C<
Tsolidus< 800�C in the experiment with 7�8 wt % H2O,

whereas some melt was already present at around

760�C in the experiment containing 15 wt % H2O.

Melting in the LC experiments is marked by the appear-

ance of glass, garnet and kyanite at the expense of

phengite, quartz/coesite, and clinopyroxene and minor

carbonate. This suggests the melting reaction

PhengiteþQuartz=Coesiteþ Clinopyroxene
þ Carbonateþ H2O
¼MeltþGarnetþ Kyanite (4)

which is similar to the melting reaction inferred by

Thomsen & Schmidt (2008a).

Thus it appears that the fluid-present experimental

solidi obtained for various calcareous sediment compos-
itions are much more variable, displaced up-temperature

relative to the CO2-free solidus by up to around 100�C

(Fig. 8). One explanation for this displacement is that

CO2 lowers the activity of H2O in the fluid phase and con-

sequently raises the temperature of the fluid-saturated

solidus. Based on thermodynamic models of pelite

decarbonation (Kerrick & Connolly, 2001b), Thomsen
& Schmidt (2008a) concluded that the CO2 content of

subsolidus fluids would be too low to significantly affect

solidus temperatures. Consequently, they suggested

that the experimentally determined solidus temperatures

are overestimated in CO2-bearing experiments, owing to

the difficulty of identifying small melt fractions in
run products that contained little H2O. Although

acknowledging that this explanation is plausible, we

revisit the hypothesis that the subsolidus fluid

composition may influence the onset of fluid-saturated

melting. In particular, we suggest that in experiments

with low bulk H2O contents, the subsolidus fluids are

more CO2 rich than in the high bulk H2O content
experiments.

Modelling the onset of melting of calcareous
sediments
Because we have no direct data on subsolidus fluid

compositions, we model subsolidus fluid evolution by

free energy minimization (Connolly, 1990). For this pur-

pose we employ the thermodynamic dataset of Holland

& Powell (1998) together with the solution models used

by Kerrick & Connolly (2001b). As in the study of Kerrick
& Connolly (2001b), we do not model the melt phase;

however, this is immaterial as we are interested in the

fluid composition at temperatures up to the onset of

melting. For each composition used in the calculations

there is a solidus somewhere in the modelled

temperature range, above which the predicted phase
relations are metastable with respect to melt-bearing

assemblages (including fluid XH2O). Experimentally,

solidus temperatures lie between 730–750�C

(H2O-saturated, CO2-free system) and 900–950�C (fluid-

absent) at 3 GPa.

We model the following compositions: LC (bulk

CO2¼ 6 wt %) with a range of bulk H2O contents (1, 6
and 22 wt %); HC (CO2¼ 16 wt %; H2O¼ 22 wt %); the ex-

perimental starting materials of Thomsen & Schmidt

(2008a) (CO2¼ 4�8 wt %; H2O¼ 1 wt %) and Tsuno &

Dasgupta (2012) (CO2¼5 wt %; H2O¼1 wt %). It was

necessary to slightly augment the H2O content given by

Thomsen & Schmidt (2008a) (to 1�39 wt %) because the

calculated phase assemblages were below fluid-
saturation, inconsistent with their experimental obser-

vations. Results including the fluid fraction F, fluid XH2O,

and the modal proportions by weight of phengite and

solid carbonate are presented in Fig. 9, with full

details given in Supplementary Data file SD 5. Fluid,

phengite, carbonate, omphacite, garnet and quartz/
coesite 6kyanite are present in all calculations,

consistent with the results of our subsolidus experi-

ment. The further indication from Fig. 9 is that the tem-

perature of phengite breakdown is sensitive to water

activity and, therefore, the bulk water content, as dis-

cussed by Clemens & Vielzeuf (1987). The presence of
alkali feldspar, as a replacement for phengite as the

K2O-bearing phase at the highest modelled tempera-

tures, is an artefact of our calculations, which lack a

melt phase to accept potassium after phengite

breakdown.

Over our range of bulk compositions the minimum

value of fluid XH2O coexisting with silicates and carbon-
ate is �0�2–0�3, calculated for the bulk composition of

Thomsen & Schmidt (2008a) and the LC composition

with H2O�CO2 at 850�C; the maximum is �0�9, calcu-

lated for the LC composition with H2O	CO2 (Fig. 9).

Calculated XH2O is correlated with experimental solidus

temperatures for calcareous sediments (Fig. 10).
Absolute values of fluid XH2O should be treated with

caution because of uncertainties in the activity–

composition relations under conditions at which the

fluid would have a significant dissolved silicate compo-

nent. However, the uncertainties will be systematic in

nature, such that the relative fluid compositions at sub-

solidus conditions should be relevant to the experi-
ments (and to nature).

Our results imply that the near-solidus fluid can

show a much greater range of fluid XH2O than could be

anticipated from the calculations of Kerrick & Connolly

(2001b), using the same thermodynamic models.

This variability may account for the range of experimen-
tal solidus temperatures for calcareous sediments. In

particular, for bulk compositions with non-trivial CO2/

H2O contents, significant decarbonation occurs immedi-

ately above the temperature of the H2O-saturated sol-

idus (Fig. 9), leading to a large divergence in the XH2O of

the fluid phase and likewise in Tsolidus. In Fig. 10 we

show that the relationship between experimental
Tsolidus and calculated XH2O in calcareous sediments is

similar to that found in the systems albite–H2O–CO2 at
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1�5–2�0 GPa (Bohlen et al., 1982) and haplogranite–H2O–

CO2 at 1�5 GPa (Keppler, 1989). We conclude that fluid

XH2O just below the solidus in calcareous sediments is

sensitive to bulk H2O, CO2 and K2O, the last of these

controlling the maximum modal proportion of phen-
gite, and is not simply buffered to high XH2O by the co-

existence of carbonate, hydrous and silicate minerals.

Applications to nature
In applying the ideas above to the onset of melting of

calcareous sediments we must recognize the difference

between the open-system environment that might be

expected in subduction zones and the closed-system

environment of the experiments and calculations of this

study and those of Kerrick & Connolly (2001b). If
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unlimited fluid of constant XH2O can be supplied to the

subducting sediment layer through the dehydration of

underlying lithologies (an ‘external buffering’ scenario),
then it is this imposed fluid composition that will control

phase equilibria, including solidus temperature, regard-

less of whatever fluid evolution would have occurred in

a closed system. Should the externally buffering fluid

be of high XH2O (most closely approximated by our LC

experiments), melting might be expected to begin at

temperatures that are only slightly above the H2O-pre-
sent solidus of carbonate-free sediments. Melt product-

ivity would be maximized and significant amounts of

melt could be generated if slab-top temperatures were

as high as 750–800�C (e.g. Van Keken et al., 2002)

(Fig. 11); this has implications both for the recycling of

sedimentary carbonate to greater mantle depths and
the supply of CO2 to the mantle wedge. External buffer-

ing to a lower fluid XH2O would dictate somewhat

higher solidus temperatures and lower melt productiv-

ities. We acknowledge, however, that the natural sys-

tem is also likely to be open with respect to melt and to

fluid-mobile elements, and furthermore that any realis-

tic analysis should take this into account.

Phase assemblages and melting behaviour of
marls—preliminary results
The interpretation of our HC (marl) experiments is com-

plicated because the final fO2 is unknown, and there is

no other study available on similar compositions with

which we can compare our results. We can thus only

speculate about the significance of our HC phase as-

semblages and Tsolidus. One of the most striking obser-

vations is that garnet is absent at 800–900�C. The

presence or absence of garnet is likely to be a complex

function of the bulk-rock composition, including Fe2O3.

Any system in which a significant fraction of iron is pre-

sent as Fe2O3 will have a high bulk Mg# approaching

unity, and resulting phase assemblages might be com-

parable with experiments that were performed in Fe-

free model compositions. Indeed, garnets in KCMASH

(e.g. Hermann, 2002) appear at T� 900�C at 3 GPa,

whereas in Fe2þ-bearing compositions garnet is present

at T¼ 700�C (e.g. Hermann & Spandler, 2008). Garnet

also appears at T� 1000�C at 3 GPa in the KCMASH-CO2

experimental study of Thomsen & Schmidt (2008b),

consistent with the temperature of garnet-in of our

study. We thus speculate that the presence or absence

of garnet is linked to the high bulk Fe2O3.

Regardless of the differences in garnet stability, it ap-

pears that melting of marls is initiated by the same

melting reaction as in calcareous sediments [reaction

(4)] in terms of reactants, except that epidote is pro-

duced instead of garnet:

Phengiteþ SiO2 þ Clinopyroxeneþ Carbonateþ H2O
¼ Meltþ Epidote:

(5)

Although melt is present at 800�C, its abundance is

very low. This suggests that melting of HC started at

temperatures close to 800�C, despite the presence of

significant amounts of excess water (>20 wt %). This is

in contrast to the LC experiments, where melting

started close to 760�C and melt was abundant at 800�C

(40–60%). Whether the presence of abundant Fe2O3

lowers or increases Tsolidus is not well known at present.

Comparing the melting behaviour of Fe-free model sys-

tems with Fe2þ-bearing compositions would suggest

that the bulk-rock compositions with high Mg# should

melt at higher temperatures, although in the case of

sediments this requires there to be a host for significant

Fe2O3 in the solid residue. It is striking that almost all

experimental studies on natural sediments have

constrained the fluid-present solidus at 3 GPa to be at

around 730–750�C. One prominent exception is the ex-

perimental sequence of Johnson & Plank (1999), who

melted natural ferric-iron-rich red clay at 3 GPa. Those

researchers constrained the fluid-present solidus to be at

830�C. Their experimental run products are consistent

with a high bulk ferric-iron content; for example, ilmen-

ite–hematite is present, which is not the case in other

melting experiments on sediments that contain rutile

(6 ilmenite–hematite) (e.g. Schmidt et al., 2004;
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1996), Schmidt et al. (2004), Hermann & Spandler (2008) and
Skora & Blundy (2010). Grey and white diamonds represent
the melting behaviour of LC with 7�8 and 15 wt % H2O respect-
ively; the black square represents the experiments reported by
Tsuno & Dasgupta (2012). [The experiments of Thomsen &
Schmidt (2008a) are not plotted because the fluid-saturated
solidus of their study is not well constrained.] Uncertainties in
Tsolidus represent the limits in precision with which the fluid-
saturated solidus has been bracketed. Uncertainties in calcu-
lated fluid XH2O values reflect the range of fluid composition
modelled with Perple_X within the experimental temperature
uncertainty. These are minimum uncertainties, as they do not
include any potential inaccuracy in the modelling. The figure
nevertheless implies that the observed differences in Tsolidus in
3�0 GPa experiments can be attributed to variable fluid XH2O

conditions, and that the net effect of fluid XH2O on Tsolidus is
roughly comparable with experiments performed in simple
systems.

972 Journal of Petrology, 2015, Vol. 56, No. 5



Hermann & Spandler, 2008; Skora & Blundy, 2010). This

would be consistent with our speculation that melting in

ferric-iron-rich systems starts at higher temperatures,

and that ferric iron is compatible in the solid assemblage

at 3 GPa (e.g. ilmenite–hematite, epidote). We thus

speculate that more melt would have been present,
alongside garnet, in the HC experiments if conditions

were more reduced. Conversely, assuming that some of

the ferric iron became reduced in the course of the ex-

periments (consistent with the presence of ferrous iron

in carbonate, for example), it is also possible that marls

even richer in Fe2O3 would melt at even higher

temperatures.

CO2 recycling in subduction zones
The efficacy of calcareous sediment-derived melts in

delivering CO2 to the mantle wedge depends on the de-

gree of melting and the solubility of CO2 in silicate melts

and coexisting fluid at sub-arc depths. Experimental
studies to date suggest that calcareous sediments be-

have in a refractory manner under ‘normal’ subduction-

zone conditions if the availability of water is limited

(e.g. Thomsen & Schmidt, 2008a, 2008b; Tsuno &

Dasgupta, 2011, 2012; Tsuno et al., 2012; Mann &

Schmidt (in press)). In contrast, our experiments show
that H2O-fluxed melting of calcareous sediments can re-

sult in very large melt fractions (>50%), even at near-

solidus temperatures of only 750–800�C at 3 GPa. This

melt has the potential to carry appreciable CO2, al-

though the solubility of CO2 in sediment partial melts is

not well constrained at present. The solubility of CO2 in

anhydrous, broadly granitic melts at 3 GPa is probably
of the order of 1�6–1�9 wt % (e.g. Fine & Stolper, 1985;

Duncan & Dasgupta, 2014; see also Supplementary

Data file SD 6). The solubility of CO2 can be further

enhanced in the presence of H2O in high-pressure melts

(e.g. Mysen, 1976; King & Holloway, 2002; Duncan &

Dasgupta, 2014). Unfortunately, the latter studies are all

limited to low H2O contents (<4 wt %) that are well
below those expected in near-solidus partial melts (H2O

�20–30 wt %; see, e.g. Kessel et al., 2005; Hermann

et al., 2006; Hermann & Spandler, 2008). We attempted

to measure CO2 solubility in our experimental run prod-

ucts using secondary ion mass spectrometry, but en-

countered a suite of problems related to the high
overall volatile contents and the lack of appropriate

standards. Our preliminary data (provided in

Supplementary Data file SD 6) suggest that although

the exact CO2 solubility at sub-arc conditions remains

unknown for a flush-melting event, there is the possibil-

ity that CO2 is significantly more enriched than the CO2

concentrations of even the most water-rich experiments

of Duncan & Dasgupta (2014).

In the absence of CO2 solubility data at H2O-rich con-

ditions, our results can still place useful constraints on

large-scale carbon cycles, because we can use mass

balance to reconstruct how much of the bulk carbon re-

mains stable in the solid residue after melt and fluid ex-
traction. Table 7 shows that carbonate-poor lithologies,

such as LC (CO2¼6�1 wt %) retain as little as 20–35% of

their initial carbon inventory in the form of residual car-

bonate at 750–850�C. At similar temperatures carbon-

ate-rich lithologies (HC; CO2¼ 16�2 wt %) will transfer

around 70% of their carbon inventory to the Earth’s
deep interior. These results can be used to place max-

imum constraints on the return flux of CO2 from sub-

ducted sediments in arc volcanoes. Burton et al. (2013)

estimated global subaerial volcanic CO2 emissions to

be as high as 540 Mt a–1, from which 60–80% is probably

related to arc volcanism (M. R. Burton, personal com-

munication). Plank & Langmuir (1998) estimated that
the influx of CO2 via global subducting sediments

(GLOSS) is �40 Mt a–1. If the majority of this carbon

were subducted in calcareous clay (LC), which is very

similar to the GLOSS composition, then we can

assume that about 65–80% of the subducted carbon

(26–32 Mt a–1) can be returned to the Earth’s surface,
provided that abundant excess water is available for

decarbonation and melting of the slab at 750–850�C.

These values must be regarded as a benchmark for the

maximum possible return flux of sediment-derived CO2

for various reasons. First, they assume that CO2 is

evenly distributed throughout subducted sediments

worldwide. In reality, carbonate subduction is restricted
to relatively few arcs, and in consequence it is clear that

some of the carbonate inventory must be subducted as
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marl (HC) or even pure limestone layers (see also

Fig. 1), which will retain more carbonate compared with
calcareous clay. For example, if the majority of the car-

bon in GLOSS was subducted as marl (HC) only about

30% of the subducted CO2 (12 Mt a–1) could be returned.

In addition, the calculations assume pervasive infiltra-

tion of H2O, whereas in nature water infiltration might

be highly channelized (e.g. John et al., 2008), and car-
bon could be extracted efficiently only from those areas

that have high fluid–rock ratios at 750–850�C. Lastly, the

calculations presume that no sediment is scraped off

during subduction and that there is no further precipita-

tion of solid carbonate in the mantle wedge (e.g. at the

cold slab–mantle interface) or at the Moho. We also rec-

ognize that the flux of CO2 from slab to arc volcanism
may be modulated by long-term storage in deep crustal

hot zones, such that the annual influx does not always

balance the annual efflux on timescales that are short

relative to storage timescales.

Trace element signature of slab-derived partial
melts
The trace element signatures of partial melts in calcar-
eous sediments bear many similarities to those of car-

bon-free lithologies (e.g. Johnson & Plank, 1999;

Hermann & Rubatto, 2009; Skora & Blundy, 2010, 2012).

For example, partial melts are enriched in the typical

‘fluid-mobile’ elements such Cs, Ba, Rb and K; Sr is also

enriched and has comparable absolute concentrations

with those in the studies cited above. The fact that Sr is
partly retained in carbonates is compensated by higher

initial Sr contents. Zirconium (and Hf) is relatively en-

riched (of the order of 100 ppm), in agreement with

Rubatto & Hermann (2007). Titanium, Nb, and Ta are

depleted (e.g. Pearce & Cann, 1973; McCulloch &

Gamble, 1991; Hawkesworth et al., 1993; Thirlwall et al.,
1994), owing to retention in residual rutile until about

1000�C. Heavy REEþY are low in partial melts,

consistent with their compatibility in residual garnet.

The control of residual phases on trace elements in
sediment partial melts has been further discussed by

Hermann & Rubatto (2009) and Skora & Blundy (2010,

2012). A new finding is the observation that significant

quantities of HREE may also be retained by residual car-

bonate even in the absence of garnet, as shown for the

HC experiments at T< 1000�C.
Light REE, Th and U patterns differ somewhat from

those previously reported; for example, in the experi-

ments of Hermann & Rubatto (2009) and Skora &

Blundy (2010, 2012). In these carbon-free, Ca-poor sedi-

ments, monazite solubility controls LREE, Th and U con-

centrations in partial melts. In our experiments on

calcareous sediments it is epidote 6 carbonate that con-
trol LREEþTh concentrations in melts and these remain

low (ppm to sub-ppm level) until 900–1000�C when epi-

dote and carbonate are exhausted from the residue. In

our epidote-free, but carbonate-present experiments at

1000–1100�C, RLREE in partial melts is of the order of

40–70 ppm, representing �65–75% of the initial inven-
tory. The importance of epidote is consistent with the

study of Carter et al. (in preparation), who found that in

undoped mid-ocean ridge basalt (MORB) and altered

oceanic crust (AOC), epidote (and not allanite; see

Klimm et al., 2008) is the LREE-controlling phase even

above the solidus, suppressing RLREE concentrations
to very low values. In fact, epidote retains RLREE to

such high degrees that the Nb/La ratio in the melt is

greater than that of PUM under all conditions where

epidote is present in the solid residue. It should be

noted, however, that mixing in even tiny amounts of

partial melts derived from epidote-free sources, such as

radiolarian clay (Skora & Blundy, 2010), would be suffi-
cient to restore the arc-typical Nb anomaly in the bulk

fluid composition, simply because of the predominance

of LREE in partial melts in the absence of epidote.

Likewise, a more Ti-rich protolith would have higher re-

sidual rutile at all temperatures and consequently have

Table 7: CO2 budgets (P¼3 GPa)

Run T CO2 ini carb carb CO2 s CO2 s CO2 liq CO2 liq % CO2 % CO2

(�C) (wt %) % 1r (wt %) 1r (wt %) 1r arcs earth

Carbonate-rich lithology
144-16-c6 900 16�2 25 1 11 1 5 1 32 68
144-16-c7 1000 16�2 19�1 0�8 8�4 0�3 7�8 0�3 48 52
144-16-c14 1000 16�2 22�2 0�9 9�8 0�4 6�4 0�4 40 60
144-16-c18 1100 16�2 6�3 0�6 2�8 0�3 13�4 0�3 83 17
144-16-c16 1200 16�2 0�0 0�0 0�0 0�0 16�2 0�1 100 0
Carbonate-poor lithology
144-38-c35 750 6�1 4�8 1�0 2�1 0�4 4�0 0�4 65 35
144-38-c34 750 6�1 3�9 1�0 1�7 0�4 4�4 0�4 72 28
144-38-c28 800 6�1 4�8 0�7 2�1 0�3 4�0 0�3 65 35
144-38-c29 800 6�1 3�8 0�5 1�7 0�2 4�4 0�2 73 27
144-38-c4 850 6�1 2�5 1�0 1�1 0�4 5�0 0�4 82 18
144-38-c15 850 6�1 2�6 0�9 1�1 0�4 5�0 0�4 81 19
144-38-c11 900 6�1 0�0 0�0 0�0 0�0 6�1 0�0 100 0
144-38-c13 1000 6�1 0�0 0�0 0�0 0�0 6�1 0�0 100 0
144-38-c19 1100 6�1 0�0 0�0 0�0 0�0 6�1 0�0 100 0

carb, carbonate; CO2 s, calc. CO2 in bulk solid residue; CO2 liq, CO2 in bulk liquids (melt and second vapour phase); % CO2 arcs, %
CO2 that is returned in arcs; % CO2 Earth, % CO2 that is recycled into the deep Earth interior.
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lower Nb/La ratios than the partial melts produced in

this study.

Another important difference is the fact that partial

melts in equilibrium with epidoteþphengite have much

higher Ba/Th compared with partial melts in equilibrium
with monaziteþphengite (Hermann & Rubatto, 2009;

Skora & Blundy, 2010, 2012). This ratio is maximized

when phengite, the principal host for Ba, is exhausted

but epidote, the principal host for Th, persists. Elevated

Ba/Th ratios were originally interpreted as a geochem-

ical characteristic of fluids originating from AOC or

MORB in the three-component model (AOC fluid, sedi-
ment melt, mantle melt) of Elliott (2003). Subsequent

experimental studies have shown that indeed MORB-

derived partial melts do satisfy these criteria, mainly be-

cause residual epidote serves to increase Ba/Th by

holding back Th and reduce La/SmPUM by REE fraction-

ation (Carter et al., in preparation). Residual allanite
(¼ LREE-epidote) would create a very similar geochem-

ical pattern (Hermann, 2002; Klimm et al., 2008).

Conversely, residual zoisite in the slab cannot explain

low La/SmPUM (Martin et al., 2011) because REE parti-

tioning into the various epidote-group minerals de-

pends on crystal chemistry and structure (e.g. Frei et al.,
2003), and zoisite prefers the middle REE (MREE) in-

stead of LREE. Our study suggests that, in some cases,

partial melts derived from calcareous sediments may

masquerade as an AOC-derived component in terms of

their elevated Ba/Th and low La/SmPUM ratios, owing to

the presence of residual epidote (Fig. 12). Figure 12 also

shows that although Ba/Th ratios in melts of calcareous
sediments are elevated, they cannot explain Ba/Th val-

ues of arc lavas that exceed 1000. For these an ‘AOC

fluid source’ is still required (Carter et al., in prepar-

ation). In the Lesser Antilles arc, where sediment sub-

duction is commonplace, lava chemistry could be

potentially explained by mixing of partial melts derived
from epidote-rich sediments on the one hand (Ba/

Th� 400 and La/SmPUM� 1) and epidote-poor or epi-

dote-free clastic sediments on the other hand (Ba/

Th< 100 and La/SmPUM> 5) (Fig. 12), although MORB-

derived fluids may, of course, also contribute to the arc

signal. In any case, the Ba/Th vs La/SmPUM diagram of

Elliott (2003) is better interpreted in terms of residual
phases in the slab rather than source lithology: phen-

gite reduces Ba/Th, and epidote and monazite increase

Ba/Th; epidote reduces La/SmPUM; garnet and carbon-

ate increase La/SmPUM.

Epidote fractionates U from Th such that partial

melts will have excess in U when compared with
bulk U/Th. The same fractionation trend was previously

observed for allanite in the doped-MORB experiments

of Klimm et al. (2008). Worldwide, it has been found

that lavas from sediment-poor arcs exhibit a 238U ex-

cess over 230Th relative to their source, in contrast to

sediment-rich arcs, which appear to plot close to the

(238U/232Th) vs (230Th/232Th) equiline, or even towards
Th excess (e.g. McDermott & Hawkesworth, 1991;

Condomines & Sigmarsson, 1993); a recent appraisal of

these variations in the context of residual mineralogy

has been given by Avanzinelli et al. (2012). Again, al-

though U excesses are generally seen as a fingerprint

of the fluid or melt that stems from the basaltic portion

of the subducted slab, calcareous sediments may also

provide such a signature.

Evidence for oxidized slabs and epidote in UHP
rocks
As our experimental run products record the ultrahigh-

pressure (UHP) phase petrology of oxidized sediments

it is reasonable to ask whether the presence of epidote

is directly linked to the oxidizing conditions (high bulk
Fe3þ/Fetot), and whether such oxidized conditions can

be identified in fossil UHP terrains. Marine sediments

are known to vary greatly in their Fe3þ/Fetot, which can

be very high (>0�9) locally. At present, it is not clear

whether a high ferric iron component can be main-

tained in the slab, or whether ferric iron would react
with reduced species to form ferrous iron (e.g. Lecuyer

& Ricard, 1999).

Known occurrences of UHP epidote include, for ex-

ample, the Western Alps (e.g. Reinecke, 1998;

Compagnoni & Rolfo, 1999) and Dabie–Sulu (e.g. Rolfo

et al., 2004; Ferrando et al., 2005; Zhang et al., 2009).

UHP epidotes are particularly common in Dabie–Sulu
eclogites, which are well known for their oxidizing con-

ditions. Studies on stable isotopes combined with pet-

rological evidence have suggested that this area

probably experienced pervasive hydrothermal alter-

ation in an oxidized environment prior to UHP meta-

morphism (e.g. Zheng et al., 2003).
It is unlikely that epidote will be stable in Ca-poor

metapelites at UHP conditions, but there is some

La/SmPUM
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mafic arc lavas, 
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ep-bearing
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lavas

Fig. 12. PUM-normalized La/SmPUM vs Ba/Th variations for
mafic arc lavas worldwide [compilation of Elliott (2003)].
Superimposed are the chemical compositions of quenched
glasses from this study. High Ba/Th ratios coupled with low La/
SmPUM are observed in epidote-bearing experiments, and are
otherwise restricted to fluids or melts coming from the basaltic
portion of the subducted slab. The Lesser Antilles arc lavas
trace element signature could be explained by mixing of partial
melts derived from epidote-rich sediments (Ba/Th�400 and
La/SmPUM�1) and epidote-poor or epidote-free sediments (Ba/
Th<100 and La/SmPUM>5).
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evidence that epidote can be stable in UHP calc-silicates

or impure marbles. For example, epidote is reported in

the UHP calc-schists at Lago di Cignana, especially in

formerly oxidized and Mn-rich layers (Reinecke, 1998;

Compagnoni & Rolfo, 1999). Impure marbles from the
Sulu terrain also contain abundant epidote, which has

mainly grown during early retrograde stages at eclog-

ite-facies conditions (e.g. Proyer et al., 2014). However,

the authors also suggested that ‘the assemblage

omphaciteþgarnetþquartz/coesiteþ epidote (rich in

Fe3þ and REE)þ rutile 6 talc was passive during meta-

morphic evolution through the eclogite facies, perhaps
to UHP conditions and back’. Such an assemblage, in

addition to carbonate, is fully consistent with our ex-

perimental phase assemblages, suggesting that epidote

can be stable at UHP conditions in oxidized bulk com-

positions, including carbonate-rich lithologies, and that

initially oxidizing conditions can be maintained when
the slab undergoes UHP metamorphism.
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Kägi, R., Müntener, O., Ulmer, P. & Ottolini, L. (2005). Piston-
cylinder experiments on H2O undersaturated Fe-bearing
systems: An experimental setup approaching fO2 conditions
of natural calc-alkaline magmas. American Mineralogist 90,
708–717.

Keppler, H. (1989). The influence of the fluid phase composition
on the solidus temperatures in the haplogranite system
NaAlSi3O8–KAlSi3O8–SiO2–H2O–CO2. Contributions to
Mineralogy and Petrology 102, 321–327.

Kerrick, D. M. & Connolly, J. A. D. (1998). Subduction of
ophicarbonates and recycling of CO2 and H2O. Geology 26,
375–378.

Kerrick, D. M. & Connolly, J. A. D. (2001a). Metamorphic devola-
tilization of subducted mid-ocean ridge metabasalts: impli-
cations for seismicity, arc magmatism and volatile
recycling. Earth and Planetary Science Letters 189, 19–29.

Kerrick, D. M. & Connolly, J. A. D. (2001b). Metamorphic
devolatilization of subducted marine sediments and the
transport of volatiles into the Earth’s mantle. Nature 411,
293–296.

Kessel, R., Ulmer, P., Pettke, T., Schmidt, M. W. & Thompson, A.
B. (2005). The water–basalt system at 4 to 6 GPa: Phase rela-
tions and second critical endpoint in a K-free eclogite at 700
to 1400�C. Earth and Planetary Science Letters 237, 873–892.

King, P. L. & Holloway, J. R. (2002). CO2 solubility and
speciation in intermediate (andesitic) melts: the role of H2O
and composition. Geochimica et Cosmochimica Acta 66,
1627–1640.

Kjarsgaard, B. A. (1998). Phase relations of a carbonated high-
CaO nephelinite at 0�2 and 0�5 GPa. Journal of Petrology 39,
2061–2075.

Klemme, S., Blundy, J. D. & Wood, B. J. (2002). Experimental
constraints on major and trace element partitioning during
partial melting of eclogite. Geochimica et Cosmochimica
Acta 66, 3109–3123.

Klimm, K., Bundy, J. D. & Green, T. H. (2008). Trace element
partitioning and accessory phase saturation during H2O-
saturated melting of basalt with implications for subduction
zone chemical fluxes. Journal of Petrology 49, 523–553.

Lecuyer, C. & Ricard, Y. (1999). Long-term fluxes of ferric iron:
implication on the redox state of Earth mantle. Earth and
Planetary Science Letters 165, 197–211.

Liou, J. G. (1973). Synthesis and stability relations of epidote,
Ca2Al2FeSi3O12(OH). Journal of Petrology 14, 381–413.

Liou, J. G., Kim, H. S. & Maruyama, S. (1983). Prehnite–epidote
equilibria and their petrologic applications. Journal of
Petrology 24, 321–342.

Mann, U. & Schmidt, M. W. (in press). Melting of pelitic
sediments at subarc depths: 1. Flux vs. fluid-absent melting
and a parameterization of melt productivity. Chemical
Geology. http://dx.doi.org/10.1016/j.chemgeo.2015.02.032

Manning, C. E. (2004). The chemistry of subduction-zone fluids.
Earth and Planetary Science Letters 223, 1–16.

Manning, C. E., Shock, E. L. & Sverjensky, D. A. (2013). The chem-
istry of carbon in aqueous fluids at crustal and upper-mantle
conditions: experimental and theoretical constraints. In:
Hazen, R. M., Jones, A. P. & Baross, J. A. (eds) Carbon in Earth.
Mineralogical Society of America and Geochemical Society,
Reviews in Mineralogy and Geochemistry 75, 109–148.

Martin, L. A. J., Wood, B. J., Turner, S. & Rushmer, T. (2011).
Experimental measurements of trace element partitioning

between lawsonite, zoisite and fluid and their implication for
the composition of arc magmas. Journal of Petrology 52,
1049–1075.

Martin, L. H. J., Schmidt, M. W., Mattsson, H. B. & Günther, D.
(2013). Element partitioning between immiscible carbonatite
and silicate melts for dry and H2O-bearing systems at
1–3 GPa. Journal of Petrology 54, 2301–2338.

Martindale, M., Skora, S., Pickles, J., Elliott, T., Bundy, J. &
Avanzinelli, R. (2013). High pressure phase relations of sub-
ducted volcaniclastic sediments from the West Pacific and
their implications for the geochemistry of the Marianas arc
magmas. Chemical Geology 342, 94–109.

Marty, B. & Jambon, A. (1987). C/3He fluxes in volatile fluxes
from the solid Earth: implications for carbon geodynamics.
Earth and Planetary Science Letters 83, 16–26.

McCulloch, M. T. & Gamble, J. A. (1991). Geochemical and geo-
dynamical constraints on subduction zone magmatism.
Earth and Planetary Science Letters 102, 358–374.

McDade, P., Wood, B., Van Westrenen, W., Brooker, R.,
Gudmundsson, G., Soulard, H., Najorka, J. & Blundy, J.
(2002). Pressure corrections for a selection of piston-
cylinder assemblies. Mineralogical Magazine 66, 1021–1028.

McDermott, F. & Hawkesworth, C. (1991). Th, Pb, and Sr isotope
variations in young island arc volcanics and oceanic sedi-
ments. Earth and Planetary Science Letters 104, 1–15.

McMillan, P. F. & Holloway, J. R. (1987). Water solubility in
aluminosilicate melts. Contributions to Mineralogy and
Petrology 97, 320–332.

Molina, J. F. & Poli, S. (2000). Carbonate stability and fluid com-
position in subducted oceanic crust: an experimental study
on H2O–CO2-bearing basalts. Earth and Planetary Science
Letters 176, 295–310.

Mysen, B. O. (1976). The role of volatiles in silicate melts: solu-
bility of carbon dioxide and water in feldspar, pyroxene,
feldspathoid melts to 30 kb and 1625 degrees C. American
Journal of Science 276, 969–996.

Nichols, G. T., Wyllie, P. J. & Stern, C. R. (1994). Subduction-
zone melting of pelagic sediments constrained by melting
experiments. Nature 371, 785–788.

Nichols, G. T., Wyllie, P. J. & Stern, C. R. (1996). Experimental
melting of pelagic sediment, constraints relevant to subduc-
tion. In: Bebout, G. E., Scholl, D. H., Kirby, S. P. & Platt, J.
(eds) Subduction: Top to Bottom. American Geophysical
Union, Geophysical Monograph 96, 293–298.

Nishio, Y., Sasaki, S., Gamo, T., Hiyagon, H. & Sano, Y. (1998).
Carbon and helium isotope systematics of North Fiji
Basin basalt glasses: carbon geochemical cycle in the
subduction zone. Earth and Planetary Science Letters 154,
127–138.

Paillat, O., Elphick, S. C. & Brown, W. L. (1992). The solubility of
water in NaAlSi3O8 melts: a re-examination of Ab–H2O
phase relationships and critical behaviour at high pressures.
Contributions to Mineralogy and Petrology 112, 490–500.

Pearce, J. A. & Cann, J. R. (1973). Tectonic setting of basic vol-
canic rocks determined using trace-element analyses. Earth
and Planetary Science Letters 19, 290–300.

Plank, T. & Langmuir, C. H. (1998). The chemical composition of
subducting sediment and its consequences for the crust and
mantle. Chemical Geology 145, 325–394.

Poli, S. & Schmidt, M. W. (2002). Petrology of subducted slabs.
Annual Review of Earth and Planetary Sciences 30, 207–235.

Poli, S., Franzolin, E., Fumagalli, P. & Crottini, A. (2009). The
transport of carbon and hydrogen in subducted oceanic
crust: An experimental study to 5 GPa. Earth and Planetary
Science Letters 278, 350–360.

Prouteau, G. & Scaillet, B. (2013). Experimental con-
straints on sulphur behaviour in subduction zones:

978 Journal of Petrology, 2015, Vol. 56, No. 5

http://dx.doi.org/10.1016/j.chemgeo.2015.02.032


implications for TTG and adakite production and the global
sulphur cycle since the Archean. Journal of Petrology 54,
183–213.

Proyer, A., Rolfo, F., Castelli, D. & Compagnoni, R. (2014).
Diffusion-controlled metamorphic reaction textures in an
ultrahigh-pressure impure calcite marble from Dabie Shan,
China. European Journal of Mineralogy 26, 25–40.

Rea, D. K. & Ruff, L. J. (1996). Composition and mass flux of
sediment entering the world’s subduction zones:
Implications for global sediment budgets, great earth-
quakes, and volcanism. Earth and Planetary Science Letters
140, 1–12.

Reinecke, T. (1998). Prograde high- to ultrahigh-pressure meta-
morphism and exhumation of oceanic sediments at Lago di
Cignana, Zermatt–Saas Zone, western Alps. Lithos 42, 147–
189.

Rohrbach, A. & Schmidt, M. W. (2011). Redox freezing and melt-
ing in the Earth’s deep mantle resulting from carbon–iron
redox coupling. Nature 472, 209–212.

Rolfo, F., Compagnoni, R., Wu, W. & Xu, S. (2004). A coherent
lithostratigraphic unit in the coesite–eclogite complex of
Dabie Shan, China: geologic and petrologic evidence. Lithos
73, 71–94.

Rubatto, D. & Hermann, J. (2007). Experimental zircon/melt and
zircon/garnet trace element partitioning and implications for
the geochronology of crustal rocks. Chemical Geology 241,
38–61.

Sano, Y. & Marty, B. (1995). Origin of carbon in fumarolic gas
from island arcs. Chemical Geology 119, 265–274.

Sano, Y. & Williams, S. N. (1996). Fluxes of mantle and sub-
ducted carbon along convergent plate boundaries.
Geophysical Research Letters 23, 2749–2752.

Schmidt, M. W. & Poli, S. (1998). Experimentally based water
budgets for dehydrating slabs and consequences for arc
magma generation. Earth and Planetary Science Letters 163,
361–379.

Schmidt, M. W. & Ulmer, P. (2004). A rocking multianvil: elimin-
ation of chemical segregation in fluid-saturated high-
pressure experiments. Geochimica et Cosmochimica Acta
68, 1889–1899.

Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. (2004). Melting
and dissolution of subducting crust at high pressures: the
key role of white mica. Earth and Planetary Science Letters
228, 65–84.

Shaw, A. M., Hilton, D. R., Fischer, T. P., Walker, J. A. &
Alvarado G. E. (2003). Contrasting He–C relationships in
Nicaragua and Costa Rica: insights into C cycling through
subduction zones. Earth and Planetary Science Letters 214,
499–513.

Skora, S. & Blundy, J. (2010). High-pressure hydrous phase re-
lations of radiolarian clay and implications for the involve-
ment of subducted sediment in arc magmatism. Journal of
Petrology 51, 2211–2243.

Skora, S. & Blundy, J. (2012). Monazite solubility in hydrous sili-
cic melts at high pressure conditions relevant to subduction
zone metamorphism. Earth and Planetary Science Letters
321–322, 104–114.

Sleep, N. H. & Zahnle, K. (2001). Carbon dioxide cycling and
implications for climate on ancient Earth. Journal of
Geophysical Research 106, 1373–1399.

Sorensen, S. S., Grossman, J. N. & Perfit, M. R. (1997).
Phengite-hosted LILE enrichment in eclogite and related
rocks; implications for fluid-mediated mass transfer in sub-
duction zones and arc magma genesis. Journal of Petrology
38, 3–34.

Spandler, C., Hermann, J., Arculus, R. & Mavrogenes, J. (2003).
Redistribution of trace elements during prograde

metamorphism from lawsonite blueschist to eclogite facies;
implications for deep subduction-zone processes.
Contributions to Mineralogy and Petrology 146, 205–222.

Spandler, C., Yaxley, G., Green, D. H. & Scott, D. (2010).
Experimental phase and melting relations of metapelite in
the upper mantle: implications for the petrogenesis of intra-
plate magmas. Contributions to Mineralogy and Petrology
160, 569–589.

Spandler, C. J. & Pirard, C. (2013). Element recycling
from subducting slabs to arc crust: a review. Lithos 170–171,
208–223.

Stamper, C. C., Melekhova, E., Bundy, J. D., Arculus, R. J.,
Humphreys, M. C. S., Broker, R. A. (2014). Oxidised phase re-
lations of a primitive basalt from Grenada, Lesser Antilles.
Contributions to Mineralogy and Petrology 167, doi:10.1007/
s00410-013-0954-6.

Staudigel, H., Hart, S. R., Schmincke, H.-U. & Smith, B. M.
(1989). Cretaceous ocean crust at DSDP Site 417 and Site
418—carbon uptake from weathering versus loss by mag-
matic outgassing. Geochimica et Cosmochimica Acta 53,
3091–3094.

Suess, E. & Whiticar, M. J. (1989). Methane-derived CO2 in pore
fluids expelled from the Oregon subduction zone.
Palaeogeography, Palaeoclimatology, Palaeoecology,
71119–136.

Syracuse, E. M., Van Keken, P. E. & Abers, G. A. (2010). The glo-
bal range of subduction zone thermal models. Physics of the
Earth and Planetary Interiors 183, 73–90.

Terry, M. P., Robinson, P. & Krogh Ravna, E. J. (2000). Kyanite
eclogite thermobarometry and evidence for thrusting of
UHP over HP metamorphic rocks, Nordøyane,
Western Gneiss Region, Norway. American Mineralogist 85,
1637–1650.

Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N.,
Hollings, P., Davidson, J. P. & Arculus, R. J. (1994). High-field
strength element anomalies in arc lavas—source or process.
Journal of Petrology 35, 819–838.

Thomsen, T. B. & Schmidt, M. W. (2008a). Melting of carbo-
nated pelites at 2�5–5�0 GPa, silicate–carbonatite liquid im-
miscibility, and potassium–carbon metasomatism of the
mantle. Earth and Planetary Science Letters 267, 17–31.

Thomsen, T. B. & Schmidt, M. W. (2008b). The biotite to
phengite reaction and mica-dominated melting in fluid þ
carbonate-saturated pelites at high pressures. Journal of
Petrology 49, 1889–1914.

Truckenbrodt, J., Ziegenbein, D. & Johannes, W. (1997). Redox
conditions in piston cylinder apparatus: The different behav-
ior of boron nitride and unfired pyrophyllite assemblies.
American Mineralogist 82, 337–344.

Tsuno, K. & Dasgupta, R. (2011). Melting phase relation of nom-
inally anhydrous, carbonated pelitic-eclogite at 2�5–3�0 GPa
and deep cycling of sedimentary carbon. Contributions to
Mineralogy and Petrology 161, 743–763.

Tsuno, K. & Dasgupta, R. (2012). The effect of carbonates on
near-solidus melting of pelite at 3 GPa: relative efficiency of
H2O and CO2 subduction. Earth and Planetary Science
Letters 319–320, 185–196.

Tsuno, K., Dasgupta, R., Danielson, L. & Righter, K. (2012).
Flux of carbonate melt from deeply subducted pelitic
sediments—geophysical and geochemical implications for
the source of Central American volcanic arc. Geophysical
Research Letters 39, L16307.

Ulmer, P. & Trommsdorff, V. (1995). Serpentine stability to
mantle depths and subduction-related magmatism. Science
268, 858–861.

van Keken, P. E., Kiefer, B. & Peacock, S. M. (2002). High-
resolution models of subduction zones: implications for

Journal of Petrology, 2015, Vol. 56, No. 5 979



mineral dehydration reactions and the transport of water
into the deep mantle. Geochemistry, Geophysics,
Geosystems 3, doi:10.1029/2001GC000256.

Van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A.
(2011). Subduction factory: 4. Depth-dependent flux of H2O
from subducting slabs worldwide. Journal of Geophysical
Research 116, B01401, 1–15.

Van Soest, M. C., Hilton, D. R. & Kreulen, R. (1998). Tracing crus-
tal and slab contributions to arc magmatism in the Lesser
Antilles island arc using helium and carbon relationships in
geothermal fluids. Geochimica et Cosmochimica Acta 62,
3323–3335.

Walter, M. J., Kohn, S. C., Araujo, D., Bulanova, G. P., Smith, C.
B., Gaillou, E., Wang, J., Steele, A. & Shirey, S. B. (2011).
Deep mantle cycling of oceanic crust: evidence from dia-
monds and their mineral inclusions. Science 334, 54–57.

Wei, C., Wang, W., Clarke, G. L., Zhang, L. & Song, S. (2009).
Metamorphism of high/ultrahigh-pressure pelitic–felsic

schist in the South Tianshan Orogen, NW China:
phase equilibria and P–T path. Journal of Petrology 50,
1973–1991.

Wilson, A. (1960). The micro-determination of ferrous iron in
silicate minerals by a volumetric and colorimetric method.
Analyst 85, 823–827.

Yaxley, G. M. & Green, D. H. (1994). Experimental demonstra-
tion of refractory carbonate-bearing eclogite and siliceous
melt in the subduction regime. Earth and Planetary Science
Letters 128, 313–325.

Zhang, R. Y., Liou, J. G. & Ernst, W. G. (2009). The Dabie–Sulu
continental collision zone: A comprehensive review.
Gondwana Research 16, 1–26.

Zheng, Y.-F., Fu, B., Gong, B. & Li, L. (2003). Stable isotope
geochemistry of ultrahigh pressure metamorphic rocks
from the Dabie–Sulu orogen in China: implications for
geodynamics and fluid regime. Earth-Science Reviews 62,
105–161.

980 Journal of Petrology, 2015, Vol. 56, No. 5


	egv024-TF1
	egv024-TF2
	egv024-TF3
	egv024-TF4
	egv024-TF5
	egv024-TF6
	egv024-TF7
	egv024-TF10
	egv024-TF8
	egv024-M1
	egv024-M2
	egv024-M3
	egv024-M4
	egv024-M5
	egv024-TF9

